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1 Introduction

Classification and pattern recognition is about assigning labels (or objects) to one of two or

more predefined classes (or categories). Various parametric and nonparametric procedures

are available in the literature for classification and pattern recognition. We will focus our

attention to only nearest neighbor (NN) type classification rules. Nearest neighbor classifi-

cation rules are widely used in statistical pattern recognition and also popular in computer

science, marine science, biological sciences applications, and other areas. Two types of NN

classification rules are (i) distance based nearest neighbor rules and (ii) rank based nearest

neighbor rules. Distance based nearest neighbor rules will be denoted by NN rules and the

rank based nearest neighbor rules will be denoted by RNN rules. Below we describe the

k–NN and k–RNN classification rules.

The k—NN Methods: The k–NN classification rule was first introduced by Fix and

Hodges (1951). Their k–NN rule is based on the density estimates using distance nearest

neighbors. The rule may be described as follows: Let {X1, X2, . . . , Xn1
} and {Y1, Y2, . . . , Yn2

}
be training samples from two given populations, π1 and π2, respectively. Let Z be an un-

known observation known to be either from π1 or π2 to be correctly classified between π1 and

π2. Using a distance function d, rank order the distances of all the observations from Z. For

a fixed integer k, the k–NN rule assigns Z to πi if k1/n1 > k2/n2, where ki is the number of

observations from πi, (i = 1, 2), among the k = k1 +k2 observations nearest to Z. Cover and

Hart (1967) proposed a slightly modified version of the above rule and is described as follows:

The Conventional k–NN Algorithm:

This rule assigns Z to the population πi, (i = 1, 2), if ki = max
j {kj}. That is, this rule

assigns Z to πi if the majority of the k nearest neighbors (in a distance sense), of Z come

from πi, (i = 1, 2). We call this rule the conventional k–NN classification rule.

Cover and Hart (1967) studied the 1–NN rule and found that the limiting risk, RD(1), of

this rule, has the following lower and upper bounds, R∗ ≤ RD(1) ≤ 2R∗(1−R∗), where R∗ is

the minimum Bayes risk obtained as R∗ =
∫

min(ξ1f1(z), ξ2f2(z))dz, where ξi and fi are the

prior probability and the probability density function of the population πi, (i = 1, 2), respec-

tively. Devroye (1981a) investigated the k–NN rule and derived the following upper bound on

the asymptotic risk, RD(k), of the rule, RD(1) < (1+αi)R
∗, where αk = α

√
k

k−3.25 (1 + β√
k−3

),

k odd, k ≥ 5, and α = 0.3399 and β = 0.9749 are universal constants. This bound is

the best possible in a certain sense. For other properties and aspects of the conventional

k–NN rule, we refer the reader to Devijver and Kittler (1982), Wagner (1971), Fritz (1975),

Devroye (1981b), and Xiru (1985). It should be pointed out that, as the important reference

by Fix and Hodges (1951) is rather inaccessible, the paper has been reprinted at the end of

the commentary on it by Silverman and Jones (1989).

The k-R-NN Methods: The rank nearest neighbor classification rule was first introduced

by Anderson (1966). In recent days, R-NN classification rule is gaining more popularity
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in the area of classification and statistical pattern recognition because of its simplicity and

robustness. The k-R-NN classification rule for univariate populations may be described as

follows:

The k-R-NN Algorithm:

Pool the sample observations Xi’s, Yj ’s, and Z, and rank them in increasing order; then

count up k observations to the right-hand side of Z and count down k observations to the

left-hand side of Z; (i) if there are more X-neighbors than Y -neighbors among rank nearest

neighbors, classify Z into the X-population π1; (ii) if there are more Y -neighbors than X-

neighbors among 2k rank nearest neighbors, classify Z into Y -population π1; (iii) if there

are exactly k X-neighbors and k Y -neighbors, classify Z into either of the two populations

with probability 1
2 each (to break the tie); and if on any side of Z k observations are not

available then use as many as available.

Dasgupta and Lin (1980) investigated the 1-R-NN rule. They derived the asymptotic

risk, RR(1), of the k-R-NN rule and showed that R∗ ≤ RR(1) ≤ 2R∗(1 − R∗), where R∗ is

the minimum Bayes error rate defined earlier. In fact, this asymptotic risk is exactly the

same as that of the 1–NN rule. Bagui and Pal (1995) extended Dasgupta and Lins work to

more than two populations and also suggested a 1-R-NN rule for multivariate data. Bagui

and Vaughn (1998) examined the k-R-NN rule for univariate populations and derived an

upper bound on the asymptotic risk, RR(k), of this rule which is parallel to the upper bound

obtained by Devroye (1981a). Bagui and Vaughn (1998) also noted that this risk converges

to the Bayes risk twice as fast as the conventional k–NN rule. Bagui et al. (2003) proposed

and studied a k-R-NN for multivariate data. In this article we present a wide-ranging monte

carlo simulation comparison between k–NN and k-R-NN classification rules under univariate

populations.

2 Asymptotic Relationship Between k–NN Rule and k-

R-NN Rule

Let X1 possess a density function f1 and Y1 possess a density function f2. We know that

Z has density either f1 or f2. Let N = min(n1, n2). The finite sample probabilities of

misclassification (PMC) of the k-R-NN classification rule are given as follows:

α12(k; n1, n2) = P (classify Z ∈ π2|Z ∈ π1) (2.1)

α21(k; n1, n2) = P (classify Z ∈ π1|Z ∈ π2). (2.2)

Thus, the total probability of misclassification (TPMC) or the risk of the k-R-NN rule is

given by

RR(k; n1, n2) = ξ1α12(k; n1, n2) + ξ2α21(k; n1, n2). (2.3)

Thus, the asymptotic risk of the k-R-NN rule may be written as

Rk = ξ1α12(k) + ξ2α21(k). (2.4)
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Let π(z) denote the asymptotic conditional probability of classifying Z into π1, given Z = z.

Viewing Bagui and Vaughn (1998), π(z) can be written as

π(z) =

2k
∑

j=k+1





2k

j



 ηj
1(z)η2k−j

2 (z) +
1

2





2k

k



 ηk
1 (z)ηk

2 (z), (2.5)

where, ηi(z) = ξifi(z)
ξ1f1(z)+ξ2f2(z) , i = 1, 2.

Thus, the asymptotic PMC’s of the k-R-NN rule is given by

α12(k) = lim
n→∞

α12(k; n1, n2) = lim
n→∞

P (classifyZ ∈ π2|Z ∈ π1) =

∫

(1− π(z))f1(z)dz (2.6)

α21(k) = lim
n→∞

α21(k; n1, n2) = lim
n→∞

P (classifyZ ∈ π1|Z ∈ π2) =

∫

π(z)f2(z)dz. (2.7)

Using (2.4) to (2.7), the asymptotic TPMC (or risk) of the k-R-NN rule can be expressed

as

RR(k) = ξ1

∫

(1 − π(z))f1(z)dz + ξ2

∫

π(z)f2(z)dz

=

∫

ξ1f1(z)[

2k
∑

j=k+1





2k

j



 ηj
1(z)η2k−j

2 (z) +
1

2





2k

k



 ηk
1 (z)ηk

2 (z)]dz

+

∫

ξ2f2(z)[
2k
∑

j=k+1





2k

j



 ηj
1(z)η2k−j

2 (z) +
1

2





2k

k



 ηk
1 (z)ηk

2 (z)]dz.

(2.8)

For simplicity of notation, writing ηi for ηi(z), RR(k) can be re-expressed as

RR(k) = Eη1η2(η
2k−1
1 + η2k−1

2 ) +





2k

1



Eη2
1η

2
2(η2k−3

1 + η2k−3
2 )

+ . . . +





2k

k − 1



Eηk
1ηk

2 +
1

2





2k

k



Eηk
1ηk

2 .

(2.9)

Theorem 2.1. (Bagui and Vaughn (1998)). The asymptotic risk has the following prop-

erty:

RR(k) ≤ RR(k − 1), k = 2, 3, . . . .

Let RD(k) denote the asymptotic risk k–NN rule. From Cover and Hart (1967), RD(k)
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can be expressed as

RD(k) =

∫

ξ1f1(z)[

m−1
∑

j=0





k

j



 ηj
1(z)ηk−j

2 (z) +
1

2





k

m



 ηm
1 (z)ηm

2 (z)]dz

+

∫

ξ2f2(z)[
k
∑

j=m+1





k

j



 ηj
1(z)ηk−j

2 (z) +
1

2





k

m



 ηm
1 (z)ηm

2 (z)]dz

(2.10)

where k = 2m.

Clearly, from (2.8) and (2.10) we note that RD(k) = RR(k
2 ) for k even. Now from

Theorem 2.1, we may conclude that RR(k) ≤ RR(k
2 ) = RD(k). Thus, asymptotic risk of

k-R-NN rule is less than that of asymptotic risk of k–NN rule is less than that of asymptotic

risk of k–NN rule.

In this article we present an extensive monte carlo simulation comparison between k–NN

and k-R-NN classification rules.

3 Simulation Methods and Results

The asymptotic properties are not necessarily valid for small sample cases. In this section

we examine the performance of k-R-NN and k–NN rules using monte carlo simulation study

in small, moderate, and large sample cases. In order to compare the k-R-NN rule with the

conventional k–NN rule, random samples of equal size (n = n1 = n2) were simulated from

pairs of each of the following univariate distribution, namely, normal, lognormal, gamma,

exponential, logistic. Given these samples, (treated as training samples), 1000 random ob-

servations from π1 and another 1000 observations from π2 were simulated and were classified

according to k-R-NN and k–NN classification rules. The proportion among the 20000 Zs

that were misclassified by the k-R-NN and k–NN rules were computed and displayed in the

following tables. We varied from 10 to 1000 and k from 1 to 6.

The mean separations in Table 1 to 3 increase from 1 to 2 to 3 while the variance in all

cases remains fixed at 1. As mean separation |µi − µj | increases in Table 1 to Table 3, the

error rate drops; as k increases, the error rate drops. Both of these trends agree with the

theory. From Table 1, we find that the average error rate of the k-R-NN rule is 0.3647 with

a standard deviation (s.d.) of 0.02510 and the average error rate of the k–NN rule is 0.3801

with a standard deviation (s.d.) of 0.02366. Thus the Z value of 2.679 > 2.326 supports the

hypothesis that the error rate for the k–NN rule is significantly larger than the k-R-NN rule

at 1% level of significance. More accurately, since the P -value = 0.00369, thus the exact

level of significance is 0.369%.

From Table 2, we observe that the average error rate of the k-R-NN rule is 0.1898 with

a standard deviation (s.d.) of 0.03271 and the average error rate of the k–NN rule is 0.2046

with a standard deviation (s.d.) of 0.03. Thus the Z value of 2.001 > 1.96 supports the

hypothesis that error rate for the k–NN rule is significantly larger than the k-R-NN rule
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Table 1: Average proportion of misclassification by k-R-NN and k–NN rules for the pair
N(0, 1) vs. N(1, 1)

k 1 2 3 4 5 6

n R-NN R-NN R-NN R-NN R-NN R-NN

-NN -NN -NN -NN -NN -NN

10 0.4145 0.3907 0.3825 0.3825 0.3825 0.3682

0.4210 0.4292 0.3665 0.3615 0.3735 0.3552

20 0.4150 0.3517 0.3397 0.3545 0.3380 0.3417

0.4140 0.4225 0.3430 0.3692 0.3480 0.3472

50 0.4077 0.3880 0.3570 0.3547 0.3372 0.3367

0.4060 0.4130 0.3805 0.3850 0.3810 0.3730

100 0.3965 0.3747 0.3562 0.3520 0.3432 0.3365

100 0.3945 0.3967 0.3690 0.3765 0.3725 0.3727

500 0.4042 0.3727 0.3555 0.3585 0.3500 0.3470

0.4085 0.3992 0.3780 0.3727 0.3615 0.3592

1000 0.4070 0.3675 0.3482 0.3487 0.3387 0.3300

0.4000 0.4000 0.3725 0.3682 0.3455 0.3480

N(a, b) Normal distribution with mean a and variance b.

Table 2: Average proportion of misclassification by k-R-NN and k–NN rules for the pair
N(0, 1) vs. N(2, 1)

k 1 2 3 4 5 6

n R-NN R-NN R-NN R-NN R-NN R-NN

-NN -NN -NN -NN -NN -NN

10 0.2992 0.2672 0.2505 0.1767 0.1767 0.1775

0.2825 0.2825 0.2250 0.2310 0.2360 0.2152

20 0.2515 0.2037 0.1842 0.1787 0.1595 0.1607

0.2490 0.2500 0.2060 0.2185 0.1980 0.1905

50 0.2097 0.1707 0.1725 0.1670 0.1642 0.1645

0.2145 0.2092 0.1740 0.1720 0.1655 0.1670

100 0.2210 0.1867 0.1792 0.1682 0.1630 0.1635

0.2120 0.2145 0.1745 0.1785 0.1795 0.1770

500 0.2160 0.1790 0.1750 0.1747 0.1705 0.1677

0.2180 0.2092 0.1770 0.1797 0.1800 0.1790

1000 0.2197 0.1935 0.1852 0.1780 0.1800 0.1777

0.2185 0.2230 0.1955 0.1922 0.1865 0.1847
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Table 3: Average proportion of misclassification by k-R-NN and k–NN rules for the pair
N(0, 1) vs. N(3, 1)

k 1 2 3 4 5 6

n R-NN R-NN R-NN R-NN R-NN R-NN

-NN -NN -NN -NN -NN -NN

10 0.1175 0.0842 0.0875 0.0747 0.0747 0.0747

0.1035 0.1310 0.1250 0.1270 0.1305 0.1130

20 0.1127 0.0715 0.0715 0.0730 0.0735 0.0730

0.1070 0.1225 0.0715 0.0707 0.0715 0.0725

50 0.0872 0.0735 0.0727 0.0705 0.0715 0.0720

0.0785 0.0825 0.0755 0.0720 0.0715 0.0710

100 0.0807 0.0745 0.0730 0.0727 0.0715 0.0695

0.0790 0.0817 0.0790 0.0737 0.0715 0.0750

500 0.0882 0.0732 0.0752 0.0730 0.0737 0.0730

0.0885 0.0875 0.0700 0.0735 0.0730 0.0742

1000 0.0938 0.0795 0.0805 0.0762 0.0755 0.0747

0.0975 0.0980 0.0760 0.0805 0.0760 0.0777

at 2.5% level of significance. Since the P -value = 0.0225, the exact level of significance is

2.25%.

From Table 3, we find that the average error rate of the k-R-NN rule is 0.0782 with a

standard deviation (s.d.) of 0.01072 and the average error rate of the k–NN rule is 0.0851

with a standard deviation (s.d.) of 0.02364. Thus the Z value of 1.595 > 1.282 supports

the hypothesis that error rate for the k–NN rule is significantly larger than the k-R-NN rule

at 10% level of significance. Since the P -value = 0.05536, thus exact level of significance is

5.536%.

From Table 4, we find that the average error rate of the k-R-NN rule is 0.1898 with a

standard deviation (s.d.) of 0.03265 and the average error rate of the k–NN rule is 0.1999

with a standard deviation (s.d.) of 0.02731. Thus the Z value of 1.42 > 1.282 supports the

hypothesis that the error rate for the k–NN rule is significantly larger than the k-R-NN rule

at 10% level of significance. Since the P -value = 0.0778, the exact level of significance is

7.78%.

From Table 5, we find that the average error rate of the k-R-NN rule is 0.0781 with a

standard deviation (s.d.) of 0.01072 and the average error rate of the k–NN rule is 0.0811

with a standard deviation (s.d.) of 0.01315. Thus the Z = 1.060 with a P -value = 0.14456

(0.10) does not support the hypothesis that error rate for the k–NN rule is significantly

larger than the k-R-NN rule at 10% level of significance. The exact level of significance is

14.456%. In this case, on the average, the k-R-NN rule performed better than the k–NN

rule but not significantly better.
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Table 4: Average proportion of misclassification by k-R-NN and k–NN rules for the pair
LG(0, 1) vs. LG(2, 1)

k 1 2 3 4 5 6

n R-NN R-NN R-NN R-NN R-NN R-NN

-NN -NN -NN -NN -NN -NN

10 0.2992 0.2672 0.2505 0.1767 0.1767 0.1775

0.2765 0.2650 0.2005 0.1990 0.2005 0.1782

20 0.2515 0.2037 0.1842 0.1787 0.1595 0.1607

0.2485 0.2505 0.2080 0.2155 0.1955 0.1835

50 0.2097 0.1707 0.1725 0.1670 0.1642 0.1645

0.2130 0.2092 0.1745 0.1722 0.1645 0.1662

100 0.2210 0.1867 0.1792 0.1682 0.1630 0.1635

0.2115 0.2147 0.1740 0.1780 0.1780 0.1785

500 0.2160 0.1790 0.1750 0.1747 0.1705 0.1677

0.2180 0.2082 0.1770 0.1797 0.1800 0.1792

1000 0.2197 0.1935 0.1852 0.1780 0.1800 0.1777

0.2185 0.2227 0.1955 0.1922 0.1865 0.1847

LG(a, b) Logistic distribution with location parameter a and scale parameter b.

Table 5: Average proportion of misclassification by k-R-NN and k–NN rules for the pair
LG(0, 1) vs. LG(3, 1)

k 1 2 3 4 5 6

n R-NN R-NN R-NN R-NN R-NN R-NN

-NN -NN -NN -NN -NN -NN

10 0.1175 0.0842 0.0875 0.0747 0.0747 0.0747

0.1065 0.1060 0.0750 0.0737 0.0735 0.0760

20 0.1127 0.0715 0.0715 0.0730 0.0735 0.0730

0.1110 0.1242 0.0705 0.0707 0.0725 0.0707

50 0.0872 0.0735 0.0727 0.0705 0.0715 0.0702

0.0790 0.0827 0.0760 0.0727 0.0715 0.0712

100 0.0807 0.0745 0.0730 0.0727 0.0715 0.0695

0.0790 0.0815 0.0795 0.0740 0.0735 0.0745

500 0.0882 0.0732 0.0752 0.0730 0.0737 0.0730

0.0885 0.0877 0.0700 0.0737 0.0730 0.0742

1000 0.0938 0.0795 0.0805 0.0762 0.0755 0.0747

0.0975 0.0982 0.0760 0.0802 0.0760 0.0780
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Table 6: Average proportion of misclassification by k-R-NN and k–NN rules for the pair
LN(0, 1) vs. LN(2, 1)

k 1 2 3 4 5 6

n R-NN R-NN R-NN R-NN R-NN R-NN

-NN -NN -NN -NN -NN -NN

10 0.1877 0.1735 0.1735 0.1675 0.1675 0.1675

0.1940 0.1882 0.1660 0.1682 0.1725 0.1670

20 0.2085 0.1775 0.1675 0.1677 0.1647 0.1657

0.2085 0.2032 0.1690 0.1690 0.1660 0.1662

50 0.1882 0.1732 0.1672 0.1715 0.1672 0.1650

0.1910 0.2005 0.1660 0.1702 0.1675 0.1690

100 0.2135 0.1875 0.1702 0.1692 0.1687 0.1665

0.2130 0.2172 0.1810 0.1820 0.1670 0.1692

500 0.2150 0.1847 0.1790 0.1762 0.1765 0.1692

0.2240 0.2202 0.1875 0.1885 0.1770 0.1765

1000 0.2115 0.1832 0.1767 0.1752 0.1725 0.1715

0.2185 0.2205 0.1815 0.1860 0.1815 0.1770

LN(a, b) Lognormal with mean a and variance b.

From Table 6, we find that the average error rate of the k–RNN rule is 0.1774 with a

standard deviation (s.d.) of 0.01407 and the average error rate of the k–NN rule is 0.1853

with a standard deviation (s.d.) of 0.01892. Thus the Z value of 2.010 > 1.96 supports the

hypothesis that the error rate for the k–NN rule is significantly larger than the k–RNN rule

at 2.5% level of significance. Since the P -value = 0.02222, the exact level of significance is

2.222%.

From Table 7, we find that the average error rate of the k–RNN rule is 0.3447 with a

standard deviation (s.d.) of 0.02412 and the average error rate of the k–NN rule is 0.3597

with a standard deviation (s.d.) of 0.02289. Thus the Z value of 2.706 > 2.576 supports

the hypothesis that error rate for the k–NN rule is significantly larger than the k–RNN rule

at 0.5% level of significance. Since the P -value = 0.00341, the exact level of significance is

0.341%.

In majority of the cases, k–RNN rule performed significantly better than k–NN rule.

From Table 1, 2, 6, and 7, we see that when there is a greater overlap between two popula-

tions the k–RNN rule tends to perform significantly better then the k–NN rule. However,

when the overlap between two populations decreases, the significance level increases. This

means both will tend to perform statistically equivalent way. The fact is that there is no

significant difference between the two rules which is more apparent in Table V.

Computational Complexities of the k–RNN and the k–NN Rules:
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Table 7: Average proportion of misclassification by k–RNN and k–NN rules for the pair
EX(0, 1) vs. GA(2, 1)

k 1 2 3 4 5 6

n -RNN -RNN -RNN -RNN -RNN -RNN

-NN -NN -NN -NN -NN -NN

10 0.3540 0.3527 0.3512 0.3535 0.3567 0.4302

0.3600 0.3552 0.3575 0.3637 0.3610 0.4505

20 0.3702 0.3282 0.3312 0.3312 0.3262 0.3422

0.3770 0.3467 0.3365 0.3415 0.3350 0.3315

50 0.3920 0.3438 0.3347 0.3232 0.3147 0.3182

0.4030 0.3867 0.3485 0.3627 0.3380 0.3345

100 0.3860 0.3575 0.3410 0.3310 0.3255 0.3250

0.3845 0.3837 0.3725 0.3665 0.3525 0.3445

500 0.3740 0.3497 0.3397 0.3292 0.3277 0.3252

0.3690 0.3717 0.3530 0.3470 0.3370 0.3425

1000 0.3760 0.3475 0.3372 0.3335 0.3287 0.3212

0.3605 0.3710 0.3525 0.3582 0.3440 0.3490

EX(a, b) Exponential distribution with location parameter a and scale parameter b.
GA(a, b) Gamma distribution with shape parameter a and scale parameter b.

Suppose there are N , N = n1 + n2, observations in the training data, then the cost of

finding the rank of Z is equal to logN . On the other hand, for the conventional k–NN rule,

the cost of finding k-neighbors is (N − K)(N − 2) . . . (N − k) comparisons and distance

calculations involving a cost of operations as each square distance requires 1 subtraction

and 1 multiplication, which is much higher than that of the k–RNN rule.

4 Concluding Remarks

In this investigation we have done an extensive simulation study to compare the k–RNN and

the k–NN rules in univariate cases. We observe that the k–RNN rule performs significantly

better than the k–NN rule in majority of the cases. We also note superior performance of

the k–RNN rule when there is larger overlap between two populations. The k–RNN rule is

based on ranks of X ’s, Y ’s, and Z’s, so it has better robustness properties. Also, the k–RNN

lessens the burden of calculating the distances of all observations X ’s and Y ’s from Z as

they are needed for the conventional the k–NN rule. Thus, the computational complexity

for the k–RNN rule is much less than the k–NN rule. Users of the k–NN rule may find

the k–RNN rule as a computationally simpler alternative to the k–NN rule. The k–RNN

rule is particularly useful when the observations are available in terms of their ranks. The

comparison of the k–RNN rule and k–NN rule under multivariate data is under investigation

and findings of this will be reported later.
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