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summary

The present study introduces an unbiased estimator of population mean of a
sensitive quantitative variable based on multiple selections of numbers from a
scrambling distribution to confound the actual response on sensitive variable with
some unrelated variable. The proposed method may be viewed as more protective
against the reprisal or stigma. A simulation study is done to observe the perfor-
mance of the proposed method relative to Ryu et al. (2005) Randomized Response
(RR) method. The relative efficiency of proposed estimator with respect to Ryu
et al. (2005) RR method is calculated and found appreciable.

Keywords and phrases: randomized response technique, sensitive quantitative
variable, estimation of mean, evasive answer bias.

AMS Classification: 94A20

1 Introduction

One may doubt the truth of the responses gathered by direct questioning while conducting

a survey to estimate the intensity of a sensitive attribute or mean of a sensitive quantitative

variable (e.g. induced abortion, drug usage, tax evasion, shop lifting, cheating in exams,

sexual abuse, etc.) in a population. The reason of falsified answers might be the fear of

reprisals, getting punishment from the authorities, or simply the embarrassment that’s why,

in social surveys, lack of a reliable measure of incidence or prevalence of both qualitative and

quantitative variable becomes serious issue. Generally, individuals in the population avoid

to be stigmatized and fear of reprisals by revealing the truth to the strangers. This usually

results in lying by the respondents when approached with the conventional or direct–response
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survey method. As a consequence of falsification of the responses an avoidable estimation

bias creeps into the estimates. In an effort to reduce the evasive answer bias, Warner

(1965) proposed a randomized response method to estimate proportion of prevalence of the

sensitive characteristic in the population. Greenberg et al. (1971) extended the Randomized

Response model to the estimation of mean of a sensitive quantitative variable. The recent

articles on the estimation of mean of a sensitive variable include Singh et al. (1998), Singh

(1999), Singh et al. (2001), Chang and Haung (2001),Gupta et al. (2002), Bar–Lev et al.

(2004), Ryu et al. (2005) and many others.

In this paper we present an unbiased estimator of the mean and compare it with the esti-

mator proposed by the Ryu et al. (2005). The organization of the paper is as follows: The

Ryu et al. (2005) estimation procedure is outlined in Section 2. In Section 3 we present our

proposed model. Section 4 contains the efficiency comparison of the proposed procedure. A

short discussion is given in Section 5.

2 Ryu et al. Proposed Model

Ryu et al. (2005) proposed a randomized response (RR) model to estimate the mean of the

sensitive quantitative variable, based on Mangat and Singh (1990) two–stage randomized

response model. The ith respondent selected in the sample of size n is requested to use the

randomization device R1 which consists of two statements: (i) ”Report the true response

Ai of sensitive question” and (ii) ”Go to randomization device R2 in the second stage”

represented with probabilities P and 1–P respectively. The randomization device R2 consists

of two statements: (i) ”Report the true response Ai of sensitive question” and (ii) ”Report

the scrambled response AiSi of sensitive question” represented with probabilities T and 1–T

respectively. Let Yi be the response of the ith respondent, then it can be written as

Yi = αAi + (1 − α)[βAi + (1 − β)AiSi], (2.1)

where α = 1, if a respondent is randomly assigned to statement (i) in R1, and α = 0 , if

a respondent is randomly assigned to statement (ii) in R1. Also β = 1 , if a respondent is

randomly assigned to statement (i) in R2, and β = 0, if a respondent is randomly assigned

to statement (ii) in R2. Also α and β are variables with means P, T and variances P(1–P),

T(1–T), respectively. Using the assumption of known distribution of scrambling variable

such that µS = 1 and σ2
S = θ2, the expected value of the observed response is given by

E(Yi) = E(α)E(Ai) + E(1 − α)[E(β)E(Ai) + E(1 − β)E(Ai)E(Si)]

= PµA + (1 − P )[TµA + (1 − T )µA]

= µA. (2.2)

Based on the responses Yi, i = 1, 2, . . . , n, Ryu et al. (2005) suggested an unbiased estimator

of the mean of the sensitive variable as

µ̂AR =
1

n

n∑

i=1

Yi, (2.3)
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with variance

V (µ̂AR) =
σ2

A

n
+

1

n
(µ2

A + σ2
A)(1 − P )(1 − T )θ2. (2.4)

3 Proposed Procedure

In the proposed procedure each respondent selected in the sample of size n is requested

to select k random numbers S1, S2, . . . , Sk from a probability distribution with any known

mean −∞ < µS < ∞ and known variance σ2
S = θ2, and requested to report mean of

selected numbers plus kk times of his/her actual response Ai. (We included the term kk to

be multiplied with Ai because it plays a role of decreasing the variance of the estimator to

be proposed). Let us suppose that di be the response of the ith respondent, it can then be

written as

di =
1

k

k∑

j=1

Sj + kkAi. (3.1)

For the ith respondent we have

E(di) = µS + kkµA. (3.2)

This suggests defining an unbiased estimator of the population mean µA as

µ̂AP =
[d̄− µS ]

kk
. (3.3)

To derive an expression for variance of the proposed estimator, we proceed as follows. By

definition

V (di) = E(d2
i ) − (E(di))

2

= E[
1

k

k∑

j=1

Sj + kkAi]
2
− [E[

1

k

k∑

j=1

Sj + kkAi]]
2

=
ψ2

k
+ k2kσ2

A. (3.4)

where ψ2 = θ2 = σ2
S . Hence the variance of the proposed estimator µ̂AP is given by

V (µ̂AP ) = V (
d̄

k2k
)

= V (
d̄

nk2k
)

=
σ2

A

n
+

ψ2

nk2k+1
. (3.5)

From (3.5) we can observe that the variance of the proposed estimator is a bounded de-

creasing function of the constant k , therefore, no optimum k can be derived to obtain the
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minimal estimator in the proposed class of estimators. By design, minimum value of k is

2. For practical purposes one can use k=3 or 4 also, but k=2 works well as we will show in

the Section 4. Instead of fixing µS = 1, any value of the mean of the scrambling variable,

µS can be set depending on the size of the values of the study variable. So the proposed

model provides more flexibility in choosing the scrambling variable. If the values of the

study variable in the population are suspected to be larger, one can set µS larger, otherwise

smaller. It may help decreasing the suspicion amongst the respondents to confound the

actual response with scrambling variable. Also, the variance of the proposed estimator does

not depend on the unknown mean of the study variable, as is the case with the Ryu et al.

RR model. Unlike the Ryu et el. estimator, the variance of the proposed estimator is not

affected by the unknown mean of the study variable.

4 Efficiency Comparison

The proposed estimator is more efficient than Ryu et al. (2005) estimator if

V (µ̂AP ) − V (µ̂AP ) ≥ 0,

that is
σ2

A

n
+

1

n
(µ2

A + σ2
A)(1 − P )(1 − T )ψ2

−
σ2

A

n
−

ψ2

nk2k+1
≥ 0,

or if

(µ2
A + σ2

A)(1 − P )(1 − T ) ≥
1

k2k+1
(4.1)

The inequality (4.1) can easily be made true by suitably choosing the constant k to achieve

the desired efficiency.

4.1 Numerical Example

In the following Tables 1–5 we give the relative efficiency of proposed estimator relative to

the Ryu et al. (2005) estimator for different practicable values of P, T and µA . We fix

n = 100 , θ2 = ψ2 = 0.5, k = 2 and σ2
A = 0.5 .

4.2 Simulation Study

To study the behavior of the proposed RR model compared to Ryu et al (2005) RR model

we performed a simulation study for some parametric values and sample size n = 100 . We

assumed that the sensitive variable Ai follows a Gamma(1,2) distribution , so that the mean

of the study variable is 2. The scrambling variable Si is assumed to have a standard normal

distribution. For k = 3 and P,T = 0.1, 0.3, 0.5, 0.7, 0.9. we performed 5000 simulations and

the simulated means and standard deviations of the both the proposed estimator and the

Ryu et al estimator are given in the following Tables 6–10.
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Table 1: Relative efficiency of the µ̂AP relative to µ̂AR when n = 100 , θ2 = ψ2 = 0.5, k = 2
and σ2

A = 0.5.

µA µA

P T 2 4 6 8 P T 2 4 6 8

0.1 4.30 13.73 29.44 51.43 0.1 3.93 12.31 26.27 45.82

0.2 3.93 12.31 26.27 45.82 0.2 3.60 11.05 23.46 40.84

0.3 3.56 10.59 23.11 40.22 0.3 3.27 9.79 20.65 35.85

0.4 3.19 9.47 19.95 34.61 0.4 2.94 8.53 17.84 30.87

0.1 0.5 2.82 8.06 16.78 29.00 0.2 0.5 2.61 7.27 15.03 25.89

0.6 2.45 6.64 13.62 23.39 0.6 2.28 6.01 12.21 20.90

0.7 2.08 5.22 10.46 17.79 0.7 1.95 4.75 9.40 15.92

0.8 1.71 3.80 7.29 12.18 0.8 1.62 3.49 6.59 10.93

0.9 1.34 2.38 4.13 6.57 0.9 1.29 2.23 3.78 5.95

Table 2: Relative efficiency of the µ̂AP relative to µ̂AR when n = 100 , θ2 = ψ2 = 0.5, k = 2
and σ2

A = 0.5.

µA µA

P T 2 4 6 8 P T 2 4 6 8

0.1 3.56 10.89 23.11 40.22 0.1 3.19 9.47 19.95 34.61

0.2 3.29 9.79 20.65 35.85 0.2 2.94 8.53 17.84 30.87

0.3 2.98 8.69 18.19 31.49 0.3 2.70 7.58 15.73 27.13

0.4 2.70 7.58 15.73 27.13 0.4 2.45 6.64 13.62 23.39

0.3 0.5 2.41 6.48 13.27 22.77 0.4 0.5 2.20 5.69 11.51 16.66

0.6 2.12 5.38 10.81 18.41 0.6 1.95 4.75 9.40 15.92

0.7 1.83 4.27 8.35 14.05 0.7 1.71 3.80 7.29 12.18

0.8 1.54 3.17 5.89 9.69 0.8 1.46 2.86 5.18 8.44

0.9 1.25 2.07 3.43 5.33 0.9 1.21 1.91 3.07 4.70
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Table 3: Relative efficiency of the µ̂AP relative to µ̂AR when n = 100 , θ2 = ψ2 = 0.5, k = 2
and σ2

A = 0.5.

µA µA

P T 2 4 6 8 P T 2 4 6 8

0.1 2.82 8.06 16.78 29.00 0.1 2.45 6.64 13.62 23.39

0.2 2.61 7.27 15.03 25.89 0.2 2.28 6.01 12.21 20.90

0.3 2.41 6.48 13.27 22.77 0.3 2.12 5.38 10.80 18.41

0.4 2.20 5.69 11.51 19.66 0.4 1.95 4.75 9.40 15.92

0.5 0.5 2.00 4.90 9.75 16.54 0.6 0.5 1.79 4.12 8.00 13.43

0.6 1.79 4.12 8.00 13.43 0.6 1.62 3.49 6.59 10.93

0.7 1.58 3.33 6.24 10.31 0.7 1.46 2.86 5.18 8.44

0.8 1.38 2.54 4.48 7.20 0.8 1.29 2.23 3.78 5.95

0.9 1.17 1.75 2.72 4.08 0.9 1.13 1.60 2.37 3.46

Table 4: Relative efficiency of the µ̂AP relative to µ̂AR when n = 100 , θ2 = ψ2 = 0.5, k = 2
and σ2

A = 0.5.

µA µA

P T 2 4 6 8 P T 2 4 6 8

0.1 2.08 5.22 10.46 17.79 0.1 1.71 3.80 7.29 12.18

0.2 1.95 4.75 9.40 15.92 0.2 1.62 3.49 6.59 10.93

0.3 1.83 4.27 8.35 14.05 0.3 1.54 3.17 5.89 9.69

0.4 1.71 3.80 7.29 12.18 0.4 1.46 2.86 5.18 8.44

0.7 0.5 1.58 3.33 6.24 10.31 0.8 0.5 1.38 2.54 4.48 7.20

0.6 1.46 2.86 5.18 8.44 0.6 1.29 2.23 3.78 5.95

0.7 1.34 2.38 4.13 6.57 0.7 1.21 1.91 3.07 4.70

0.8 1.21 1.91 3.07 4.70 0.8 1.13 1.60 2.37 3.46

0.9 1.09 1.44 2.02 2.83 0.9 1.05 1.28 1.67 2.21
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Table 5: Relative efficiency of the µ̂AP relative to µ̂AR when n = 100 , θ2 = ψ2 = 0.5, k = 2
and σ2

A = 0.5.

µA

P T 2 4 6 8

0.1 1.34 2.78 4.13 6.57

0.2 1.29 2.23 3.78 5.95

0.3 1.25 2.07 3.43 5.33

0.4 1.21 1.91 3.07 4.70

0.9 0.5 1.17 1.75 2.72 4.08

0.6 1.13 1.60 2.37 3.46

0.7 1.09 1.44 2.02 2.83

0.8 1.05 1.28 1.67 2.21

0.9 1.01 1.12 1.32 1.59

Table 6: Simulated Means and Variances of the µ̂AR and µ̂AP for K = 3 andT = 0.1

T = 0.1

P Mean(µ̂AR) Stdev(µ̂AR) Mean(µ̂AP ) Stdev(µ̂AP )

0.1 1.9985 0.2298 1.9992 0.1992

0.3 2.0005 0.2244 2.0016 0.1995

0.5 2.0036 0.2204 2.0020 0.2033

0.7 1.9967 0.2158 1.9966 0.2022

0.9 1.9988 0.2143 1.9978 0.2023

Table 7: Simulated Means and Variances of the µ̂AR and µ̂AP for K = 3 andT = 0.3

T = 0.3

P Mean(µ̂AR) Stdev(µ̂AR) Mean(µ̂AP ) Stdev(µ̂AP )

0.1 2.0015 0.2193 2.0003 0.2018

0.3 1.9992 0.2176 1.9979 0.2011

0.5 1.9964 0.2088 1.9980 0.1982

0.7 1.9968 0.2101 1.9957 0.2018

0.9 2.0022 0.2072 2.0013 0.2013
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Table 8: Simulated Means and Variances of the µ̂AR and µ̂AP for K = 3 andT = 0.5

T = 0.5

P Mean(µ̂AR) Stdev(µ̂AR) Mean(µ̂AP ) Stdev(µ̂AP )

0.1 1.9954 0.2068 1.9946 0.1977

0.3 2.0012 0.2017 2.0013 0.2027

0.5 2.0030 0.2062 2.0019 0.2003

0.7 1.9974 0.2011 1.9973 0.1968

0.9 2.0003 0.2017 2.0006 0.1994

Table 9: Simulated Means and Variances of the µ̂AR and µ̂AP for K = 3 andT = 0.7

T = 0.7

P Mean(µ̂AR) Stdev(µ̂AR) Mean(µ̂AP ) Stdev(µ̂AP )

0.1 2.0009 0.2055 2.0010 0.204

0.3 1.9963 0.2045 1.9962 0.2021

0.5 1.9979 0.2018 1.9978 0.1998

0.7 2.0068 0.2033 2.0077 0.2019

0.9 2.0024 0.2018 2.0021 0.2011

Table 10: Simulated Means and Variances of the µ̂AR and µ̂AP for K = 3 andT = 0.9

T = 0.9

P Mean(µ̂AR) Stdev(µ̂AR) Mean(µ̂AP ) Stdev(µ̂AP )

0.1 1.9983 0.2008 1.9984 0.2009

0.3 1.9996 0.2017 1.9995 0.2017

0.5 1.9953 0.1985 1.9954 0.1986

0.7 2.0037 0.2030 2.0035 0.2033

0.9 1.9988 0.1989 1.9985 0.1989
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5 Discussion

A new randomized response procedure for estimating the mean of a quantitative sensitive

quantitative variable is presented. It has been observed that the relative efficiency of pro-

posed estimator increases as k increases for the same parametric values we used in computing

the relative efficiency for k = 2 in Section 4. We also did a simulation study and observed

that both the estimators are unbiased but the proposed estimator is more efficient. We did

the same for increasing k and observed that relative efficiency of the proposed estimator

increases. e..g. for k = 3 the relative efficiency of the proposed estimator is 1.33 and for

k = 4 it is 1.36 keeping the other parameters fixed. We also did the simulation study for

increased sample size and observed the similar result therefore we did not represent them

in Section 4 to save the space. The efficiency condition given by (4.1) depends on the un-

known mean and variance of the study variable. If it is suspected that mean as well as

variance of the study variable is small, we suggest to use larger k, otherwise a smaller value

of k should preferably be used . As Si could be chosen any real valued random variable,

any of the responses 1

k

∑n
i=1

Sj + kkAi can not be traced back to the actual response Ai.

Also a greater flexibility is provided in choosing k. It is shown by Ryu et al (2005) that

their estimator is superior to the estimators given by Greenberg et al (1971), Eichhorn and

Hayre (1983), and Gupta et al (2002) in term of relative efficiency. Therefore, the proposed

procedure is not less efficient than Greenberg et al (1971), Eichhorn and Hayre (1983), and

Gupta et al (2002) estimators. Although the comparison of proposed estimator with Ryu

et al (2005) estimator looks arbitrary but we made comparison on the premise that both

estimators estimate the same parameter µA . As our k is fixed, Ryu et al can claim that

they can choose P and T in such a way that their estimator has smaller variance but it

is for the non–practicable values of Pand T (e.g.P > 0.9 and T > 0.9). Ryu et al (2005)

have shown that the estimator given in (2.3) is more efficient than Greenberg et al (1971),

Eichhorn and Hayre (1983) and Gupta et al (2002) estimators. Therefore, we can conclude

that our proposed estimator is not less efficient than Greenberg et al (1971), Eichhorn and

Hayre (1983) and Gupta et al (2002) estimators. It is important to note that the proposed

model provides more privacy as compared to Ryu et al. (2005) to the respondents by giving

a choice of selecting k ≥ 2 random numbers and multiply his/her actual response to kk .
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