
Journal of Statistical Research ISSN 0256 - 422 X
2005, Vol. 2, No. 39, pp. 87–102
Bangladesh

THE EFFECT OF A SMALL FRACTION OF UNDETECTED
HALF SIBS ON LINKAGE STUDIES USING ED AND EC SIB

PAIRS

Zhaohai Li

Department of Statistics, George Washington University
2140 Pennsylvania Ave. NW, Washington, DC 20052

Biostatistics Branch, Division of Cancer Epidemiology and Genetics
National Cancer Institute, 6120 Executive Blvd., EPS, Rockville, MD 20852.

Email: zli@gwu.edu

Joshep L. Gastwirth

Department of Statistics, George Washington University
2140 Pennsylvania Ave. NW, Washington, DC 20052

Biostatistics Branch, Division of Cancer Epidemiology and Genetics
National Cancer Institute, 6120 Executive Blvd., EPS, Rockville, MD 20852.

Email: jlgast@gwu.edu

summary

Linkage studies utilizing sib pairs usually assume all of them are full sibs. Some
of these pairs, however, may be half sibs. When the true status of these pairs is
known, a combined test for accommodating half sib pairs in the extremely dis-
cordant (ED) sib pair design is proposed. Although investigators often genotype
additional markers to identify half sibs, recent concerns with the loss of privacy
as well as identity theft suggest that many people will not be willing to have so
many loci being genotyped once they become aware of this extra genotyping. In
order to assess the potential effect of a small fraction of unknown half sib pairs
in the data on the analysis, the sensitivity of the Risch and Zhang ED statistic
is examined. It turns out that the type I error or the probability of a false pos-
itive linkage results is roughly doubled when undetected half sib pairs form 5%
of the data. A similar analysis for extremely concordant (EC) pairs shows that
undetected half sibs reduce the power of the usual tests based on them.

Keywords and phrases: Extremely discordant sib pair, Extremely concordant sib
pair, False negative rate, False positive rate, Half sib pair, Linkage, Privacy.

AMS Classification: Place Classification here. Leave as is, if there is no classifi-
cation

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



1 Introduction

Sib pair linkage studies are commonly used for the investigation of genetic components
involved in complex traits. Penrose (1935, 1953) initiated the method as sib pairs with
similar phenotypes should have an excess of allele sharing while sib pairs with dissimilar
phenotypes should have a deficit of allele sharing. Allele sharing methods have been further
developed by Haseman and Elston (1972), Day and Simons (1976), Green and Woodrow
(1977), Suarez, et. al. (1978), Whittemore and Halpern (1994), Risch and Zhang (1995).
Linkage studies based on sib pairs selected at random from the population have low power
(Blackwelder and Elston, 1982). To increase the power of sib pair linkage studies, Carey
and Williamson (1991) proposed selecting sib pairs on the basis of probands with extreme
trait values. Selecting sib pairs that are extremely discordant (ED) or extremely concordant
(EC) with regard to their trait values further reduces the number of sib pairs required to
detect linkage (Eaves and Meyer, 1994; Risch and Zhang 1995; Risch and Zhang, 1996;
Zhang and Risch, 1996; Zhao, Zhang, and Rotter, 1997; Feingold, 2001; Li and Gastwirth,
2001).

Current research in sib pair designs is focused on increasing the power of the tests so
that smaller sample sizes will be required, however, both the false positive and false negative
rates need to be considered. (Rao, 1998). The methods in the literature assume that all sib
pairs are full sibs. Sometimes half sibs may enter the data because the pair might not be
aware of their true status or have been members of the same family so long that they forget.
Göring and Ott (1997) pointed out that cases of nonpaternity (or nonmaternity) often go
undetected so that half sibs are falsely analyzed as full sibs. Thus, a fraction of sib pairs
used in genetic linkage studies may only be half sibs. As half sibs share fewer alleles IBD
than full sibs, their inclusion in a study should lead to a loss of power and procedures for
discarding them have been developed (Göring and Ott, 1997). Neale, et al. (2002) noted
that in additive and dominant models undetected half sibs create a higher type I error of
the usual IBD based tests.

Often investigators genotype additional markers to determine whether the “sib-pairs”
are full sibs. Since many highly polymorphic markers, e.g. 30, are needed to accomplish this,
the identity of a study participant is likely to be determined from this genetic knowledge.
Thus, anyone with access to a blood or hair sample of an individual could try to match
that person to the study population. This creates a potential problem as confidentiality
is typically promised to study participants when they sign the informed consent form. If
potential participants learn that enough additional genotyping is done that makes them
“identifiable”, they may decline to participate in the study. Using grouped or pooled blood
samples suggested by Gastwirth and Hammick (1989) and Hammick and Gastwirth (1994)
one can estimate the prevalence of HIV while protecting the privacy of survey participants.
Analogous issues in genetic studies are discussed by Sham et al.(2002). The paper concerns
the potential impact of undetected half sibs on a standard type of study. In the future we
hope to explore the potential use of pooling to estimate the prevalence of the undetected
half sibs and develop the appropriate adjustment for the standard test statistic.
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This paper examines the following two situations: 1) half sib pair status is ascertained
by the investigator; 2) half sib pair status is unknown. The appropriate modifications to the
standard methods to accommodate known half sib pairs are presented. Then, the sensitivity
of the standard tests to a small fraction of undetected half sib pairs is assessed. It turns out
that the significance level or probability of a false positive result for tests based on ED sib
pairs is roughly doubled when undetected half sib pairs form 5% of the data. For the three
common genetic models (additive, dominant, recessive) the fraction of half sibs in entire
ED linkage data is greater than the fraction of half sibs in general population. For tests
using EC sib pairs, the inclusion of half sibs results in a loss of power. Under alternative
(linkage) one expects the proportion of half-sibs meeting the EC criteria is less than the
proportion of full sibs. While this was noted by Neale et al. (2002), this paper provides a
quantitative assessment of the impact of undetected half sibs on the validity and power loss
of the statistical test used to analyze ED sib pair data.

2 Methods

One approach to detecting the linkage between a quantitative trait and a candidate gene
or marker is to screen the population for sibling pairs which have highly discordant values
of the trait (Risch and Zhang, 1995; Szatkiewicz and Feingold, 2004). If the trait is linked
to a marker or candidate gene the selected pair should also be genetically different since
their trait values differ substantially. More formally, the ED pairs will have a diminished
probability of inheriting the same allele from each parent. Thus, one can contrasting the
number of sibpairs that share no (0) alleles IBD (identical-by-descent) to the number with
2 alleles IBD as the difference should be large under the alternative hypothesis but near 0
under the null hypothesis of no linkage. The corresponding statistic introduced by Risch
and Zhang (1995) is

TF = nF
0 − nF

2 , (2.1)

where nF
0 is the number of ED full sib pairs with marker IBD=0, nF

1 is the number of full
ED sibpairs with marker IBD=1 and nF

2 is number of full ED sibpairs with marker IBD=2.
As usual we assume that the IBD status can be completely determined.

Under H0 (no linkage), (nF
0 , nF

1 , nF
2 ) has a trinomial distribution with parameters (NF ;

1
4 , 1

2 , 1
4 ), where NF is the total number of full ED sib pairs. Therefore, we have

EH0(T
F ) = 0, V arH0(T

F ) =
NF

2
.

Under H1 (the trait and marker loci are linked), the parameters of the trinomial distri-
bution are (NF ; pF

0 , pF
1 , pF

2 ), where pF
j = P{IBD = j|EDF }, j = 0, 1, 2, and EDF indicates

that a full sib pair is extremely discordant. We have

EH1(T
F )

4
= NF τF and V arH1(T

F )
4
= NF νF

where τF = pF
0 − pF

2 and νF = [pF
0 + pF

2 − (pF
0 − pF

2 )2].
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Analogous to the test statistic for ED full sib pairs, we define the test statistic for ED
half sib pairs as

TH = nH
0 − nH

1 = 2nH
0 −NH , (2.2)

where NH is the number of ED half sib pairs, nH
0 is the number of ED half sib pairs with

IBD=0, and nH
1 is the number of ED half sib pairs with IBD=1.

Under H0 (no linkage), the IBD distribution of an ED half sib pair is Bernoulli, i.e.,
IBD=1 with probability 1

2 and IBD=0 with probability 1
2 . Hence, nH

0 has a binomial
distribution B(NH ; 1

2 ) under H0, so EH0(T
H) = 0, V arH0(T

H) = NH .

Under H1

EH1(T
H) = NH(pH

0 − pH
1 ) and V arH1(T

H) = 4NHpH
0 pH

1

where pH
0 = P{IBD = 0|EDH} and pH

1 = P{IBD = 1|EDH}.
If half sib pair status is known, one combines TF and TH as follows:

TC = wTF + (1− w)TH , (2.3)

where w depends on the relative information contained in the full and half sibpairs. Since
under H0, each full sib pair contributes 1

2 to the variance of the test statistic TF and each
half sib pair contributes 1 to the variance of the test statistic TH , we choose w as

w =
2NF

2NF + NH
.

Under H0

EH0(T
C) = 0, V arH0(T

C) = w2 NF

2
+ (1− w)2NH .

Asymptotically under H0, TC is normally distributed with with mean 0 and variance σ2
0 =

w2 NF

2 + (1− w)2NH .
Under H1

EH1(T
C) = wNF (pF

0 − pF
2 ) + (1− w)NH(pH

0 − pH
1 )

4
= µ,

V arH1(T
C) = w2NF νF + (1− w)24NHpH

0 pH
1

4
= σ2

1 .

TC is asymptotically normally distributed with mean µ and variance σ2
1 and one rejects H0

when TC is large.

3 Power and Sample Size

Let N be the total number of ED sib pairs where NF and NH are the numbers of ED full
sib pairs and ED half sib pairs respectively. The proportions of full and half sib pairs are
r = NF

N and s = NH

N . We also denote

σ2
0 = N [

w2r

2
+ (1− w)2s]

4
= Nb

90



µ = N [wr(pF
0 − pF

2 ) + (1− w)s(pH
0 − pH

1 )]
4
= Nc

σ2
1 = N [w2rνF + (1− w)24spH

0 pH
1 ]

4
= Na

The power of the test based on statistic TC for detecting linkage is

1− Φ(
z1−α

√
Nb−Nc√
Na

)

If the desired power for detecting linkage is 1− β, then setting

1− β = 1− Φ(
z1−α

√
Nb−Nc√
Na

)

yields

N =
(z1−α

√
b− zβ

√
a)2

c2
(3.1)

as the required sample size. Notice, w = 2r
2r+s . If s = 0, the sample size formula 3.1 reduces

to

N =
(z1−α − zβ

√
2νED)2

2(τED)2
, (3.2)

as in Risch and Zhang (1995). Sample size comparisons between 3.1 and 3.2 are given in
Table 1. The additional number of sib pairs needed when a modest percentage of the data
consists of half sib pairs is given in Table 1. Although the results vary with the level of the
test and underlying genetic model, they indicate that the number of extra pairs needed to
achieve the desired power is modest.

4 Sensitivity of the ED Procedure to Undetected Half
Sibs in the Data

The impact on the significance level and power of the TF statistic is calculated when un-
known half sibs form the fraction, ε, of sib pairs in the data.

4.1 Significance Level

Suppose (1− ε)N = NF = number of full sibpairs and εN = NH = number of half sibpairs.

The critical value Cα = z1−α

√
N
2 for TF (formula 2.1) has nominal significance level α.

The actual significance level, however, will differ from α because of the half sib pairs. Since
nH

2 = 0, the test statistic TF (formula 2.1) becomes

T = (nF
0 − nF

2 ) + (nH
0 − nH

2 ) = (nF
0 − nF

2 ) + nH
0 . (4.1)

Under H0

EH0(T ) =
NF

4
− NF

4
+

NH

2
=

ε

2
N > 0
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V arH0(T ) =
NF

2
+ NH 1

2
1
2

=
N

2
(1− ε

2
).

Notice that, under null hypothesis of no linkage, the expected value of T is greater than 0.

Thus, when the test statistic 2.1 is used with the critical value Cα = z1−α

√
N
2 , the actual

significance level will be inflated when half sibs are present. Indeed, the actual level is

αA = PH0{T > z1−α

√
N

2
} = 1− Φ(

z1−α

√
N
2 − εN

2√
N
2 (1− ε

2 )
). (4.2)

Numerical comparisons of the actual and nominal significance levels are presented in
Table 2. The level (α) of usual test corresponds to ε = 0. The main effect of half sibs is
the term − εN

2 , which increases with N rather than
√

N . The numerical results indicate
that if undetected half sibs form a small fraction (5%) of the data, the significance level is
roughly doubled in a sample of 100 pairs. Moreover, the effect becomes more pronounced
as the sample size increases. Similar calculation shows that the power of these test would
increases, however, this is due to the inflated level of the test.

5 Sensitivity of EC Procedures When the Data Includes
Undetected Half Sibs

As in the sensitivity analysis of ED procedures, we assume that the fraction of EC sibs that
are really half sibs is ε. Their impact on

TF = n2 − n0 (5.1)

is investigated.

5.1 Significance Level

As nH
2 = 0, the test statistic 5.1 becomes

T = (nF
2 − nF

0 )− nH
0 . (5.2)

Under H0, we have

EH0(T ) = − ε

2
N < 0, V arH0(T )

N

2
(1− ε

2
).

When the critical value z1−α

√
N
2 used as if there are no half sib pairs in the data, the actual

level is

αA = 1− Φ(
z1−α

√
N
2 − εN

2√
N
2 (1− ε

2 )
). (5.3)

This implies that the actual levels are smaller than the nominal ones. Numerical results are
given in Table 3.
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5.2 Power

Under H1, the test statistic 5.2 has mean and variance

EH1(T ) = (1− ε)N(pF
2 − pF

0 )− εNpH
0 ,

V arH1(T ) = (1− ε)N(pF
2 + pF

0 − (pF
0 − pF

2 )2) + εpH
0 (1− pH

0 ).

The actual power, when the critical value z1−α

√
N
2 suitable for full sibs is used, is

1− βA = 1− Φ(
z1−α

√
N
2 − (1− ε)NτF + εNpH

0√
(1− ε)NνF + εNpH

0 (1− pH
0 )

), (5.4)

where τF = pF
2 − pF

0 and νF = (pF
2 + pF

0 − (pF
0 − pF

2 )2). As seen in Table 4, the actual
power is substantially less than what would be if there are no half sibs in the data because
the actual level is noticeably lower than the nominal (0.05) one.

6 Potential Prevalence of Half Sibs in an ED Study

A crucial issue underlying sensitivity analysis is the frequency of undetected half sib pairs
in sib pair linkage data. Intuitively one expects

P{T1B1|H} ≥ P{T1B1|F}, (6.1)

where T1B1 denotes a extremely discordant sib pair with one sib in the top 10% and the
other in the bottom 10%, H for half sib pair, and F for full sib pair. Numerical results
show that indeed P{T1B1|H} ≥ P{T1B1|F}, for all three genetic models (Table 5 ). The
computational procedures for P{T1B1|F} and P{T1B1|H} are now outlined. First

P{T1B1|F} =
6∑

k=1

P{T1B1|Gk}P{Gk|F},

where P{T1B1|Gk} can be obtained as in Risch and Zhang (1995,1996), and
P{Gk|F} is given in Table 6. Next,

P{T1B1|H} =
6∑

k=1

P{T1B1|Gk}P{Gk|H},

where P{Gk|H} is given in Table 6. These computations assume that the conditional joint
distribution of the trait values given the genotypes is bivariate normal.

When 6.1 holds, Bayes formula yields

P{H|T1B1} =
P{T1B1|H}P{H}

P{T1B1|H}P{H}+ P{T1B1|F}P{F}

≥ P{T1B1|H}P{H}
P{T1B1|H}(P{H}+ P{F})

= P{H}. (6.2)
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This implies that the proportion of half sib pairs in an ED sib pair linkage data is larger
than in the general population. For example, under the additive model, allele frequency
P (A) = 0.3, heritability H = 0.3, residual correlation ρ = 0, Table 5 gives P{T1B1|F} =
0.0061 and P{T1B1|H} = 0.0079. If we further assume the percentage of half sibs in the
general population is 10%, i.e., P (H) = 0.10, then from 6.2, we have

P{H|T1B1} =
0.0079× 0.10

0.0079× 0.10 + 0.0061× 0.90
= 12.5%.

Hence, the percentage of the half sib pairs in a T1B1 ED sib pair linkage data will be
12.5%. The type I error (false positive rate) will be substantially inflated (by a factor of at
least three, Table 2). Similarly, one expects that P{ED|H} ≥ P{ED|F} and P{EC|H} ≤
P{EC|F}, which imply an increase the false positive rate or false negative rate, respectively.

7 Discussion

We have investigated the sensitivity of procedures using ED and EC sib pairs in linkage
studies to a modest fraction of half sib pairs. When half sib pair status is available, a
combined test statistic 2.3 using the half and full sibs ED pairs and the corresponding
appropriate sample sizes and power formulas are presented. For linkage analysis using the
Haseman-Elston procedure based on a random sample of sib pairs, Schaid, et al. (2000)
developed a statistic for combining full and known half sib pairs.

We found that the type I error increases substantially as the proportion of ED half sib
pairs increases when the test is performed assuming all the data consists of ED full sib
pairs (Table 2). Thus, undetected half sibs can seriously affect the interpretation of sib pair
linkage analysis as the false positive rate is increased noticeably.

For the usual test using EC sib pairs, the presence of half sibs in the data leads to
significant loss of power (Table 4), i.e., it increases the false negative rate. The significance
level of the EC sib pair test is overly conservative as the fraction of EC half sib pairs increases
(Table 3).

In practice, one can ask relevant questions to identify half sibs. Alternatively, when
study participants have been appropriately informed, one can estimate the relationship
using other markers as described by Göring and Ott (1997). Currently, we are exploring the
use of pooled samples (Gastwirth, 2000; Sham, et al., 2002) to estimate the proportion of
half sibs in the data so an appropriate test statistic can be applied. These techniques should
minimize the problem. Excluding adoptees from the analysis and properly incorporating
the half sibs ensures that the false positive rate at the pre-set level. Moreover the increased
sample size needed to enable one to stratify the sib pairs by their status is quite manageable.

This article focused on a single locus linkage study. Nowaday, haplotypes consisting
of several loci are often studied. As our concern was motivated by privacy issues, the
number of loci in the haplotype or other multi-locus study might need to be restricted. The
balance between privacy and the increase the power of multi-locus studies deserves further
investigation.
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Table 1: The Number of Required Sib Pairs to Achieve Power 1− β With s× 100% Known
ED Half Sib Pairs. pF

0 = 0.50, pF
2 = 0.25, pH

0 = 0.55, pH
1 = 0.45.

α = 0.05

s 1− β = 0.80 1− β = 0.85 1− β = 0.90

0.00 55 65 79

0.02 57 67 81

0.04 58 68 83

0.06 59 69 84

0.08 60 71 86

0.10 61 72 88

α = 0.01

0.00 88 100 117

0.02 90 102 120

0.04 91 104 122

0.06 93 107 125

0.08 95 109 127

0.10 97 111 130

α = 0.001

0.00 133 148 169

0.02 136 151 172

0.04 138 154 176

0.06 141 157 179

0.08 144 161 183

0.10 147 164 187
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Table 2: Actual Significance Level with ε × 100% Undetected ED Half Sib Pairs at the
Nominal Significance Level α.

N=100 N=150 N=200

ε αA αA αA

α = 0.05

0.02 0.065 0.070 0.073

0.04 0.084 0.095 0.104

0.06 0.108 0.127 0.144

0.08 0.135 0.166 0.194

0.10 0.168 0.212 0.254

α = 0.01

0.02 0.014 0.015 0.016

0.04 0.020 0.023 0.026

0.06 0.027 0.033 0.040

0.08 0.036 0.048 0.060

0.10 0.048 0.067 0.087

α = 0.001

0.02 0.0015 0.0017 0.0018

0.04 0.0023 0.0028 0.0033

0.06 0.0034 0.0045 0.0057

0.08 0.0050 0.0072 0.0097

0.10 0.0072 0.0113 0.0160
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Table 3: Actual Significance Level with ε × 100% Undetected EC Half Sib Pairs at the
Nominal Significance Level α.

N=100 N=150 N=200

ε αA αA αA

α = 0.05

0.02 0.036 0.034 0.032

0.04 0.026 0.022 0.020

0.06 0.018 0.014 0.011

0.08 0.012 0.009 0.006

0.10 0.008 0.005 0.003

α = 0.01

0.02 0.0066 0.0060 0.0056

0.04 0.0042 0.0035 0.0030

0.06 0.0026 0.0019 0.0015

0.08 0.0016 0.0010 0.0007

0.10 0.0009 0.0005 0.0003

α = 0.001

0.02 0.0006 0.0006 0.0005

0.04 0.0003 0.0003 0.0002

0.06 0.0002 0.0001 0.0001

0.08 0.0001 0.0001 0.0000

0.10 0.0000 0.0000 0.0000
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Table 4: Numerical Comparison Between Nominal and Actual (1−βA) Power with ε×100%
Undetected EC Half Sib Pairs. pF

0 = 0.15, pF
2 = 0.35, pH

0 = 0.30.

N=100 N=150 N=200

ε 1− βA 1− βA 1− βA

α = 0.05

0.00 0.8914 0.9711 0.9930

0.02 0.8627 0.9578 0.9881

0.04 0.8288 0.9397 0.9803

0.06 0.7895 0.9158 0.9686

0.08 0.7449 0.8851 0.9513

0.10 0.6952 0.8466 0.9268

α = 0.01

0.00 0.6998 0.8823 0.9595

0.02 0.6474 0.8441 0.9388

0.04 0.5919 0.7980 0.9104

0.06 0.5330 0.7440 0.8725

0.08 0.4731 0.6825 0.8243

0.10 0.4132 0.6147 0.7650

α = 0.001

0.00 0.3925 0.6517 0.8286

0.02 0.3363 0.5834 0.7716

0.04 0.2830 0.5116 0.7046

0.06 0.2336 0.4387 0.6288

0.08 0.1889 0.3670 .5467

0.10 0.1495 0.2990 0.4616
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Table 5: P{T1B1|F} and P{T1B1|H}.

H (ρ = 0) H (ρ = 0.4)

p 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

Additive Model

0.1 0.0093† 0.0086 0.0075 0.0066 0.0016 0.0016 0.0017 0.0018

0.0096‡ 0.0093 0.0087 0.0083 0.0017 0.0019 0.0022 0.0026

0.3 0.0092 0.0085 0.0072 0.0061 0.0016 0.0015 0.0015 0.0015

0.0096 0.0093 0.0086 0.0079 0.0017 0.0018 0.0020 0.0022

0.5 0.0092 0.0085 0.0072 0.0061 0.0016 0.0015 0.0015 0.0014

0.0096 0.0092 0.0085 0.0078 0.0017 0.0018 0.0020 0.0022

Dominant Model

0.1 0.0093 0.0086 0.0075 0.0066 0.0016 0.0016 0.0017 0.0019

0.0097 0.0093 0.0088 0.0083 0.0017 0.0019 0.0022 0.0027

0.3 0.0093 0.0087 0.0075 0.0066 0.0016 0.0016 0.0016 0.0017

0.0097 0.0094 0.0089 0.0085 0.0018 0.0019 0.0021 0.0023

0.5 0.0094 0.0088 0.0078 0.0070 0.0016 0.0017 0.0018 0.0020

0.0098 0.0095 0.0091 0.0088 0.0018 0.0019 0.0023 0.0027

Recessive Model

0.1 0.0098 0.0097 0.0097 0.0097 0.0019 0.0021 0.0021 0.0021

0.0100 0.0100 0.0100 0.0100 0.0020 0.0023 0.0024 0.0024

0.3 0.0095 0.0091 0.0084 0.0078 0.0017 0.0018 0.0023 0.0029

0.0098 0.0097 0.0095 0.0093 0.0018 0.0021 0.0029 0.0039

0.5 0.0094 0.0088 0.0078 0.0070 0.0016 0.0017 0.0018 0.0020

0.0098 0.0095 0.0091 0.0088 0.0018 0.0019 0.0023 0.0027
† P{T1B1|F} and ‡ P{T1B1|H}
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Table 6: P{Gk|F} and P{Gk|H}.

Gk P{Gk|F} P{Gk|H}

AA-AA 1
4p2(1 + p)2 1

2p3(1 + p)

AA-Aa p2q(1 + p) 2p2q( 1
2 + p)

AA-aa 1
2p2q2 p2q2

Aa-Aa pq(1 + pq) 2pq( 1
4 + pq)

Aa-aa pq2(1 + q) 2pq2( 1
2 + q)

aa-aa 1
4q2(1 + q)2 1

2q3(1 + q)
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