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summary

For estimating an unknown mean vector-parameter θ in a multivariate normal
population, we propose the unrestricted, restricted and preliminary test estima-
tors and derive their exact risk expressions under a modified reflected normal loss
function. This approach is an extension to the work of Giles [2002. Preliminary-
Test and Bayes Estimation of A Location Parameter Under Reflected Normal
Loss, in Ullah, A. and Chaturvedi, A, Handbook of Applied Econometrics and
Statistical Inference, Marcel Decker, New York, 287-303]. Comparison are then
made for more clarity of the behavior of the estimators.
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1 Introduction

The properties of an estimator primarily depends on the chosen loss function; and the choice

of loss function depends on the objectives of the study. For example, it is well known that

the ordinary least squares estimators under certain standard assumptions are the best linear

unbiased. However, if the objective of any study is to minimize some specific risk function

then other types of estimators may perform better than the ordinary least squares estimator.

In recent years there has been growing interest to estimate the parameters under different

loss functions (cf. Saleh, 2006).
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Many authors have considered quadratic loss function for evaluating the risk functions

of underlying estimators. Among others the elegant work of Saleh (2006) has systemati-

cally treated some improved estimators in different standard statistical models considering

quadratic loss function. Also some other popular loss functions (using absolute-error loss,

asymmetric linear exponential (LINEX) loss, or balanced loss) include the contributions of

Ohtani et al.(1997), Giles et al.(1996), Ohtani and Giles (1996), Giles and Giles (1996), and

more recently Arashi et al. (2008), among others. Despite its tractability and historical

interest, two obvious practical shortcomings of the quadratic loss function are its unbound-

edness and its symmetry (Giles, 2002). Recently, Spring (1993) has addressed the issue of

unboundedness, by analyzing the reflected normal (RN) loss function, and has motivated

it through an example in quality assurance (e.g., Taguchi, 1986). The reflected normal loss

function has the practical merit that it is bounded. It can readily be made asymmetric if

desired. Giles (2002) considered RN loss function in evaluating the risk functions of max-

imum likelihood (ML), restricted ML (RML) and preliminary test (PT) estimators of a

scalar mean in a univariate normal distribution. The objective of this paper is to propose

ML, RML and PT estimators based on a sample from a multivariate normal population and

and to provide the dominance order of the estimators based on the RN loss.

More precisely, this paper involves the problem of estimation of the mean vector θ =

(θ1, · · · , θp)
′ of a multivariate normal model when it is suspected that θ may belong to

the sub-space defined by θ = θ0 where θ0 is a p-vector of known pre-specified values with

focus on the PT estimator of θ.

Let θ be a p-vector parameter to be estimated, and δ be a statistic used as an estimator

of θ, then we define the modified reflected normal loss function as

L(δ; θ) = K

{

1 − exp

[

−
(δ − θ)′Σ−1(δ − θ)

2γ2

]}

, (1.1)

where K is the maximum loss and γ is a pre-assigned shape parameter that controls the

rate at which the loss approaches its upper bound. The reflected normal loss structure in

the context of M-estimation (e.g. Huber, 1977), and in the context of robust estimation its

influence function is known to have rather good properties. The graph of RN loss comparing

with that of quadratic is given in Figure 1.

2 Model and proposed estimators

Let X1, ..., XN be independent and identically distributed (iid) as Np(θ,Σ) where the mean

vector θ and positive definite (p.d.) covariance matrix Σ are both unknown.

It is well-known that the MLE of θ is given by

θ̃ = X̄, (2.1)

where X̄ = 1
N

∑N
i=1 Xi, is an unbiased estimator of mean vector θ say, and is an unrestricted
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estimator. Also the corresponding unbiased estimator of Σ is given by

S =
1

N − 1

N
∑

i=1

(Xi − X̄)(Xi − X̄)′. (2.2)

If we know that when hypothesis H0 : θ = θ0 holds, then the restricted estimator is

θ̂ = θ0. (2.3)

In practice, the prior information that θ̂ = θ0, is uncertain. The uncertainty in the prior

knowledge can be removed by using Bancroft (1944) estimator, considering test of the hy-

pothesis H0 : θ = θ0 against the alternative HA : θ 6= θ0. As a result of this test we choose

θ̃ or θ̂ based on the rejection or acceptance of H0.

Accordingly, we write the PT estimator as

θ̂
PT

= θ̂I(U < Fp,m(α)) + θ̃I(U ≥ Fp,m(α)), (2.4)

where Fp,m(α) is the α-level upper critical value of a central F-distribution with (p, m =

N − p) degrees of freedom, I(A) is the indicator function of the set A and U is the test

statistic for testing the null hypothesis H0 : θ = θ0 (or δ = θ−θ0 = 0), against HA : θ 6= θ0.

Direct computations concludes that U has the following form

U =
mN

np
(X̄ − θ0)

′S−1(X̄ − θ0)

=
m

np
T 2, n = N − 1, (2.5)

where

T 2 = N(X̄ − θ0)
′S−1(X̄ − θ0). (2.6)

The test statistic U follows a central F-distribution with (p, m) degrees of freedom under

H0 while under the alternative it follows the non-central F-distribution with (p, m) degrees

of freedom and non-centrality parameter ∆2

2 , where

∆2 = N(θ − θ0)
′
Σ

−1(θ − θ0)

= Nδ′
Σ

−1δ. (2.7)

The preliminary test approach estimation has been pioneered by Bancroft (1944), Saleh and

Sen (1978), Kibria and Saleh (1993). The performance of PTE depends on the size of the

test (0 < α < 1), and the choice of estimators remains between the two values θ̃ and θ̂.

Depending on the outcome of the test, it yields the extreme results, namely θ̃ and θ̂.

In the forthcoming section, we evaluate the bias and risk functions of the proposed

estimators under reflected normal loss.
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3 Bias and Risk Expressions

Suppose θ∗ is an estimator of θ. In this section we derive the bias and risk functions

respectively expressed by the notations b(θ∗), and R(θ∗; θ) for each ML, RML and PT

estimator considered in Section 2 given by

b(θ∗) = E(θ∗ − θ),

R(θ∗; θ) = E[L(θ∗; θ)],

where L(θ∗; θ) is given by (1.1).

Theorem 1. The bias vectors of the ML, RML and PT estimators of θ are given by

(i) b1(θ̃) = 0,

(ii) b2(θ̂) = −δ, δ = θ − θ0,

(iii) b3(θ̂
PT

) = −δGp+2,m

(

p
p+2Fp,m(α); ∆2

)

,

where Gp,m

(

.; ∆2
)

is the cdf of non-central F-distribution with (p, m) degrees of freedom and

non-centrality parameter ∆2

2 with

Gp,m

(

x; ∆2
)

=
∑

r≥0

e
∆2

2

r!

(

∆2

2

)r

Iy

(

1

2
p + r;

1

2
m

)

, y =
px

m + px
,

where Iy(a, b) is an incomplete beta function.

Proof: The expression of b1(θ̃) is obvious. For b2(θ̂), using equation (2.3) we have

b2(θ̂) = E(θ̂ − θ) = E(θ0 − θ) = −δ.

Next by using (2.4) we get

b3(θ̂
PT

) = E(θ̂
PT

− θ)

= E
[

X̄ − (X̄ − θ0)I (U < Fp,m(α)) − θ
]

= −E
[

(X̄ − θ0)I (U < Fp,m(α))
]

= −
Σ

1
2

N
1
2

E

[

Z × I

(

T 2

n
<

p

m
Fp,m(α)

)]

,

where, Z = N
1
2 Σ

−1

2 (X̄ − θ0) ∼ Np(η, Ip) and

η = N
1
2 Σ

−1

2 (θ − θ0) = N
1
2 Σ

−1

2 δ. (3.1)

Note that ∆2 = η′η. Also, from Theorem 3.2.13 of Muirhead (2005) we have

T 2

n
=

Z ′Z

χ2
m

,
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where Z ′Z ∼ χ2
p(∆

2) is independently distributed of χ2
m. Hence, from Lemma 2 of Judge

and Bock (1978 p.320), one can obtain the bias vector of PTE as

b3(θ̂
PT

) = −
Σ

1
2

N
1
2

E

[

Z × I

(

Z′Z

χ2
m

<
p

m
Fp,m(α)

)]

= −N− 1
2 Σ

1
2 η E

[

I

(

χ2
p+2(∆

2)

χ2
m

<
p

m
Fp,m(α)

)]

= −δP

[

Fp+2,m(∆2) <
p

p + 2
Fp,m(α)

]

by (3.1)

= −δGp+2,m

(

p

p + 2
Fp,m(α); ∆2

)

.

Note that for α = 0, the bias vector of θ̂
PT

coincides with the bias vector of the restricted

estimator, θ̂, while for α = 1, it coincides with that of θ̃, the unrestricted estimator. Also,

under H0 : θ = θ0, all the proposed estimators are unbiased since δ = 0.

In the following theorem we state the risk functions of ML, RML and PT estimators.

Theorem 2. The risks of the ML, RML and PT estimators of θ under the reflected normal

loss function are given by

(i) R(θ̃; θ) = K

(

1 −
(

1 + 1
Nγ2

)−
p

2

)

,

(ii) R(θ̂; θ) = K
{

1 − exp
[

− ∆2

2Nγ2

]}

,

(iii) R(θ̂
PT

; θ) = K

{

1 −
∑∞

r=0
1

(−1)r(2γ2)rr!

(

(

2
N

)r Γ( p

2
+r)

Γ( p

2 )
+
(

∆2

N

)r

Pr.
(

χ2
p(∆2)

χ2
m

< c∗α

)

−
∑r

j=0

[

(

r
j

)

(

∆2

N

)j
(

2
N

)r−j ∑∞

i=0
e−∆2

(∆2)i

i!

Γ( p

2
+r−j+i)

Γ( p

2
+i)

Pr.
(

χ2
p+2r−2j+2i(∆

2)

χ2
m

< c∗α

)

])}

,

where cα is critical value for a chosen significance level α and c∗α = p
m

cα.

Proof: Using equation (1.1)

R(θ̃; θ) = KE

{

1 − exp

[

−
(X̄ − θ)

′

Σ
−1(X̄ − θ)

2γ2

]}

= KE

{

1 − exp

[

−
y

2Nγ2

]}

,

where y = N(X̄ − θ)
′

Σ
−1(X̄ − θ) ∼ χ2

p. So by making use of the moment generating

function of the chi-square with p d.f., we obtain

R(θ̃; θ) = K

(

1 −

(

1 +
1

Nγ2

)−
p

2

)

.
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Afterward, the risk of UE is trivial, as θ0 is a constant, and can be evaluated as

R(θ̂; θ) = KE

{

1 − exp

[

−
(θ0 − θ)′Σ−1(θ0 − θ)

2γ2

]}

= K

{

1 − exp

[

−
∆2

2Nγ2

]}

.

Finally, recall that

θ̂
PT

= θ̂I (U < Fp,m(α)) + θ̃I (U ≥ Fp,m(α))

= θ0IA(U) + X̄IR(U),

we have

R(θ̂
PT

; θ) = K

{

1 − E

(

exp

[

−
(θ̂

PT
− θ)′Σ−1(θ̂

PT
− θ)

2γ2

])}

= K











1 −

∞
∑

r=0

E
[

(θ̂
PT

− θ)′Σ−1(θ̂
PT

− θ)
]r

(−1)r(2γ2)rr!











.

Also note that

(θ̂
PT

− θ)′Σ−1(θ̂
PT

− θ) = [θ0IA(U) + X̄IR(U) − θ]′Σ−1[θ0IA(U) + X̄IR(U) − θ]

= IR(U)(X̄ − θ)′Σ−1(X̄ − θ) + (θ − θ0)
′
Σ

−1(θ − θ0)IA(U).

Using the fact that IR(U) × IA(U) = 0, for each r ∈ {0, 1, · · · } we have

[

(θ̂
PT

− θ)′Σ−1(θ̂
PT

− θ)

]r

=
1

N r

[

N(X̄ − θ)′Σ−1(X̄ − θ)IR(U)
]r

+

[

(θ − θ0)
′
Σ

−1(θ − θ0)IA(U)

]r

=
1

N r

[

N(X̄ − θ)′Σ−1(X̄ − θ)
]r

+
[

(

δ′Σ−1δ
)r

−
(

(X̄ − θ)′Σ−1(X̄ − θ)
)r
]

IA(U).

Then, we obtain

R(θ̂
PT

; θ) = K

{

1 −

∞
∑

r=0

{

1

(−1)r(2γ2)rr!

1

N r
E
[

N(X̄− θ)′Σ−1(X̄ − θ)
]r

+E
{[

(

δ′Σ−1δ
)r

−
(

(X̄ − θ)′Σ−1(X̄ − θ)
)r
]

IA(U)
}

}}

.

(3.2)
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Now, from the moments of the chi-square distribution with p d.f. we have

E
[

N(X̄− θ)′Σ−1(X̄ − θ)
]r

=
2rΓ(p

2 + r)

Γ(p
2 )

. (3.3)

Also,

E
{[

(

δ′Σ−1δ
)r

−
(

(X̄− θ)′Σ−1(X̄ − θ)
)r
]

IA(U)
}

= E











(

δ′Σ−1δ
)r

−

r
∑

j=0

(

δ′Σ−1δ
)j [

(X̄ − θ0)
′
Σ

−1(X̄ − θ0)
]r−j

(

r

j

)



 IA(U)







= E











(

∆2

N

)r

−

r
∑

j=0

(

∆2

N

)j
(

χ2
p(∆

2)

N

)r−j
(

r

j

)



 IA(U)







. (3.4)

Recalling that U = m
p

χ2
p(∆2)

χ2
m

, where the two chi-square variates in the numerator and

denominator are independent, we can express (3.4) as:

E
{[

(

δ′Σ−1δ
)r

−
(

(X̄ − θ)′Σ−1(X̄ − θ)
)r
]

IA(U)
}

=

(

∆2

N

)r

Pr.

(

χ2
p(∆

2)

χ2
m

< c∗α

)

−

r
∑

j=0

{

(

∆2

N

)j

N j−r

(

r

j

)

E

[

IA

(

mχ2
p(∆

2)

pχ2
m)

)

(

χ2
p(∆

2)
)r−j

]}

. (3.5)

The expectation in (3.5) can be evaluated by using the result of Clarke (1986, Appendix 1)

repeatedly. Therefore we obtain

E

[

IA

(

mχ2
p(∆

2)

pχ2
m)

)

(

χ2
p(∆

2)
)r−j

]

= 2r−j

∞
∑

i=0

e−∆2

(∆2)i

i!

Γ
(

p
2 + r − j + i

)

Γ
(

p
2 + i

)

×Pr.

(

χ2
p+2r−2j+2i(∆

2)

χ2
m

< c∗α

)

. (3.6)

Finally, by equations (3.3)-(3.6), we can write the risk of the PTE, as

R(θ̂
PT

; θ) = K

{

1 −

∞
∑

r=0

1

(−1)r(2γ2)rr!

{(

2

N

)r Γ
(

p
2 + r

)

Γ
(

p
2

) +

(

∆2

N

)r

Pr.

(

χ2
p(∆

2)

χ2
m

< c∗α

)

−
r
∑

j=0

{(

r

j

)(

∆2

N

)j(
2

N

)r−j ∞
∑

i=0

e−∆2

(∆2)i

i!

Γ
(

p
2 + r − j + i

)

Γ
(

p
2 + i

)

×Pr.

(

χ2
p+2r−2j+2i(∆

2)

χ2
m

< c∗α

)

}}}

.
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4 Analysis of Risks

In this section, we provide the risk analysis of the estimators under reflected normal loss.

First, we compare θ̃ and θ̂. In general, the risk difference is given by

R(θ̃; θ) − R(θ̂; θ) = exp

[

−
∆2

2Nγ2

]

−

(

1 +
1

Nγ2

)

−p

2

.

Thus one can see that the risk difference is non-positive ,i.e., θ̃ performs better than θ̂

denoted by (θ̃ < θ̂) provided

∆2 > pNγ2 ln

(

1 +
1

Nγ2

)

,

while θ̂ performs better than θ̃ whenever

∆2 < pNγ2 ln

(

1 +
1

Nγ2

)

.

Under H0, R(θ̂; θ) = 0. So under H0, θ̂ performs better than θ̃.

In general, the risk functions for the restricted and unrestricted estimators under reflected

normal loss are easily evaluated for particular choices of the parameters and sample size,

and these are illustrated in figure (2). In particular, we see there that R(θ̂; θ) is bounded

above by K.

In the comparison of θ̃ and θ̂ with θ̂
PT

, θ̂
PT

performs better than θ̃ under risk difference

whenever

∞
∑

r=0

1

(−1)r(2γ2)rr!

{(

2

N

)r Γ
(

p
2 + r

)

Γ
(

p
2

) +

(

∆2

N

)r

Pr.

(

χ2
p(∆

2)

χ2
m

< c∗α

)

−
r
∑

j=0

{(

r

j

)(

∆2

N

)j(
2

N

)r−j ∞
∑

i=0

e−∆2

(∆2)i

i!

Γ
(

p
2 + r − j + i

)

Γ
(

p
2 + i

)

Pr.

(

χ2
p+2r−2j+2i(∆

2)

χ2
m

< c∗α

)

}}

≥

(

1 +
1

Nγ2

)−
p

2

,

otherwise θ̂ < θ̂
PT

.

The evaluation of the risk of the preliminary-test estimator is rather more tedious, but

it can be readily verified through numerical computations. Some examples of this appear in

figure (3) and (4). In particular, figure (3) compares R(θ̂
PT

; θ) with R(θ̂; θ) and R(θ̃; θ)

for a sample size N=10, and illustrative parameter values. For the values of 0.095 < ∆2

of the parameter space, θ̂
PT

with α = 0.05, is least preferred among the three estimators

under consideration. Similarly, for the values of ∆2 < 0.095, θ̂ dominates θ̃ and for the

values of parameter space under which ∆2 > 0.095, θ̃ performs petter that θ̂. There are
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regions where either θ̂ or θ̃ are most preferred among the three estimators, but there is no

region of the parameter space where the pre-test estimator is preferred over both θ̂ and θ̃

simultaneously. The effect of increasing the significance level for the preliminary test from

0.05 to 0.15 can be seen in figure (4). For example for the values of 0 < ∆2 < 0.109 of the

parameter space, θ̂
PT

with α = 0.15, is most preferred among the three estimators under

consideration and increasing the level of significance improve the performance of preliminary

test estimators among the others. At last, for the case p = 1, the obtained results are the

same as those in Giles (2002).
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Figure 1: Comparison of SEL and RNL (N=10,p=4,gamma=1,K=1)

Figure 2: Risk under reflected normal loss (N=10,p=4,gamma=1,K=1)
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Figure 3: Risk under reflected normal loss (N=10,p=4,m=6,gamma=1,K=1)

Figure 4: Risk under reflected normal loss(N=10,p=4,m=6,gamma=1,K=1)


