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summary

This paper considers the heteroscedastic multivariate linear model with errors
following elliptically contoured distributions. The marginal likelihood function of
the unknown covariance parameters and the predictive distribution of future re-
sponses have been derived. The predictive distribution obtained is a product of m
multivariate Student’s t distributions. It is interesting to note that when the mod-
els are assumed to have elliptically contoured distributions the marginal likelihood
function of the parameters as well as the predictive distribution are identical to
those obtained under independently distributed normal errors or dependent but
uncorrelated Student’s t errors. Therefore, the distribution of future responses
is unaffected by a change in the error distribution from the multivariate normal
and multivariate t distributions to elliptically contoured distributions. This gives
inference robustness with respect to departure from the reference case of inde-
pendent sampling from the multivariate normal or dependent but uncorrelated
sampling from multivariate t distributions to elliptically contoured distributions.
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1 Introduction

The predictive inference for the linear models has been considered by various researchers:
Goldberger (1962) and Hahn (1972) used the classical approach; Tiao and Zellner (1964),
Geisser (1965), Zellner and Chetty (1965) and Kibria et al. (2002) used the Bayesian
approach, Fraser and Haq (1969) used the structural approach, while Haq and Kibria (1997),
Kibria and Haq (1998, 1999) and very recently Kibria (2006) used the structural relation
of the model for the derivation of the predictive distribution. The error terms in linear
models are assumed to be normally and independently distributed in most applied as well
as theoretical research work. However, such assumptions may not be appropriate in many
practical situations (for examples, see Zellner (1976), Gnanadesikan (1977), Kibria (1996)
and Kibria and Haq (1998)). It happens particularly if the error distribution has heavier
tails. One can tackle such situations by using the well known t distribution as it has heavier
tails than the normal distribution, especially for smaller degrees of freedom (e.g. Fama
(1965) and Blatberg and Gonedes (1974)).

The literature on the predictive inference for the heteroscedastic multivariate linear
model is limited. Kibria (1999) considered the predictive inference for the heteroscedastic
multivariate linear model under the normality assumption and obtained the predictive dis-
tribution as a product of m multivariate Student’s t distributions. Kibria (2002) considered
the predictive inference for future responses under the multivariate t errors and obtained the
predictive distribution as a product of m multivariate Student’s t distributions. Therefore,
the distribution of future responses for a heteroscedastic model is unaffected by a change in
the error distribution from the multivariate normal to the multivariate t distribution. The
invariance of the predictive distribution for the future responses suggests that the predictive
distribution would be invariant to a wide class of error distributions. In this paper a very
general assumption is employed, namely that error terms have a multivariate elliptically
contoured distribution. The class of elliptically contoured distributions includes various dis-
tributions: the multivariate normal, matric t, multivariate Student’s t, multivariate Kotz
type and multivariate Cauchy. The class of mixtures of normal distributions is a subclass
of elliptical distributions as well as the class of spherically symmetric distributions (Fang et
al, 1990).

Elliptically contoured distributions for traditional multivariate regression models have
been discussed extensively by Anderson and Fang (1990) and Kubokawa and Srivastava
(2003) among others. These distributions have also been considered by Chib et al. (1988),
Kibria and Haq (1999) and Kibria (2003) in the context of predictive inference for the general
linear or multivariate linear model but not for the heteroscedastic multivariate model. In this
paper, we show that when the errors of the model (2.1) are assumed to have an elliptically
contoured distribution, the prediction distribution of future responses is a product of m

multivariate Student’s t distributions. Therefore, the assumption of normality as well as
multivariate t is robust to the deviation in the direction of elliptical distributions as far as
predictive inference is concerned.

The organization of this paper is as follows: The multivariate linear model and the
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marginal likelihood function of the unknown covariance matrix are discussed in section 2.
The predictive distribution for the future responses are derived in section 3. Some concluding
remarks are given in section 4.

2 Multivariate Linear Model and Marginal Likelihood
Function

Consider the following multivariate linear model

Y = BX + ΓE, (2.1)

where Y and X are the m×n and p×n (n ≥ p) response and regressor matrices, respectively,
B is an m × p matrix of regression parameters, E is an m × n errors matrix, and Γ =
diag

(
σ1, σ2 . . . , σm

)
is an m × m scale parameter matrix. Here each of the m rows of Y

may be viewed as a realization of the linear model. When the diagonal elements of Γ are
not equal, the model (2.1) is known as heteroscedastic multivariate linear model. Assume
that the covariance matrix of each row of E is an n × n matrix Ωλ, where λ is a function
of a set of unknown parameters. Then the covariance matrix of E is Ωλ

⊗
Im, where

⊗
is the kronecker product between two matrices and Im is the identity matrix of order m.
The covariance matrix of Y is Ωλ

⊗
Σ, where Σ = ΓΓ′. The application of model (2.1)

has been discussed by Parthasaradhi (1972), Delgado (1992) and Kibria (1999); to mention
a few.

We assume that E has an elliptically contoured distribution with the probability density
function

f(E|Ωλ) ∝
∣∣Ωλ

∣∣−m
2 g{tr(EΩ−1

λ E′)}, (2.2)

which is of the form given in Anderson and Fang (1990), where g{·} is a non-negative
function over m ×m positive definite matrices such that f(E) is a density function. Here,
E′ denotes the transpose of the matrix E and tr(M) denotes the trace of the matrix M.

To derive the marginal likelihood function of Ωλ, we define the following:

B̂E = EX′(XX′)−1
,

SE = diag(E− B̂EX)(E− B̂EX)′

= diag(s2e1, s
2
e2, . . . , s

2
em),

ZE = C−1
E

{
E− B̂EX

}
, (2.3)

where CE = diag(se1, . . . , sem). The corresponding expressions for the response matrix Y
will be denoted by B̂Y, SY and ZY, respectively. ¿From (2.1) and (2.3) we obtain

Γ = CYC−1
E ,

B = B̂Y −CYC−1
E B̂E,

ZE = ZY. (2.4)
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The ith row vector of the matrix E can be written as

ei = beiX + seizei, i = 1, 2 . . . , m, (2.5)

where bei is the ith row vector of B̂E, zei is the ith row vector of ZE and sei is the ith

diagonal element of CE. Then the relationship between the volume elements of ei can be
expressed in terms of new variables bei, sei and zei as

dei = |XX′|
1
2 dbeis

n−p−1
ei dseidzei, i = 1, 2 . . . , m, (2.6)

(see Fraser and Ng (1980, p. 381)). Since the predictive distribution depends on Ωλ, we
will derive the marginal likelihood function of Ωλ first.

Using (2.3) and the Jacobian (2.6), we have the joint density function of B̂E, CE and ZE

for given Ωλ as

p(B̂E,CE,ZE|Ωλ) ∝ |Ωλ|
−m

2

m∏
i=1

sn−p−1
ei g

[{ m∑
i=1

(bei + seig′eiF
−1)

×F(bei + seig′eiF
−1)′ +

m∑
i=1

s2
eizeiΛλz′ei

}]
, (2.7)

where F = XΩ−1

λ X′, gei
is the ith row vector of the matrix G = XΩ−1

λ Z′
E, and

Λλ = Ω−1

λ −Ω−1

λ X′(XΩ−1

λ X′)−1XΩ−1

λ .

Now, we integrate out B̂E and CE from (2.7), and obtain the marginal probability density
of ZE for given Ωλ. However, following equation (2.4) the pdf of ZY can easily be obtained
from the pdf of ZE. Therefore, the marginal likelihood function of Ωλ conditioned on Y is
given by

p(Ωλ|ZY) ∝
m∏

i=1

|Ωλ|
− 1

2 |XΩλX′|−
1
2

[
zyiΛλ

(
Ω−1

λ −Ω−1

λ X′(XΩ−1

λ X′)−1XΩ−1

λ

)
z′yi

]−n−p
2

.

(2.8)

For a given observation matrix Y and known design matrix X, the maximum likelihood
estimate of λ and hence Ωλ may be obtained by maximizing the likelihood function (2.8).
It appears that a closed form estimate for the parameters may not be available from (2.8).
However, for a given observation matrix Y, the MLE λ̂ of λ may be obtained numerically.
The marginal likelihood function in (2.8) is identical to that obtained under the assumption
of independently distributed multivariate normal errors (see Kibria (1997)) and Student’s t

errors (see Kibria (2002)).
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3 Predictive Distribution

Consider a set of nf future responses from (2.1) corresponding to the design matrix Xf as

Yf = BXf + ΓEf , (3.1)

where Yf and Ef are the m× nf matrices of future responses and errors, respectively, and
Xf is an p × nf matrix of future regressors. To derive the joint density of E and Ef , we
combine the observed and future error matrices as

E∗ = (E,Ef ) ,

where E∗ is an m× (n + nf ) matrix with Cov(E∗) = Φλ
⊗

Im, where

Φλ =

 Φλ11 Φλ12

Φλ21 Φλ22

 ,

where Φλ11 is an n × n covariance matrix of ei, Φ′
λ12

= Φλ21 is an n × nf matrix of
covariances between the components of ei and efi and Φλ22 is an nf × nf covariance
matrix of efi, i = 1, . . . ,m. Following Muirhead (1982), the inverse of Φλ is obtained as

Φ−1

λ =

 Φ11
λ Φ12

λ

Φ21
λ Φ22

λ

 .

Assume that E∗ has a multivariate elliptically contoured distribution with a known covari-
ance matrix Φλ. Then we have,

p(E,Ef |Φλ) ∝ |Φλ|
−m

2 g
[
tr
{
EΦ11

λE′ + EΦ12
λE′

f + EfΦ21
λE′ + EfΦ22

λE′
f

}]
.

Using (2.3) and the Jacobian (2.6), the joint density function of B̂E, CE and Ef for given
ZY and Φλ is obtained as

p(B̂E,CE,Ef |ZY,Φλ)

∝ |Φλ|
−m

2

m∏
i=1

sn−p−1
ei g

[
tr
{

(B̂EX + CEZE)Φ11
λ (B̂EX + CEZY)′ + (B̂EX + CEZY)Φ12

λE′
f

+EfΦ21
λ (B̂EX + CEZY)′ + EfΦ22

λE′
f

}]
. (3.2)

Consider the following transformation:
D = C−1

E (Ef − B̂EXf ),

U = B̂E,

V = CE.
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The Jacobian of the transformations J{(B̂E,CE,Ef ) → (U,V,D)} is equal to
∏m

i=1 v
nf

i ,
where vi is the ith diagonal element of the matrix V. Then the joint density function of D,
V and U for given ZY and Φλ becomes

p(D,U,V|ZY,Φλ)

∝ |Φλ|
−m

2 |H|−
m
2

m∏
i=1

v
n+nf−p−1
i

×g

{(
m∑

i=1

(ui + vimiH−1)H(ui + vimiH−1)′ +
m∑

i=1

v2
i rλii

)}
, (3.3)

where ui is the ith row vector of the matrix U, mi is the ith row vector of the matrix
M = P1ZY

′+P2D′, P1 = XΦ11
λ +XΦ12

λ , P2 = XfΦ21
λ +XfΦ22

λ and rλii is the ith diagonal
element of Rλ = A−M′H−1M, where A = ZYΦ11

λZY
′+ZYΦ12

λD′+DΦ21
λZY

′+DΦ22
λD′

and H = XΦ11
λX′ + XΦ12

λx′f + XfΦ21
λX′ + XfΦ22

λX′
f . After integrating out both U and

V from (3.3), the marginal pdf of D for given ZY and Φλ is obtained as

p(D|ZY,Φλ) ∝ |Φ(λ)|−
m
2 |H|−

m
2

m∏
i=1

r
−

n+nf−p

2

λii
.

The ith diagonal element of Rλ can be expressed

zyiQ∗z′yi + (di + zyiQ3Q2
−1)Q2(di + zyiQ3Q2

−1)′,

where Q1 = Φ11
λ − P′

1H
−1P1, Q2 = Φ22

λ − P′
2H

−1P2, Q3 = Φ12
λ − P′

1H
−1P2 and Q∗ =

Q1−Q3Q−1
2 Q′

3. Finally, using the relationship s−1
ei (efi−beiXf ) = s−1

yi (yfi−byiXf ) = di

for i = 1, . . . ,m, we obtain the pdf of Yf for given Y and Φλ as:

p
(
Yf |Y,Φλ

)
=

(
Γ(n−p

2 )
)m(

Γ
(n−p+nf

2

))m m∏
i=1

|∆λi|
− 1

2

×
m∏

i=1

[
1 +

1
n− p

{
(yfi − µλi)∆λi(yfi − µλi)

′}]−n−p+nf
2 ,(3.4)

where µλi = byiXf−syizyiQ3Q−1
2 and ∆λi =

{ s2
yi

n−p [zyiQ∗z′yi]
}−1

Q2. This is the product
of m multivariate Student’s t distributions. Properties of this distribution can be found in
Dickey (1967) and possible applications can be found in Kibria et al. (2002).

It is observed that for known λ and hence Φλ, each row of Yf is distributed as a nf

dimensional multivariate Student’s t distribution with (n − p) degrees of freedom. The
location parameter vector is µλi and the scale parameter matrix is ∆−1

λi
for i = 1, 2, . . . ,m.

The predictive distribution in (3.4) is identical to that obtained under the assumption of
independently distributed multivariate normal errors (see Kibria (1999)) and Student’s t

error (see Kibria (2002)).
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4 Concluding Remarks

This paper has derived the predictive distribution for future responses from the heteroscedas-
tic multivariate linear models under the assumption of multivariate elliptically contoured er-
ror distributions. The predictive distribution obtained is a product of multivariate Student’s
t distributions. It is noted that the predictive distributions under elliptically contoured dis-
tributions are identical to those obtained under independent normal errors or dependent but
uncorrelated Student’s t errors. This gives inference robustness with respect to departures
from multivariate normal or Student’s t to elliptically contoured distributions. This paper
has considered the multivariate heteroscedastic linear model, which also cover the linear
model for m = 1.
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