UNBIASED ESTIMATION OF THE POPULATION VARIANCE USING MIDZUNO-SEN TYPE SAMPLING SCHEME

M. C. Agrawal
Department of Statistics,
University of Delhi, Delhi - 110007, INDIA
Email: mc_agrawal@yahoo.com

A. B. Sthapit
Department of Statistics,
Tribhuvan University, Kathmandu, NEPAL
Email: azaya_sthapit@enet.com.np

SUMMARY

We have employed ms type sampling scheme to propose two unbiased strategies for estimating the population variance. These strategies have been compared with certain known ones, and necessary and sufficient conditions have been obtained for their superior performance as compared to the known ones. An unbiased variance estimator of the population variance has also been worked out. Real-life data are shown to yield substantial gains via these strategies.

Keywords and phrases: Unbiased estimation of the population variance; Midzuno-Sen type sampling scheme

1 Introduction

By and large, the estimators of the population variance (based on auxiliary information) that have been proposed in the literature were not mooted from the point of view of statistical property of unbiasedness. Although unbiasedness should not be an obsessive property, yet it is desirable to seek unbiasedness of estimators whenever it is feasible. For the purpose of obtaining an unbiased estimator of the population variance, we, in this paper, take to Midzuno-Sen type sampling scheme.
2 Some Unbiased Estimators of the Population Variance under Midzuno-Sen Type Sampling Scheme

Consider a finite population of \( N \) units in which \( y_i \) and \( x_i \) are the measurements in respect of the study variable \( y \) and the auxiliary variable \( x \) taken on the \( i^{th} \) unit \( (i = 1, 2, \ldots, N) \) of the population from which a sample \( s \) of size \( n \) is drawn according to a certain sampling design. Let \( \overline{Y} \) and \( \overline{Y} \) be the population and the sample means respectively of the study variable \( y \) and let \( X \) and \( \overline{X} \) be the population and the sample means respectively of the auxiliary variable \( x \). We now define the following population and sample quantities:

\[
\mu_{r,s} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{X})^r (y_i - \overline{Y})^s, \quad m_{r,s} = \frac{1}{N} \sum_{i=1}^{N} x_i^r y_i^s
\]

(for any specified \( r \) and \( s \)),

\[
\beta_2(y) = \frac{\mu_{04}}{\mu_{02}^2}, \quad \theta = \frac{\mu_{22}}{\mu_{02} \mu_{20}}
\]

\[
S_y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{Y})^2 \quad \text{and} \quad s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2.
\]

We similarly define the quantities \( \beta_2(x) \), \( S_x^2 \) and \( s_x^2 \) for the variable \( x \) which being based on the auxiliary information are supposed to be known. Further, later in this paper, we would, to terms of \( O\left(\frac{1}{n}\right) \), use the following well-known results:

\[
V(s_y^2) = \frac{\lambda}{n} S_y^4 (\beta_2(y) - 1), \quad V(s_x^2) = \frac{\lambda}{n} S_x^4 (\beta_2(x) - 1)
\]

\[
\text{Cov}(s_y^2, s_x^2) = \frac{\lambda}{n} s_y^2 s_x^2 (\theta - 1),
\]

where \( \lambda = \frac{N-n}{N} \).

An unbiased estimator of the population variance, under the simple random sampling without replacement design, say, \( p_0 \), when no auxiliary variable is used, is given by

\[
t = s_y^2 \tag{2.1}
\]

Isaki (1983) proposed the ratio-type estimator of the population variance

\[
t_0 = \frac{s_y^2}{s_x^2} S_x^2 \tag{2.2}
\]

which is biased under the sampling design \( p_0 \). Although Agrawal and Sthapit (1995) alluded to the sampling designs which render \( t_0 \) unbiased, but, to terms of \( O\left(\frac{1}{n}\right) \), the variance of \( t_0 \)
under these designs remains equal to the one under the design $p_0$. Hence, we would continue
to discuss $t_0$ under the design $p_0$.

It is known that, under the Midzuno-Sen sampling scheme, the probability of selecting
a specified sample $s$ is given by

$$p(s) = \frac{1}{\binom{N-1}{n-1}} \sum_{i \in s} p_i$$

where $p_i$ is the initial probability of selecting the $i^{th}$ unit. If we consider $p_i$ in accordance
with either of the following schemes for a suitably chosen $r$,

(a) $p_i \propto x_i^r$

and

(b) $p_i \propto (x_i - \bar{X})^r$,

then we obtain

$$p_1(s) = \frac{1}{\binom{N}{n}} \frac{\hat{m}_{r,o}}{m_{r,o}}$$

for scheme (a) and

$$p_2(s) = \frac{1}{\binom{N}{n}} \frac{\hat{\mu}_{r,o}}{\mu_{r,o}}$$

for scheme (b), where $\hat{m}_{r,o}$ and $\hat{\mu}_{r,o}$ are the sample-based quantities corresponding to $m_{r,o}$
and $\mu_{r,o}$. Now, we propose the estimators of the population variance under scheme (a) as

$$t_1 = s_n^2 \frac{m_{r,o}}{\hat{m}_{r,o}}$$

(2.3)

and under scheme (b) as

$$t_2 = s_n^2 \frac{\mu_{r,o}}{\hat{\mu}_{r,o}}$$

(2.4)

Both the estimators $t_1$ and $t_2$ can be verified as being unbiased. For this purpose, we note
that
\[
E_{p_1}(t_1) = \sum_{s \in S} p_1(s)t_1(s)
\]
\[
= \frac{1}{N} \sum_{s \in S} s_y^2
\]
\[
= \frac{E_{p_0}(s_y^2)}{n}
\]
\[
= S^2_y.
\]
Similarly, the estimator \( t_2 \) can be shown to be unbiased.

Denoting the strategies \((p_0, t), (p_0, t_0), (p_1, t_1)\) and \((p_2, t_2)\) by \(D, D_0, D_1\) and \(D_2\) respectively, we compare them in the next section.

### 3 A Comparison of the Competing Strategies

The variance, to terms of \(O\left(\frac{1}{n}\right)\), for the strategy \(D\), when no auxiliary information is used, is
\[
V_{p_0}(t) = \frac{\lambda}{n} S^4_y [\beta_2(y) - 1]. \tag{3.1}
\]
The mean square error (MSE), to terms of \(O\left(\frac{1}{n}\right)\), of the strategy \(D_0\) is given by
\[
\text{MSE}_{p_0}(t_0) = \frac{\lambda}{n} S^4_y [\beta_2(y) + \beta_2(x) - 2\theta]. \tag{3.2}
\]
Now, we proceed to obtain the variances of the proposed estimators \(t_1\) and \(t_2\) (defined by (2.3) and (2.4)) under the designs \(p_1(s)\) and \(p_2(s)\) respectively. For the strategy \(D_1\), we can write
\[
V_{p_1}(t_1) = E_{p_1}(t_1^2) - S^4_y
\]
\[
= \frac{1}{m_{r,0}} \sum_{s \in S} (s_y^4/\hat{m}_{r,0}) - S^4_y
\]
\[
= \frac{1}{m_{r,0}} E_{p_0}(s_y^4/\hat{m}_{r,0}) - S^4_y
\]
which, after some algebra, is obtainable, to terms of \(O\left(\frac{1}{n}\right)\), as
\[
V_{p_1}(t_1) = \frac{\lambda}{n} \left[ \beta_2(y) + \frac{\mu_{2r,0}}{\mu_{r,0}^2} - \frac{2\mu_{r,2}}{\mu_{r,0}^2\mu_{r,0}} \right]. \tag{3.3}
\]
where $\mu_{r,s} = \frac{1}{N} \sum_{i=1}^{N} x_i^r (y_i - \bar{Y})^s$.

In a similar manner to the above, we can work out the variance, to terms of $O\left(\frac{1}{n}\right)$, for the strategy $D_2$ as

$$V_{p_2}(t_2) = \frac{\lambda}{n} S^4 \left[ \beta_2(y) + \frac{\mu_{2r,0}}{\mu_{r,0}^2} - \frac{2\mu_{r,2}}{\mu_{0,2}\mu_{r,0}} \right]$$

(3.4)

Now, by setting $(y_i - \bar{Y})^2 = w_i$, $(x_i - \bar{X})^2 = u_i$, $x_i^r = v_i^*$ and $u_i^{r/2} = v_i$, the various variance expressions given by (3.1), (3.2), (3.3) and (3.4) can be expressed respectively as

$$V_{p_0}(t) = \frac{\lambda}{n} W^2 C_0^2$$

(3.5)

$$V_{p_0}(t_0) = \frac{\lambda}{n} W^2 (C_0^2 + C_1^2 - 2\rho_0 C_0 C_1),$$

(3.6)

$$V_{p_1}(t_1) = \frac{\lambda}{n} W^2 (C_0^2 + C_2^2 - 2\rho_1 C_0 C_2),$$

(3.7)

$$V_{p_2}(t_2) = \frac{\lambda}{n} W^2 (C_0^2 + C_3^2 - 2\rho_2 C_0 C_3)$$

(3.8)

where $C_0$, $C_1$, $C_2$ and $C_3$ are the coefficients of variation of $w$, $u$, $v^*$ and $v$ respectively and $\rho_0$, $\rho_1$ and $\rho_2$ are the coefficients of correlation between $w$ and $u$, $w$ and $v^*$, and $w$ and $v$ respectively.

Needless to say, for employing the strategies $D_1$ and $D_2$, a proper choice of $r$ has to be made. Regarding the relative performance of the competing strategies $D$, $D_0$, $D_1$ and $D_2$, we can, based on the relevant variances given by (3.5), (3.6), (3.7) and (3.8), arrive at the following conclusions:

(i) The strategy $D_0$ scores over the strategy $D$ if and only if

$$\rho_0 \geq \frac{1}{2} \frac{C_0}{C_1};$$

(ii) The strategy $D_1$ performs better than $D_2$ if and only if

$$\frac{1}{2} \frac{C_1}{C_0} \left( \frac{C_0^2}{C_3^2} - 1 \right) - \left( \rho_1 \frac{C_2}{C_3} - \rho_2 \right) \leq 0;$$

(iii) The strategy $D_1$ will outperform the strategy $D_0$ if and only if

$$\frac{1}{2} \frac{C_1}{C_0} \left( \frac{C_0^2}{C_3^2} - 1 \right) - \left( \rho_1 \frac{C_2}{C_3} - \rho_0 \right) \leq 0;$$

while the strategy $D_2$ performs better than the strategy $D_0$ if and only if

$$\frac{1}{2} \frac{C_1}{C_0} \left( \frac{C_0^2}{C_3^2} - 1 \right) - \left( \rho_2 \frac{C_3}{C_1} - \rho_0 \right) \leq 0.$$
and
(iv) The strategy $D_1$ fares better than the strategy $D$ if and only if
$$\rho_1 \geq \frac{1}{2} \frac{C_2}{C_0};$$
while the strategy $D_2$ scores over the strategy $D$ if and only if
$$\rho_2 \geq \frac{1}{2} \frac{C_4}{C_0}.$$

4 Unbiased Variance Estimation

To obtain an unbiased estimator, under the design $p_1$, of the variance of $t_1$, we write
$$V_{p_1}(t_1) = E_{p_1}(t_1^2) - S_y^4$$
which yields
$$\tilde{V}_{p_1}(t_1) = t_1^2 - \tilde{S}_y^4.$$ (4.1)

Now $S_y^4$ can be expressed as
$$S_y^4 = \frac{1}{(N-1)^2} \left[ \sum_{i=1}^{N} y_i^4 - 2N \sum_{i=1}^{N} y_i^2 + N^2 \sum_{i \neq j}^{N} y_i^2 y_j^2 \right]$$
$$= \frac{1}{N^2(N-1)^2} \left[ (N-1)^2 \sum_{i=1}^{N} y_i^4 - 4(N-1) \sum_{i \neq j}^{N} y_i^3 y_j + (N^2 - 2N + 3) \sum_{i \neq j}^{N} y_i^2 y_j^2 \right. \left. - 2(N-3) \sum_{i \neq j \neq k}^{N} y_i y_j y_k \right]$$ (4.2)

Since, under the design $p_1$, we have
$$E_{p_1} \left[ \frac{N}{n} \sum_{i=1}^{n} \frac{m_{r,0}}{m_{r,0}} y_i^4 \right] = \sum_{i=1}^{N} y_i^4,$$
$$E_{p_1} \left[ \frac{N(N-1)}{n(n-1)} \sum_{i \neq l}^{n} \frac{y_i^2 y_j^2 m_{r,0}}{m_{r,0}} \right] = \sum_{i \neq l}^{N} y_i^2 y_j^2$$
and so on, we can, thus, replace all the terms of the right hand side of (4.2) by the respective unbiased estimating quantities and then, after some algebra, we obtain an unbiased estimator of $S_y^4$ as
$$\hat{S}_y^4 = \frac{1}{AN(N-1)} \frac{m_{r,0}}{m_{r,0}} \left[ C \sum_{i=1}^{n} \left( y_i^2 - \sum_{i=1}^{n} y_i^2 / n \right)^2 + 4C \left\{ \sum_{i=1}^{n} y_i^2 \right\}^2 / n - \pi \sum_{i=1}^{n} y_i^3 \right] + B S_y^4$$ (4.3)
Unbiased Estimation of the Population...

where

\[ A = (n-1)(n-2)(n-3) \]
\[ B = n(n-1)^2(N-2)(N-3) \]
\[ C = (N-n)(N+n+1-Nn) \]

which, to terms of \( O\left(\frac{1}{n}\right) \), can be expressed as

\[
\hat{S}_y^4 = \frac{m_{r,0}}{\tilde{m}_{r,0}} \left[ \left(1 + \frac{4\lambda}{n}\right) \frac{\lambda}{n^2} \sum_{i=1}^{n} \left(y_i^2 - \frac{n}{n} \sum_{i=1}^{n} y_i^2 / n\right)^2 - \frac{4\lambda}{n^2} \left\{ \left( \frac{n}{n} \sum_{i=1}^{n} y_i^2 / n\right)^2 / n - \bar{y} \sum_{i=1}^{n} y_i^3 \right\} \right], \quad (4.4)
\]

and the same is then inserted in (4.1) to obtain the requisite variance estimator of \( t_1 \).

In a similar manner to the above, we obtain, under the sampling design \( p_2 \), an unbiased estimator of \( S_y^4 \) if we replace \( m_{r,0} \) and \( \tilde{m}_{r,0} \) by \( \mu_{r,0} \) and \( \hat{\mu}_{r,0} \) respectively, and hence the variance estimator of \( t_2 \).

5 Empirical Investigation

To illustrate the potential gain that might accrue from the use of the proposed strategies \( D_1 \) and \( D_2 \) over the known ones, viz., \( D \) and \( D_0 \), we consider the following Data-Sets:

Data-Set 1: We consider first fifty four (1-54) observations from Murthy (1967, p.178) and the following quantities are obtained therefrom:

\[ N = 54, \quad \beta_2(y) = 3.799, \quad \beta_2(x) = 2.012, \quad \theta = 1.627, \quad \text{MSE}(t_0) = 2.557, \quad \frac{V(t)}{\lambda S_y^4} = 2.799, \]
\[ \frac{V(t_1)}{\lambda S_y^4} = 2.209 \quad \text{(for } r = 4) \quad \text{and} \quad \frac{V(t_2)}{\lambda S_y^4} = 2.557 \quad \text{(for } r = 2). \]

Data-Set 2: We refer to the data available in Kish (1965, p.213, Ex.6.6). However, treating the given data as unclustered, we compute the following quantities therefrom:

\[ N = 17, \quad \beta_2(y) = 10.078, \quad \beta_2(x) = 3.979, \quad \theta = 5.687, \quad \text{MSE}(t_0) = 2.683, \quad \frac{V(t)}{\lambda S_y^4} = 9.078, \]
\[ \frac{V(t_1)}{\lambda S_y^4} = 0.370 \quad \text{(for } r = 7) \quad \text{and} \quad \frac{V(t_2)}{\lambda S_y^4} = 0.382 \quad \text{(for } r = 4). \]

Data-Set 3: We refer to the data available in Singh and Choudhary (1989, p.141) and have computed the following quantities:

\[ N = 22, \quad \beta_2(y) = 13.257, \quad \beta_2(x) = 5.579, \quad \theta = 7.713, \quad \text{MSE}(t_0) = 3.410, \quad \frac{V(t)}{\lambda S_y^4} = 12.257, \]
\[ \frac{V(t_1)}{\lambda S_y^4} = 0.524 \quad \text{(for } r = 7) \quad \text{and} \quad \frac{V(t_2)}{\lambda S_y^4} = 0.528 \quad \text{(for } r = 6). \]

In respect of the above Data-Sets, we compute the following percent gains.
\[ G_1 = \left( \frac{V(t)}{V(t_1)} - 1 \right) \times 100 \]

\[ G'_1 = \left( \frac{MSE(t_0)}{V(t_1)} - 1 \right) \times 100 \]

\[ G_2 = \left( \frac{V(t)}{V(t_2)} - 1 \right) \times 100 \]

\[ G'_2 = \left( \frac{MSE(t_0)}{V(t_2)} - 1 \right) \times 100 \]

and presented them in the following table:

**Table 1**: Percent gains of \( t_1 \) and \( t_2 \) relative to \( t \) and \( t_0 \)

<table>
<thead>
<tr>
<th>Data-Set</th>
<th>( G_1 )</th>
<th>( G'_1 )</th>
<th>( G_2 )</th>
<th>( G'_2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.71 (4*)</td>
<td>15.75 (4*)</td>
<td>9.46 (2*)</td>
<td>0 (2*)</td>
</tr>
<tr>
<td>2</td>
<td>2353.51 (7*)</td>
<td>625.14 (7*)</td>
<td>2276.44 (4*)</td>
<td>602.36 (4*)</td>
</tr>
<tr>
<td>3</td>
<td>2239.12 (7*)</td>
<td>550.76 (7*)</td>
<td>2221.40 (6*)</td>
<td>545.83 (6*)</td>
</tr>
</tbody>
</table>

(\* indicates choice of \( r \))

Table 1 bears it out that, for the estimating the population variance, the newly proposed strategies, \( D_1 \) and \( D_2 \) that make use of Midzuno-Sen type sampling schemes are, apart from being unbiased, capable of yielding substantial gains in precision as compared to the known strategies \( D_0 \) and \( D_0 \). However, between \( D_1 \) and \( D_2 \), the former is slightly better than the latter.

**References**


