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summary

A new alternative procedure is proposed for testing the hypothesis that the vari-

ances of k independent groups are equal under non-normality. Extensive sim-

ulations indicated that the new procedure always gave the experimenter more

control over the probability of a Type I error than do the Bartlett χ
2 and Lev-

ene’s tests. The same statement was true for unequal sample sizes. Overall, the

new procedure was more powerful than the other procedures tested, especially

when the variance ratios were high.
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1 Introduction

Analysis of variance techniques has been used in variety of fields such as agriculture, medicine

and sociology to compare independent group means. However, a set of assumptions, such as

normal distribution, homogeneity of variances, and independent observations has to be met

for the method to work properly. Studies of robustness of the ANOVA F test have shown

that the violation of normality has little effect on inferences about the means, especially if

there is sufficient number of observations in the groups, and the data are balanced. However,

violation of equality of variances can have a serious effect on inferences about the means,
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66 MENDEŞ, TURHAN, & GÜRBÜZ

especially if sample sizes are unequal (Bryk and Raudenbush, 1987; Wilcox, 1989; Schneider

and Penfield 1997; Chen and Chen, 1998; Luh and Guo, 2000; Mendeş, 2003; Çamdeviren

and Mendeş, 2005). Therefore, homogeneity of variances is the most influential assumption

on sensitivity of an analysis of variance F test. It is vital to correctly test for homogeneity of

variances when analysis of variance is to be performed. Preliminary to an ANOVA test, it

is useful to check the equality of variances assumption using appropriate tests (Brown and

Forsythe, 1974; Wilcox et al., 1986). When this assumption is violated, the results of the

analysis may be untrustworthy, namely that the reported p-value from the significance test

may be too liberal or too conservative. Therefore, before performing ANOVA, homogeneity

of variance assumption must be checked to increase the reliability of the results. There are

variety of methods to test for homogeneity of variances for different situations (Conover et

al., 1981; Lim and Loh, 1996; Nelson, 2002; Wilcox, 2002). Most common tests for the one-

way ANOVA are Bartlett’s and Levene tests. Unfortunately, these tests are very sensitive

to departure from normality (Cochran and Cox, 1957; Levene, 1960; Weerahandi, 1995; Zar,

1999). Several parametric alternative tests to ANOVA have been proposed for testing the

equality of k (k ≥ 2) population means when population variances are not equal (Wilcox,

1988; Alexander and Govern, 1994). However, these alternatives are affected adversely by

non-normality (Hsuing and Olejnik, 1996). As Wilcox (1995) pointed out that none of the

procedures directly handle the problem of skewness bias. Oshima and Algina (1992) also

argued that failure to consider the impact of the combined violations of variance equality

and distribution normality is an important omission of a statistical procedure. Therefore,

developing new alternative tests, such as trimming, transforming statistics, bootstrapping

(Wei-ming, 1999; Keselman et al., 2002) to deal with unequal variances, and non-normality

is worthwhile. Many of these tests do not take place in the statistical packages commonly

used by researchers in practice, such as SPSS, STATISTICA, NCSS, SYSTAT, SAS, and

MINITAB.

A simulation study (Conover et. al, 1981) was carried out to assess the robustness and

power of 56 procedures for testing the equality of variances. Distribution of data, number

of groups and the number of observations in these groups affect the results of these tests.

The fact that all tests are sensitive to departure from normality (Bishop and Dudewicz,

1978; Winer et al., 1991; Piepho, 1997) suggests that a new test, which adapts to variety

of distributions, is required. In this study, a new approximation test, which is adaptable

to different kinds of distributions (χ2(3), β(6, 1.5), ω(1.5, 1), and t(5) distributions) as is

proposed.

1.1 Definition of Statistical Tests

The model for one-way analysis of variance is Yij = µ + αj + eij where Yij (i = 1, . . . , nj ;

j = 1, . . . , k) denotes the measure for the ith subject in the jth group, µ is population mean,

αj is the effect of the jth treatment (j = 1, . . . , k), and eij random error term. The goal is

to test the following hypothesis: H0 : σ2
1 = σ2

2 = · · · = σ2
k and H1 : σ2

i 6= σ2
k for at least one

pair (i, k).
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1.1.1 Bartlett χ2 Test (Bart)

The most common method employed to test for homogeneity of variance is Bartlett’s χ2

test. In this procedure, the test statistic is;

B = lnS2
p

(

∑

vj

)

−
∑

vj lnS2
j

where vj = nj−1 and nj is the size of sampled j. S2
p is pooled variance and S2

j is the variance

of sampled j. Distribution of B statistic is approximated by the χ2(k − 1) distribution, but

a more accurate chi-square approximation is obtained by computing a correction factor,

C = 1 +
1

3(k − 1)

[

∑ 1

vj

− 1
∑

vj

]

with the corrected test statistics being

BC =
B

C

(Conover et al. 1981; Lim and Loh, 1996; Ott, 1998; Zar, 1999).

1.1.2 Levene 1 Test (Lev1)

A procedure suggested by Levene (1960) defines new variables,

X1
ij =

∣

∣Yij − Y i.

∣

∣

where Yij is the original variable, X1
ij is the transformed or new variable and Ȳi. is the mean

of the ith group. An ANOVA procedure is then carried out using X1
ij in place of Yij . Levene

1 test statistic is defined as:

Lev1 =

k
∑

i=1

ni

(

X̄i. − X̄..

)2
/(k − 1)

k
∑

i=1

ni
∑

j=1

(

Xij − X̄i.

)2
/ (N − k)

,

(

N =

k
∑

i=1

ni

)

(1.1)

which has the same distribution as the F-statistic with (k−1) and (N−k) degrees of freedom

where X̄i. is the mean of the ith group, X̄.. is the overall mean, k is the number of group, ni

is the number of observations in the ith group, and N is the number of total observations.

The Levene 1 test rejects the null hypothesis if Lev1 > F(α,k−1, N−k). Then researcher

will adopt a test instead of ANOVA for mean equality that is robust to heterogeneity of vari-

ances, such as the Welch test, James second-order test, Alexander-Govern’s test (Conover

et al, 1981; Boos and Brownie, 1989).
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1.1.3 Levene 2 Test (Lev2)

Levene 2 test is defined as: The original variables Yij , transforms to a new variable,

X2
ij , as X2

ij = (Yij − Y i.)
2

An ANOVA procedure (1.1) is then carried out using X2
ij in place of Yij . The Levene 2 test

rejects the null hypothesis if Lev2 > F(α,k−1, N−k).

1.1.4 Levene 3 Test (Lev3)

Levene 3 test is defined as: The original variablesYij , transforms to a new variable,

X3
ij , as X3

ij = ln(Yij − Y i.)
2

An ANOVA procedure (1.1) is then carried out using X3
ij in place of the Yij . The Levene 3

test rejects the null hypothesis if Lev3 > F(α,k−1, N−k).

1.1.5 Levene 4 Test (Lev4)

Levene 4 test is defined as: The original variablesYij , transforms to a new variable,

X4
ij , as X4

ij =
√

∣

∣Yij − Y i.

∣

∣

An ANOVA procedure (1.1) is then carried out using X4
ij in place of the Yij . The Levene 4

test rejects the null hypothesis if Lev4 > F(α,k−1, N−k).

1.1.6 Proposed Test (MP Test) (MP)

Almost all variance homogeneity tests are affected adversely by deviations from normality

(Conover et al., 1981; Weerahandi, 1995; Zar, 1999). We adopt to eliminate this handicap

by developing a new procedure. Let Z1j be the minimum observation in group nj and Z2j

be the maximum observation in the same group. Then we transform Z1j and Z2j to a new

observation Zij and Zij =
Z2j − Z1j

2
.

Zij is designed to mitigate the effect of extreme observations in the tails of a distribution.

Zij is then added to the group nj . Thus, the group is composed of nj−1 observations. There

are nj observations in group j. When the observations with maximum and minimum values

are removed, the number of observations is nj −2 in the group j. When the new observation

calculated as Zij =
Z2j − Z1j

2
is added to the group j, the number of observations increases

to nj − 2 + 1 = nj − 1. Mean of the group j is given as: X̃j =

∑

X5
ij

nj − 1
.

Where X̃j is the mean of the jth group, which is composed of nj − 1 observations. X5
ij

is the ith observation in jth group. Then, the original variable, X5
ij , transforms to a new
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variable, Yij , as Yij =
∣

∣

∣
X5

ij − (X̃j)
2
∣

∣

∣
gives the new observations for each group, where Yij

is the new variable. An ANOVA procedure is then carried out using Yij in place of X5
ij .

Therefore, MP test statistics defined as;

Lev1 =

k
∑

i=1

ni

(

Ȳi. − Ȳ..

)2
/(k − 1)

k
∑

i=1

ni−1
∑

j=1

(

Yij − Ȳi.

)2
/ (N − 2k)

(1.2)

1.1.7 Sampling Distribution of MP Test

The numerator of MP test statistics is the same as the Levene 1. Therefore, the numerator

degrees of freedom for the MP and the Lev1 tests are equal and under the null hypothesis,

the numerator of MP test statistic is distributed asymptotically as a central χ2-variable

with k − 1 degrees of freedom. That is,

k
∑

i=1

(

Ȳi. − Ȳ..

σ/
√

ni

)2

=

k
∑

i=1

ni(Ȳi. − Ȳ..)
2

σ2
≈ χ2

(k−1) (1.3)

The MP test used N−2k denominator degrees of freedom while Levene’s test (1960) used

N −k denominator degrees of freedom. The denominator of MP test statistic is distributed

asymptotically as a central χ2-variable with N − 2k degrees of freedom. Because;

Let Yij be the jth observation in the ith group (i = 1, . . . , k), (j = 1, . . . , ni − 1) and

expected values µi and variance σ2
i . Let ti = ni − 1. The best linear unbiased estimates of

σ2
i are

S2
i =

1

ti − 1

ti
∑

j=1

(Yij − Ȳi.)
2 (1.4)

Sum of squares for error is

SSE =

k
∑

i=1

ti
∑

j=1

(Yij − Ȳi.)
2 =

k
∑

i=1





ti
∑

j=1

(Yij − Ȳi.)
2





Then we can calculate sample variance as

S2
i =

1

ti − 1

ti
∑

j=1

(Yij − Ȳi.)
2

Then (ti − 1)S2
i =

ti
∑

j=1

(Yij − Ȳi.)
2 and we get

(ti − 1)S2
i

σ2
=

1

σ2

ti
∑

j=1

(Yij − Ȳi.)
2. Using ni − 1

in place of ti we can get following equality;

(ni − 1 − 1)S2
i

σ2
=

1

σ2

ni−1
∑

j=1

(Yij − Ȳi.)
2 (1.5)
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(ni − 2)S2
i

σ2
=

1

σ2

ni−1
∑

j=1

(Yij − Ȳi.)
2 (1.6)

and then we get

(ni − 2)S2
i

σ2
≈ χ2

(ni−2) (1.7)

In equation 14, the sum on the righthand-side gives,

k
∑

i=1

(ni − 2)S2
i (1.8)

Pooled variance is

S2
p =

(n1 − 2)S2
1 + (n2 − 2)S2

2 + ... + (nk − 2)S2
k

(n1 − 2) + (n2 − 2) + ... + (nk − 2)
=

k
∑

i=1

[

ti
∑

j=1

(Yij − Yi.)
2

]

k
∑

i=1

(ni − 2)

(1.9)

where
k
∑

i=1

(ni − 2) =
k
∑

i=1

ni − 2k, because
k
∑

i=1

ni = N . Then, pooled variance can be shown

as

S2
p =

1

N − 2k

k
∑

i=1

(ni − 2)S2
i (1.10)

Therefore we get
(N − 2k)S2

p

σ2
≈ χ2

(N−2k). Therefore, the denominator of MP test

statistic is distributed asymptotically as a central χ2-variable with N−2k degrees of freedom.

Because the ratio of two chi square distributions has the F distribution, the MP test has an

F distribution with (k−1, N −2k) degrees of freedom. That is, distribution of the proposed

MP test is thus,

k
∑

i=1

ni(Yi. − Y..)
2

σ2/(k − 1)
k
∑

i=1

ti
∑

j=1

(Yij − Yi.)
2

σ2/(N − 2k)

∼ F(k−1, N−2k) (1.11)

The MP test rejects the null hypothesis if MP > F(α,k−1, N−2k). The researcher then

needs to adopt a test that is robust to heterogeneity of variances, such as the Welch test,

James second-order test, Alexander-Govern’s test. If the null hypothesis can not be rejected,

ANOVA F test can be used to compare the group means.
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Distributions Mean Variance Skewness Kurtosis

t (5) 0.00 1.67 0.00 6.00

χ2(3) 3.00 6.00 1.63 4.00

β(6, 1.5) 0.80 1.36 -1.00 0.60

ω(1.5, 1) 0.90 0.37 1.07 1.40

Table 1: The characteristics of the distributions. t (5): t distribution with 5 d.f, χ2(3):
chi-square distribution with 3 d.f β(6, 1.5): Beta distribution (6,1.5), ω(1.5, 1): Weibull
distribution (1.5, 1)

2 Materials and Methods

Monte Carlo techniques were used to study the power and Type I error rates of the above

tests across a variety of situations. The following variables are manipulated in this simulation

study:

a) Type of population distribution,

b) Variance homogeneity and heterogeneity,

c) Degree of variance heterogeneity,

d) Group sizes,

e) The relationship between group size and population variances (direct and

inverse pairing).

With respect to the effects of distributional shape on Type I error and test power, we chose

to investigate non-normal distributions in which the data were obtained from a variety of

skewed distributions (χ2(3), β(6.5, 1), ω(1.5, 1), and t(5) distributions). These particular

types of non-normal distributions were selected since educational and psychological research

data typically have skewed distributions, and those distributions are predominantly used

in literature to study deviations from normality (Tiku and Balakrishnan, 1984; Tan and

Tabatabai, 1986; Loh, 1987; Sharma, 1991; Wilcox, 1994; Lim and Loh, 1996; Wludyka and

Nelson, 1999; Keselman et al., 2002). Sawilowsky and Blair (1992) investigated the effects

of eight non-normal distributions, which were identified by Micceri (1989) on the robustness

of Student’s t test, and they found that only the distributions with the most extreme degree

of skewness (e.g., skewness=1.64) affected Type I error control of the independent sample

t statistics. In this study, maximum degree of skewness used was 1.63. If the standard

deviation ratio was R = (σ(1)/σ(k))(where σ(1) ≤ · · · ≤ σ(k)represent the ordered standard

deviations), Fenstad (1983) argued that having R as large as 4 was not extreme and a survey

of studies reported by Wilcox et al. (1986) supported his view. Brown and Forsythe (1974a)

considered R ≤ 3, while Box (1954) limited his numerical results to R ≤
√

3. Many papers
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have shown that for larger R-values, the ANOVA F test may not provide satisfactory control

over the probability of a Type I error (Rogan and Keselman, 1977; Tomarken and Serlin,

1986; Wilcox, 1988).

In this simulation study, maximum heterogeneity of variances used was 1:4 and 1:1:4

because using small variance differences of groups in a simulation enables the researcher to

surface the differences between the tests. Unequal variances and unequal group sizes were

both positively (direct pairing) and negatively (inverse pairing) paired. For positive pair-

ings, the group having the least number of observations was associated with the population

having the smallest variance, while the group having the greatest number of observations

was associated with the population having the largest variance. For negative pairings, the

group having the least number of observations was associated with the population having the

largest variance, while the group having the greatest number of observations was associated

with the population having the smallest variance. Data from the χ2(3), β(6.5, 1), ω(1.5, 1),

and t(5) distributions were generated using random number generators from IMSL (1994).

First, using IMSL (1994) subroutine RNCHI, RNBET, RNWIB, and RNSTT, nj χ2(3) dis-

tribution, β(6.5, 1) distribution, ω(1.5, 1) distribution, and t(5) distribution were generated

for group j. The variance ratios were chosen as 1:1, 1:2 and 1:4 for k = 2 and 1:1:1, 1:2:3,

and 1:1:4 for k = 3. In order to form heterogeneity among the population variances, random

numbers in the samples were multiplied by specific constant numbers (σ = 1,
√

2,
√

3,
√

4).

The populations were standardized since they have different means and variances. Shape

of distributions did not change while the means changed to 0 and the standard deviations

changed to 1. Characteristics of the samples were as follows:

For k = 2, 300,000 data sets were generated from χ2(3), β(6.5, 1), ω(1.5, 1), t(5) popu-

lations employing sample sizes of 4:4, 6:6, 8:8, 10:10, 12:12, 14:14, 16:16, 18:18, 20:20, 4:8,

10:15, 20:30, 8:4, 15:10, and 30:20. Variances of the populations from which these sam-

ples were drawn were set to 1:1, 1:2 and 1:4. For k = 3, 300,000 data sets were generated

from χ2(3), β(6.5, 1), ω(1.5, 1), t(5) populations employing sample sizes of 4:4:4, 6:6:6, 8:8:8,

10:10:10, 12:12:12, 14:14:14, 16:16:16, 18:18:18, 20:20:20, 4:8:10, 10:15:25, 20:40:60, 10:8:4,

25:15:10, and 60:40:20. Variances of the populations from which these samples were drawn

were set to 1:1:1, 1:2:3 and 1:1:4. Each given set of parameter values and frequencies of

samples for the rejection regions were counted for Bartlett’s test, Levene 1 test, Levene 2

test, Levene 3 test, Levene 4 test, and MP test. For each pair of samples (for k = 2 and

k = 3), Bartlett’s test, Levene 1 test, Levene 2 test, Levene 3 test, Levene 4 test, and MP

test statistics were calculated. We computed Bartlett’s statistics and counted the frequency

satisfying Bart > χ2(k − 1) d.f. for α=0.05. For the Levene 1, Levene 2, Levene 3, and

Levene 4 test, we computed Lev1,Lev2,Lev3, and Lev4 statistics and counted the fre-

quency satisfying Levi > F (k− 1, N − k), (i = 1, 2, 3, 4) d.f. for α = 0.05. For MP test, we

computed MP statistics and counted the frequency satisfying MP > F (k − 1, N − 2k) d.f.

for α = 0.05. For each test, we checked to see if the hypothesis, which was false, was rejected

at α = 0.05. The proportion of observations falling in the critical regions was recorded for

different variance pattern, n, and distributions. This proportion estimation is the test power
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if the variances from the populations differ. By power, we mean the ability of the test to

detect unequal variances when the variances are, in fact, unequal. Therefore, in these kind

of studies the effect size is the variance ratios such as 1:1, 1:2 and 1:4 for k = 2 and 1:1:1,

1:2:3, and 1:1:4 for k = 3. This proportion estimation is the Type I error if the variances

from the population do not differ (σ2
1 = σ2

2 = · · · = σ2
k ). Ferron and Sentovich (2002) esti-

mated statistical power for three randomization tests using multiple-baseline designs. They

stated that they used > .80 as the sufficient power level for comparing the tests. Therefore,

.80 was assumed to be the sufficient power level in this study.

3 Results

Type I error rates for different tests, variance-ratios and sample sizes are given in Table 2.

In all distributions, the proposed method managed to keep the type I error rates closer to

the predetermined alpha level than did the other methods, indicating that the new method

may be preferred over methods such as Levene’s and Bartlett test. Also, the proposed test

was superior for unequal sample size conditions, especially when distributions were β(6, 1.5),

t(5), and ω(1.5, 1). When number of groups (k) increased, type I error rate deviated out of

the predetermined alpha level in all methods except in the proposed method. For instance

when k = 2, distribution was χ2(3) and ni = 16, type I error rates were 25.71 %, 12.25 %,

6.09 %, 12.17 % and 13.93 % for contemporary tests and 5.12 % for the proposed method.

When k was 3 and all other conditions were the same, type I error rates were 27.81 %, 15.25

%, 6.46 %, 14.94 % and 17.95 % for contemporary tests and 4.81 % for the proposed method.

Bartlett’s test deviated from the predetermined alpha level when the distribution was t(5)

and the number of groups compared (k) increased. Levene tests generally deviated from

the predetermined alpha level when the distribution was χ2(3) and the number of groups

compared (k) increased. The proposed method remained stable both on the t(5) and the

χ2(3) distribution. As the number of observations increased, Type I error rate approached

to the predetermined alpha level for the proposed method, while it deviated from the alpha

level for Bartlett’s test. All Levene’s tests approached to the nominal alpha level as the

number of observations increased.

When the distribution was χ2(3), all tests tended to deviate from nominal alpha level.

The proposed method was not affected from the distribution as much as the other tests

(Table 2) and was closest to the alpha level. Bartlett’s test had closer alpha values in

β(6, 1.5) distribution while all Levene tests had closer alpha values in t(5) distribution

except for small sample sizes. As the ratio of variances (δi) increased, power of all tests

increased (Table 3 and 4). The increase in power was clearer as the sample size increased.

The new method was more powerful overall for different sample sizes and distributions.

When the variance ratio was 1:2, Bartlett’s test was more powerful than all others (Table

3). For t distribution, Bartlett’s test was more powerful regardless of the variance ratio.

When the variance ratio was 1:4, the proposed method was more powerful than all the

other tests for χ2(3), β(6.5, 1) and ω(1.5, 1) distributions. This indicates that the proposed
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method is the most useful one when the heterogeneity of variances is high.

In this study, sufficient power level was accepted as 70 %. For variance ratio of 1:2, none

of the tests was able to reach the sufficient power level. When the variance ratio was 1:4,

Bartlett’s test and the proposed method reached the given power level in large sample sizes.

When the distribution was χ2(3), the two tests reached 70 % for sample size 20 while Levene

tests were below the sufficient power levels for all sample sizes. When the distribution was

β(6, 1.5), Bartlett’s test and the proposed method reached sufficient power levels for sample

sizes 16 and more. Levene 1 reached that level of power only when the sample size was

20. When the distribution was ω(1.5, 1), Bartlett’s test and the proposed method reached

sufficient power levels for sample sizes 18 and more. Levene 1 reached that level of power

only when the sample size was 20. For t(5) distribution, the Bartlett’s test reached the given

power level for sample sizes 18 and 20, while all other tests remained below that level. For

variance ratio of 1:2:3, none of the tests was able to reach the sufficient power level (Table

4). Bartlett’s test was powerful than the other tests for this ratio of variances.

When the variance ratio was 1:1:4, Bartlett’s test and the proposed method reached the

sufficient power level in large sample sizes. When the distribution was χ2(3), Bartlett’s

test reached the sufficient power level for sample sizes 14 and more. The proposed method

reached the level for sample sizes 18 and 20. Levene 1 and Levene 4 could reach the

sufficient power level only for sample size 20. When the distribution was β(6, 1.5), the

proposed method was the only test that reached the sufficient power levels (sample sizes 14

and more). When the distribution was ω(1.5, 1), Bartlett’s test reached the power level for

sample sizes 14 and more, while the proposed method reached sufficient levels for sample

sizes 16 and more. Levene 1 and Levene 4 reached the given power level for large sample

sizes. When the distribution was t(5), only the Bartlett’s test reached the sufficient power

level for sample sizes 14 and more. Overall, Bartlett’s test was more powerful than Levene

tests, while Levene tests were closer to the predetermined alpha level than Bartlett’s test.

The proposed method provided an optimum for Type I error rate and power level, giving a

performance close to Bartlett’s in power, and Levene’s in Type I error rate.

When inverse pairing was applied, highest power was achieved by the MP test for 1:4

and for Beta and Weibull distribution when sample sizes were relatively high (15:10, 30:20).

In other situations, the MP test achieved power levels similar to the Barttlet’s test (Table

5). When the sample sizes were 60:40:20 and 25:15:10 and variances were 1:1:4, the MP

test achieved the highest power level in all distributions except in t(5) distribution (Table

6).

4 Discussion

Lim and Loh (1996) ran simulations on samples with t(5) distribution. They reported

that the Type I error rates were 21.80 % when Barttlet’s test was run on samples with

10 observations and 24.90 % on samples with 20 observations. These values are similar to

those in this study; small differences could be attributed to the differences in number of
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simulations and number of groups. Keyes and Levy (1997) reported that the Type I error

rates of Levene 1, Levene 2, and Levene 3 tests were affected adversely from inequality of

sample sizes. Pardo et al (1997) reported that Bartlett’s test was affected from deviations

from normality. Sharma (1991) supported this view, especially when distributions were

χ2(3) and t(5). Boos and Brownie (1989) reported that when R=1:4, the power of the

Bartlett’s tests was higher than the Levene 1 test. Our simulations results are consistent

with these results.
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Groups k = 2 k = 3

Distr ni Bart Lev1 Lev2 Lev3 Lev4 MP ni Bart Lev1 Lev2 Lev3 Lev4 MP

χ2(3) 4
6
8
10
12
14
16
18
20
4:8
10:15

20:30

14.57
18.03
21.11
23.25
24.31
25.17
25.71
26.16
26.84
12.22
18.20

21.13

11.83
12.70
12.55
12.38
12.45
12.34
12.25
12.07
11.93
11.82
11.50

11.70

7.35
7.71
7.11
6.76
6.59
6.34
6.09
5.94
5.77
6.30
6.27

5.64

13.93
12.86
12.45
12.25
12.21
12.12
12.17
11.95
11.77
12.93
11.73

11.61

15.63
14.56
14.18
13.98
13.94
13.99
13.93
13.71
13.62
14.06
13.44

13.49

4.90
6.85
6.37
6.05
5.52
5.43
5.23
4.99
5.03
7.32
7.83

6.71

4
6
8
10
12
14
16
18
20
4:8:10
10:15:25

20:40:60

14.90
19.08
22.01
24.33
25.50
26.68
27.81
28.47
28.99
19.42
26.87

31.35

15.92
16.36
15.74
15.63
15.48
15.07
15.25
15.03
14.73
15.67
14.48

14.26

8.79
9.38
8.21
7.41
7.12
6.71
6.46
6.16
5.85
9.79
6.40

5.26

17.28
15.94
15.38
15.19
15.03
14.75
14.94
14.84
14.59
16.55
14.56

14.39

20.65
19.20
18.42
18.14
18.03
17.68
17.95
17.83
17.58
18.96
17.51

17.57

5.46
6.81
6.07
5.41
5.27
5.04
4.81
4.90
5.09
6.40
5.07

4.78

β(6.5,1) 4
6
8
10
12
14
16
18
20
4:8
10:15

20:30

6.54
7.23
7.76
7.98
8.18
8.17
8.27
8.39
8.44
7.03
7.81

8.57

10.48
10.30
9.67
9.40
9.35
9.26
9.29
9.00
9.00
9.73
9.25

9.46

7.12
7.08
6.74
6.73
6.58
6.48
6.52
6.28
6.30
5.67
6.35

6.04

10.36
8.97
8.40
8.13
8.26
8.18
8.39
7.99
8.03
9.80
8.37

8.26

12.13
10.79
9.99
9.60
9.60
9.51
9.60
9.20
9.31
10.97
9.73

9.45

6.52
6.19
6.01
5.92
5.82
5.62
5.59
5.26
5.23
5.67
5.81

5.28

4
6
8
10
12
14
16
18
20
4:8:10
10:15:25

20:40:60

6.98
8.08
8.83
8.92
9.31
9.47
9.50
9.49
9.68
8.14
9.15

9.07

12.46
12.07
11.40
11.09
11.11
10.74
10.62
10.41
10.57
11.18
10.45

9.69

8.29
8.11
7.64
7.28
7.03
6.82
6.64
6.48
6.50
7.63
6.61

5.59

11.93
10.19
9.63
9.35
9.47
9.14
9.29
8.99
9.01
11.13
9.27

8.74

14.67
12.75
11.97
11.60
11.55
11.28
11.28
10.97
11.12
12.68
11.39

10.36

5.30
6.54
6.12
5.62
5.41
5.42
5.06
4.95
5.04
5.67
5.11

4.75

ω(1.5,1) 4
6
8
10
12
14
16
18
20
4:8
10:15

20:30

7.00
8.46
9.31
9.92
10.28
10.72
10.98
11.24
11.40
7.61
9.80

11.30

10.30
10.14
9.65
9.48
9.33
9.16
9.26
8.93
9.14
9.22
8.93

8.76

6.94
6.77
6.50
6.35
6.23
5.93
6.08
5.85
5.90
5.20
5.90

5.73

10.46
9.06
8.67
8.34
8.37
8.29
8.38
7.98
8.32
9.36
8.37

8.00

12.26
10.90
10.12
9.85
9.74
9.58
9.66
9.32
9.59
10.64
9.58

9.11

4.40
6.34
6.04
5.95
5.80
5.54
5.42
5.08
5.12
5.72
5.70

4.89

4
6
8
10
12
14
16
18
20
4:8:10
10:15:25

20:40:60

8.17
7.94
10.06
11.31
12.14
12.90
13.10
13.66
14.11
10.41
13.18

15.68

12.69
12.64
11.97
11.72
11.19
11.08
10.80
10.71
10.57
11.63
10.40

10.43

8.13
8.03
7.94
7.45
6.96
6.70
6.51
6.31
5.92
7.77
6.18

5.77

12.46
12.31
10.36
10.03
9.70
9.56
9.50
9.43
9.24
11.09
9.61

9.41

15.21
15.16
13.00
12.44
11.86
11.82
11.42
11.39
11.31
13.13
11.41

11.19

5.10
6.08
5.91
5.55
5.27
5.11
4.97
4.86
4.86
5.89
4.86

4.83

t(5) 4
6
8
10
12
14
16
18
20
4:8
10:15

20:30

7.75
9.86
11.40
12.66
13.69
14.17
15.02
15.66
16.15
9.10
13.11

16.77

8.17
7.08
6.57
6.32
6.02
5.90
5.80
5.63
5.69
7.93
5.74

5.17

4.87
4.25
3.90
4.06
3.86
3.93
4.04
4.09
4.12
4.53
3.85

4.07

9.08
7.01
6.51
6.18
5.93
5.87
5.67
5.60
5.65
7.92
5.69

5.38

10.51
8.12
7.32
6.91
6.53
6.44
6.19
5.96
5.99
8.97
6.32

5.65

3.61
5.38
5.55
5.33
5.19
5.13
5.04
5.02
5.06
5.26
5.08

4.74

4
6
8
10
12
14
16
18
20
4:8:10
10:15:25

20:40:60

9.45
12.80
15.00
16.80
18.29
19.23
20.19
20.94
21.69
13.03
19.79

21.19

10.08
8.30
7.24
6.78
6.50
6.04
5.98
5.96
5.88
8.11
6.44

5.75

5.59
5.09
4.44
4.48
4.23
3.94
3.99
3.98
3.99
6.37
4.91

4.38

10.47
7.84
6.75
6.39
6.13
5.84
5.67
5.78
5.61
8.21
5.81

5.49

12.64
9.58
8.16
7.54
7.13
6.64
6.40
6.50
6.23
9.23
6.77

5.91

4.65
5.71
5.58
5.17
5.08
4.95
5.10
4.96
4.96
6.26
5.75

5.07

Table 2: Type I error rates (%) for different tests. distributions and sample sizes for k = 2, 3.
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Variance
ratio

1:2 1:4

Distr ni Bart Lev1 Lev2 Lev3 Lev4 MP Bart Lev1 Lev2 Lev3 Lev4 MP

χ2(3) 4
6
8
10
12
14
16
18

20

17.22
23.51
27.43
31.11
33.72
36.05
37.95
39.54

41.61

13.28
16.31
18.16
19.93
21.49
23.33
25.01
26.85

28.70

8.02
9.81
10.34
11.23
11.99
12.85
13.61
14.61

15.56

16.15
16.46
17.62
18.64
19.55
20.78
21.93
23.06

24.41

17.77
18.66
20.27
21.74
23.22
24.86
26.69
28.36

30.22

7.99
13.93
15.91
17.21
18.82
20.76
22.62
24.39

26.09

24.70
36.58
44.21
50.30
55.96
60.61
64.85
67.96

71.13

18.39
26.58
33.51
39.78
45.64
51.01
55.66
60.13

64.44

10.30
15.75
19.32
22.99
26.55
30.15
33.51
36.79

40.11

23.05
26.98
31.35
35.41
39.63
43.27
46.71
49.99

53.42

24.98
30.21
36.16
41.78
47.31
52.38
56.73
60.89

64.97

16.91
31.57
39.55
46.46
52.89
58.67
63.77
69.05

73.21

β(6.5,1) 4
6
8
10
12
14
16
18

20

9.06
12.73
16.01
19.23
22.34
24.77
27.65
30.41

33.02

12.41
14.70
16.87
19.00
21.20
23.41
26.07
28.20

30.48

8.26
10.10
11.81
13.64
15.69
17.52
19.56
21.59

23.49

12.97
12.92
14.14
15.11
16.37
17.59
19.11
20.24

21.33

14.82
15.36
17.04
18.78
20.59
22.43
24.81
26.67

28.47

6.72
13.10
15.82
18.49
20.61
23.29
25.77
28.20

31.02

17.22
29.36
40.40
50.02
57.68
64.98
70.88
76.39

80.73

17.82
27.58
35.65
44.08
51.39
58.31
64.63
69.92

74.64

11.21
18.40
24.76
31.96
38.86
45.39
51.63
57.77

63.11

20.00
24.65
29.53
34.23
38.47
42.76
46.85
50.66

54.24

22.22
28.80
35.77
42.74
49.02
55.03
60.67
65.48

69.81

14.57
31.33
41.82
50.86
58.74
65.42
71.52
76.95

81.31

ω(1.5,1) 4
6
8
10
12
14
16
18

20

9.61
14.03
17.71
21.24
24.00
26.90
29.59
32.13

34.59

11.90
14.48
16.32
18.58
20.79
22.93
24.91
27.01

29.21

7.85
9.61
10.83
12.81
14.47
15.94
17.38
19.19

20.94

12.64
13.09
14.28
15.34
16.51
17.84
18.92
19.93

21.18

14.56
15.41
16.91
18.62
20.60
22.40
24.18
25.95

27.94

6.95
13.10
15.70
17.69
19.88
21.90
24.18
26.29

28.81

18.04
30.19
40.69
49.56
57.52
63.86
69.76
74.35

78.48

17.24
26.38
34.92
41.99
49.63
55.83
62.15
67.22

71.70

10.47
17.06
23.36
29.27
35.52
40.98
46.68
51.76

56.67

19.90
24.13
29.20
33.51
38.10
42.08
46.20
49.83

53.36

22.17
28.08
35.22
41.38
48.02
53.59
59.40
64.10

68.24

14.60
30.53
40.48
48.50
56.05
62.72
68.90
74.02

78.46

t(5) 4
6
8
10
12
14
16
18

20

10.33
15.13
19.38
23.09
26.23
29.37
31.92
34.49

37.04

9.66
10.82
12.12
13.48
15.09
16.75
17.98
19.91

21.78

5.70
6.37
7.30
8.76
10.02
11.33
12.44
14.01

15.56

11.09
10.53
10.93
12.12
12.80
13.85
14.67
15.44

16.83

12.55
12.23
12.88
14.27
15.54
16.95
18.02
19.59

21.33

5.39
9.28
11.22
12.79
14.53
16.01
17.27
19.21

21.23

18.47
31.42
41.35
49.58
56.89
63.24
68.18
72.56

76.03

14.66
21.27
28.00
34.30
40.76
46.77
52.66
58.11

63.02

8.04
12.46
16.82
21.60
26.97
32.59
37.43
42.55

47.12

17.83
20.77
24.72
28.76
32.57
36.35
40.66
44.00

47.67

19.76
23.91
29.53
35.08
40.64
46.04
51.71
56.71

61.23

11.47
21.60
28.10
35.12
41.04
46.80
52.63
57.60

62.66

Table 3: Test power (%) for different tests, distributions, sample sizes and variance ratios
for k = 2.
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Variance
ratio

1:2:3 1:1:4

Distr ni Bart Lev1 Lev2 Lev3 Lev4 MP Bart Lev1 Lev2 Lev3 Lev4 MP

χ2(3) 4
6
8
10
12
14
16
18

20

19.48
29.12
36.29
42.22
47.09
51.42
54.72
58.09

61.27

20.05
23.53
26.55
29.67
32.63
36.25
38.87
41.94

45.11

10.51
13.28
13.92
15.02
15.91
17.08
18.29
19.57

21.06

21.92
23.08
25.16
26.97
29.33
31.79
33.70
35.66

38.26

25.89
27.52
30.29
33.23
36.23
39.73
42.19
45.30

48.37

12.28
18.10
20.89
23.83
26.73
30.66
33.71
37.29

40.95

26.67
40.83
51.33
58.94
65.42
70.59
75.00
78.95

81.78

25.14
32.94
40.67
46.71
52.97
58.55
63.38
68.21

72.10

12.71
19.71
24.46
28.20
32.18
36.35
40.49
44.09

48.05

26.46
30.21
34.75
38.78
43.39
47.14
50.97
54.89

58.19

31.17
36.63
43.00
48.49
54.32
59.43
64.03
68.66

72.10

16.98
28.34
37.05
45.90
53.27
60.15
66.37
71.88

76.63

β(6.5,1) 4
6
8
10
12
14
16
18

20

12.07
18.94
24.62
30.66
36.15
41.47
46.77
51.19

55.87

16.81
21.16
24.69
29.05
33.12
37.78
41.93
45.87

50.10

10.59
14.17
16.46
19.43
22.27
25.52
28.75
32.05

35.50

16.35
17.58
19.70
21.89
24.31
26.91
29.51
31.64

34.20

20.11
22.21
25.05
28.84
32.36
36.43
40.17
43.61

47.33

12.18
19.38
24.14
28.52
32.79
37.51
41.85
46.41

50.49

15.09
24.42
32.75
40.27
47.17
53.43
59.23
64.20

68.64

18.97
25.56
32.04
37.84
43.71
49.24
54.55
59.22

63.52

11.83
18.39
24.00
28.95
34.70
39.97
45.19
50.37

55.13

18.06
19.92
23.04
26.12
29.35
32.46
35.64
38.43

41.48

22.18
25.93
30.90
35.56
40.57
45.42
49.96
54.17

58.02

18.14
32.55
43.53
54.03
62.80
70.05
76.44
81.31

85.86

ω(1.5,1) 4
6
8
10
12
14
16
18

20

13.20
20.72
27.35
33.25
38.89
43.80
48.92
53.26

57.27

16.75
20.56
24.00
27.81
31.83
35.79
39.85
43.67

47.43

10.17
13.30
15.35
17.65
19.88
22.57
25.03
27.79

30.56

16.83
17.70
19.82
21.91
24.29
26.51
28.96
31.42

33.70

20.33
22.09
25.05
28.29
32.04
35.34
39.17
42.71

46.10

11.89
18.75
22.81
26.25
30.27
34.66
38.84
42.92

47.61

21.68
35.37
46.63
55.60
64.46
71.12
76.49
80.92

84.68

22.89
32.30
40.90
49.05
56.69
63.32
69.30
74.49

78.80

13.24
22.91
29.79
36.99
43.54
50.10
56.21
61.82

66.70

21.61
25.37
30.16
35.04
39.52
44.20
48.37
52.23

56.45

26.90
32.76
39.92
46.90
53.43
59.45
65.04
69.98

74.41

17.14
30.40
40.93
50.88
59.03
67.11
73.16
78.21

83.03

t(5) 4
6
8
10
12
14
16
18

20

14.38
23.12
30.47
36.47
42.27
47.12
51.42
55.88

59.39

13.62
14.98
17.14
19.77
22.77
25.72
28.79
31.97

35.33

7.31
8.88
10.43
12.09
13.94
15.79
17.98
20.13

22.48

14.15
13.78
15.17
16.64
18.60
20.42
22.43
24.50

26.53

17.15
16.99
18.75
21.04
23.80
26.59
29.57
32.34

35.52

9.35
14.18
16.90
19.83
22.64
25.39
28.25
31.28

35.06

22.16
36.60
48.18
57.74
64.97
70.96
76.28
80.23

83.72

19.56
26.12
32.97
40.27
46.97
53.53
59.59
64.99

69.61

10.39
16.83
22.75
29.06
34.95
40.93
46.56
51.60

56.12

18.74
20.93
24.50
28.51
32.77
36.76
40.90
45.24

48.71

23.39
27.41
32.90
38.95
44.95
50.83
56.31
61.62

66.02

11.13
21.58
29.84
38.04
45.27
52.20
58.42
64.29

69.52

Table 4: Test power (%) for different tests, distributions, sample sizes and variance ratios
for k = 3.



82 MENDEŞ, TURHAN, & GÜRBÜZ

Variance
ratio

1:2 1:4

Distr ni Bart Lev1 Lev2 Lev3 Lev4 MP Bart Lev1 Lev2 Lev3 Lev4 MP

χ2(3) 4:8
10:15
20:30
8:4
15:10

30:20

16.20
30.36
42.98
17.12
29.08

41.27

12.87
20.59
30.00
18.62
22.33

32.88

4.73
9.22
12.69
12.77
15.35

21.89

18.89
20.89
26.61
15.17
18.72

25.74

17.98
23.81
32.62
18.91
23.24

33.30

12.95
20.37
27.17
19.29
23.13

30.70

27.79
56.01
80.52
30.46
56.11

78.22

18.26
41.84
71.21
32.04
48.90

72.86

5.64
18.36
36.98
24.78
35.45

55.72

29.06
40.14
61.04
23.26
39.02

58.61

27.21
46.34
72.55
30.51
48.72

71.75

25.06
47.09
71.75
39.25
53.04

72.91

β(6.5,1) 4:8
10:15
20:30
8:4
15:10

30:20

10.76
20.88
37.46
11.66
22.14

38.75

11.99
19.88
33.80
15.53
21.88

36.16

5.38
12.00
23.18
12.19
19.00

31.86

15.60
17.54
24.23
11.44
15.04

23.22

15.54
20.57
32.17
15.04
20.32

32.47

8.99
17.84
32.00
15.00
23.50

39.68

21.57
57.10
87.78
27.06
59.08

87.28

19.64
49.12
81.69
27.06
59.08

87.28

6.83
29.98
65.03
25.08
47.35

78.50

27.19
40.16
62.05
20.06
36.72

60.39

26.27
49.33
77.99
27.24
49.10

77.36

19.29
53.47
86.60
38.50
63.47

90.01

ω(1.5,1) 4:8
10:15
20:30
8:4
15:10

30:20

11.42
23.69
23.98
12.81
24.52

39.64

11.23
19.56
32.05
15.96
21.98

34.54

4.21
10.96
19.70
12.24
18.34

28.44

15.47
17.66
24.46
11.10
15.50

22.26

14.97
20.62
31.66
15.34
20.90

31.58

8.12
17.23
30.38
15.90
23.10

36.54

23.13
56.30
84.93
27.94
57.41

84.90

17.99
46.23
78.89
29.85
51.88

80.37

6.30
26.70
57.09
25.74
44.16

72.66

26.26
39.22
60.54
19.70
36.90

59.14

25.33
47.24
76.12
27.29
48.30

75.78

18.59
50.14
83.36
37.38
60.81

87.60

t(5) 4:8
10:15
20:30
8:4
15:10

30:20

12.88
26.18
42.23
13.59
25.71

39.66

7.38
12.95
23.13
13.88
17.08

27.05

2.52
6.42
14.04
11.47
14.22

22.76

11.88
13.08
18.74
9.65
12.39

18.34

10.96
14.67
23.61
13.22
16.34

24.86

5.42
11.68
22.15
13.43
17.12

26.81

24.00
57.05
82.00
27.76
56.68

81.35

12.35
36.15
68.19
27.29
45.62

74.35

3.19
17.64
44.76
23.68
37.38

64.22

21.83
33.34
53.78
17.44
31.81

54.23

19.62
39.07
67.51
24.80
42.55

70.42

10.66
35.35
66.69
30.48
46.64

74.00

Table 5: Power of tests (%) for unbalanced data, k = 2
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Variance
ratio

1:2:3 1:1:4

Distr ni Bart Lev1 Lev2 Lev3 Lev4 MP Bart Lev1 Lev2 Lev3 Lev4 MP

χ2(3) 4:8:10
10:15:25
20:40:60
10:8:4
25:15:10

60:40:20

27.97
52.46
75.03
30.91
54.25

77.46

18.01
31.50
55.00
29.22
43.40

68.17

7.31
8.92
16.84
22.67
29.56

47.10

25.78
34.28
50.10
21.73
31.84

52.84

25.88
39.84
61.52
29.51
42.90

68.20

11.84
22.96
49.94
26.47
43.95

69.05

48.54
80.12
97.69
37.46
65.39

87.33

34.43
64.49
95.26
36.63
57.04

82.37

14.54
27.46
66.88
33.47
46.30

71.84

37.54
58.74
86.69
24.83
41.06

64.22

41.87
69.47
95.33
34.88
55.11

80.46

30.10
65.56
97.80
35.50
62.12

90.58

β(6.5,1) 4:8:10
10:15:25
20:40:60
10:8:4
25:15:10

60:40:20

16.82
40.00
72.32
21.57
49.63

82.60

16.91
34.70
65.44
25.70
46.50

78.66

7.77
16.34
40.72
22.86
40.32

73.33

21.24
30.02
47.28
16.02
27.46

51.22

22.10
36.87
63.65
23.56
41.44

71.82

13.70
30.92
64.06
28.24
51.64

81.19

42.63
82.23
99.57
30.89
65.70

91.70

37.50
74.78
98.97
35.19
63.94

89.92

20.77
51.55
96.12
37.10
62.64

90.40

34.78
56.95
88.30
19.14
38.60

63.63

40.61
72.32
97.63
30.32
56.57

83.81

35.86
77.40
99.62
39.71
71.04

94.32

ω(1.5,1) 4:8:10
10:15:25
20:40:60
10:8:4
25:15:10

60:40:20

18.15
42.92
74.31
23.78
49.42

81.08

15.58
31.67
62.42
25.62
44.52

75.54

7.11
13.50
32.24
22.72
36.54

65.39

20.56
28.58
47.23
16.28
27.11

49.98

20.98
35.37
62.40
23.78
40.44

70.00

12.36
27.35
59.71
25.98
47.74

77.16

44.07
81.44
99.12
31.26
65.50

90.89

35.20
71.46
98.34
34.73
61.80

88.30

18.41
44.20
89.71
35.73
58.20

86.50

34.02
55.80
87.22
19.45
37.96

63.11

39.47
70.28
97.33
30.58
55.22

83.21

32.30
72.08
99.25
38.04
67.94

93.16

t(5) 4:8:10
10:15:25
20:40:60
10:8:4
25:15:10

60:40:20

22.34
48.11
74.70
25.26
50.46

78.26

10.18
19.88
44.01
20.46
35.44

65.08

4.26
7.95
20.30
19.01
30.58

54.16

15.68
21.89
36.81
12.95
21.34

43.49

14.65
24.50
47.21
19.17
32.22

61.68

10.04
19.40
42.80
20.79
36.75

63.08

44.56
80.74
98.34
32.65
65.88

89.74

25.85
58.30
95.35
30.31
53.98

83.24

11.38
32.29
76.65
33.05
51.68

77.94

26.52
46.91
82.06
16.24
31.40

58.15

30.60
59.78
94.80
26.00
47.92

78.27

22.32
55.79
95.08
30.83
55.44

87.11

Table 6: Power of tests (%) for unbalanced data, k = 3


