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summary

This paper considers the estimation of a distribution function FX(x) based on
a random sample X1, X2, . . . , Xn when the sample is suspected to come from a
close-by distribution F0(x). Two new estimators, namely F PT

n (x) and F S
n (x) are

defined and compared with the “empirical distribution function”, Fn(x), under
local departure; that is FX(x) = F0(x) + n−1/2δ, where maxx|FX(x) − F0(x)| ≤
n−1/2δ. In this case, we show that F S

n (x) is superior to F PT
n (x) in the neighbour-

hood of F0(x).

Keywords and phrases: Empirical Distribution Function; Local Alternatives;
Mean Square Error; Preliminary Test Estimator; Shrinkage Estimator.

1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed random variables with dis-

tribution function FX(x). It is well known that the empirical distribution function of the

sample X1, X2, . . . , Xn given by

Fn(x) =
1

n

n
∑

i=1

I(−∞,x)(Xi), (1.1)

is a popular estimator of FX(x). Clearly, for every fixed x, Fn(x) is the relative frequency

of successes in a sequence of Bernoulli trials with

E[Fn(x)] = FX(x) and Var[Fn(x)] =
1

n
FX(x)[1 − FX(x)] ≤ 1

4n
. (1.2)
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That is, Fn(x) is an unbiased estimator with variance given by (1.2). As a consequence, by

the classical strong law of large numbers

Fn(x)
a.s.−→ FX(x) for x fixed. (1.3)

Hence, Fn(x) is an unbiased and strongly consistent estimator of FX(x) for each fixed x.

Further, by the theorems given by Glivenko (1933) and Cantelli (1944)

sup
−∞<x<∞

|Fn(x) − FX(x)| a.s.−→ 0, (1.4)

which uniquely follows as a consequence of (1.3). This suggests that by sampling ad infini-

tum, FX(x) can be uniquely estimated by Fn(x) with probability one.

Now, consider the process

Vn(x) =
√

n[Fn(x) − FX(x)]. (1.5)

Point-wise behaviour shows that

Vn(x)
D≃ N{0, FX(x)[1 − FX(x)]}. (1.6)

As for the rate of convergence of the Glivenko-Cantelli Theorem, one has

P{sup
−∞<x<∞

|Vn(x)| ≤ y} =

∞
∑

k=−∞

(−1)ke−2k2y2

, y > 0, (1.7)

and zero elsewhere, and

P{sup
−∞<x<∞

Vn(x) ≤ y} =
∞
∑

k=−∞

(−1)ke−2y2

, y > 0, (1.8)

and zero elsewhere.

Based on the point-wise estimator, Fn(x), one may test the null hypothesis H0 : FX(x) =

F0(x) versus HA : FX(x) 6= F0(x) using the statistic

Ln = V 2
n0(x)/{F0(x)[1 − F0(x)]}, (1.9)

where

Vn0(x) =
√

n[Fn(x) − F0(x)]. (1.10)

As n → ∞, Ln converges to a χ2 distribution with one degree of freedom under H0, while

under the local alternatives of the form

Kn : FX(x) = F0(x) + n−1/2δ, (1.11)

where

maxx|Fn(x) − F0(x)| ≤ n−1/2δ, (1.12)

for fixed positive δ, Ln follows a non-central chi-square distribution with one degree of

freedom and non-centrality parameter ∆2 given by

∆2 = n[FX(x) − F0(x)]2/{F0(x)[1 − F0(x)]} ≥ 4δ2. (1.13)
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2 Two New Estimators of FX(x)

Suppose now that one suspects that the sample X1, X2, . . . , Xn comes from the cdf F0(x).

How do we incorporate this uncertain non-sample information into the estimation of FX(x)

so that the estimation is somewhat improved in the sense of mean-square-error? A sim-

ple approach is to consider the preliminary test estimator (PTE) introduced by Han and

Bancroft (1968), and expanded by Saleh (2006), among others. We may define the PTE as

follows:

FPT
n (x) = Fn(x) − [Fn(x) − F0(x)]I[Ln < χ2

1(α)], (2.1)

where I(A) is the indicator function of the set A. In this case, one estimates FX(x) by

F0(x) if the test Ln accepts H0 at level of significance α; otherwise Fn(x) is used. Note that

equation (2.1) is a discontinuous function, leading to extreme choices for the estimators. To

make a smooth transition of equation (2.1), we define the following shrinkage estimator of

FX(x):

FS
n (x) = Fn(x) − c

√

F0(x)[1 − F0(x)]
Fn(x) − F0(x)√
n|Fn(x) − F0(x)| , (2.2)

or equivalently

FS
n (x) = Fn(x) − c|L1/2

n |−1[Fn(x) − F0(x)], (2.3)

where c is a non-negative shrinkage constant. Note the similarity and dissimilarity between

FPT
n (x) and FS

n (x). As Ln → ∞, both FPT
n (x) and FS

n (x) become equal to Fn(x). Thus, for

large Ln, the two estimators behave in the same way. However, as Ln → 0, FPT
n (x) → F0(x),

while FS
n (x) tends to F0(x). On the other hand, if |L1/2

n | = c, then FS
n (x) → F0(x). Further,

FS
n (x) provides interpolated values between F0(x) and Fn(x) for |Ln| > c. Later, we shall

see that an appropriate choice for c is
√

2/π.

3 Asymptotic Bias and Mean Square Error of the Esti-

mators of the Distribution Function

In this section, we consider the asymptotic distributional bias (ADB) and asymptotic distri-

butional mean square error (ADMSE) of the three estimators Fn(x), FPT
n (x), and FS

n (x).

Due to a result of Heilers and Willers (1988), which states that point-wise stochastic con-

vergence is equivalent to uniform stochastic convergence on a compact set, the asymptotic

properties of the estimators hold uniformly in the x’s.

First note that the test statistic Ln is a consistent test. Hence, for fixed alternatives;

that is, where δ is equal to some fixed non-zero value, we have

E{LnI[Ln < χ2
1(α)]} → 0, (3.1)

as n → ∞. This suggests that FPT
n (x) and Fn(x) are asymptotically uniformly ADMSE

equivalent, while FS
n (x) and Fn(x) are not, since

E{n[FS
n (x) − Fn(x)]2} ≤ c2/4. (3.2)
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We now consider the asymptotic bias and mean square error of the estimators under the

local alternatives Kn : FX(x) = F0(x) + n−1/2δ. The bias expression for Fn(x) is given by

b1[Fn(x)] = E[Fn(x) − FX(x)] = 0 for all n and x. (3.3)

Similarly, we define the ADB of the preliminary test estimator as

b2[F
PT
n (x)] =

lim

n → ∞E{
√

n[FPT
n (x) − FX(x)]}. (3.4)

Therefore, we have

b2[F
PT
n (x)] = − lim

n → ∞E{
√

n[Fn(x) − F0(x)]I[Ln < χ2
1(α)]} = −δH3[χ

2
1(α); ∆2], (3.5)

where Hν(·; ∆2) is the cdf of a non-central chi square distribution with ν degrees of freedom

and non- centrality parameter ∆2 for all x. Finally,

b3[F
S
n (x)] = −c

√

F0(x)[1 − F0(x)]
lim

n → ∞E(Zn/|Zn|) ≤ −(c/2)
lim

n → ∞E(Zn/|Zn|), (3.6)

where

Zn =

√
n[Fn(x) − F0(x)]

√

F0(x)[1 − F0(x)]
, (3.7)

is asymptotically a standard normal random variable. Hence

b3[F
S
n (x)] ≤ −(c/2)[1 − 2Φ(−∆)], (3.8)

by Theorem 1 of Chapter 3 of Saleh (2006).

The expressions for mean square error may be obtained similarly. Specifically, for Fn(x),

the asymptotic distributional mean square error is given by

M1[Fn(x)] =
lim

n → ∞E{
√

n[Fn(x) − FX(x)]}2 = FX(x)[1 − FX(x)] ≤ 1/4. (3.9)

The ADMSE of FPT
n (x) is given by

M2[F
PT
n (x)] =

lim

n → ∞E{n[FPT
n (x) − FX(x)]2}. (3.10)

Thus

M2[F
PT
n (x)] = F0(x)[1−F0(x)]{1−H3[χ

2
1(α); ∆2] + ∆2(2H3[χ

2
1(α); ∆2]−H5[χ

2
1(α); ∆2])},

(3.11)

which implies that

M2[F
PT
n (x)] ≤ (1/4){1 − H3[χ

2
1(α); ∆2] + ∆2(2H3[χ

2
1(α); ∆2] − H5[χ

2
1(α); ∆2])}. (3.12)
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Finally, the ADMSE of FS
n (x) is given by

M3[F
S
n (x)] =

lim

n → ∞E{n[FS
n (x) − FX(x)]2}. (3.13)

As a result, we have

M3[F
S
n (x)] = F0(x)[1 − F0(x)](1 + c2 − 2c

√

2/πe−∆2/2), (3.14)

so that

M3[F
S
n (x)] ≤ (1/4)(1 + c2 − 2c

√

2/πe−∆2/2). (3.15)

Note that the minimum of M3[F
S
n (x)] occurs at c∗ =

√

2/πe−∆2/2. Therefore, in order

to make c∗ independent of ∆2, we choose c as c0 =
√

2/π, which allows us to express

M3[F
S
n (x)] as

M3[F
S
n (x)] ≤ (1/4)[1 − (2/π)(2e−∆2/2 − 1)]. (3.16)

In the next section, we present an analysis of the mean square errors of the estimators.

4 Analysis of the MSE of the Estimators

First we note that the MSE of Fn(x) is constant, that F0(x)[1 − F0(x)] ≤ 1/4, and that

maxx{M2[F
PT
n (x)]} = (1/4){1 − H3[χ

2
1(α); ∆2] + ∆2(2H3[χ

2
1(α); ∆2] − H5[χ

2
1(α); ∆2])}.

(4.1)

Hence, FPT
n (x) is better than Fn(x) if

∆2 ≤ H3[χ
2
1(α); ∆2]/(2H3[χ

2
1(α); ∆2] − H5[χ

2
1(α); ∆2]), (4.2)

otherwise, Fn(x) is better than FPT
n (x). The asymptotic relative efficiency of FPT

n (x)

relative to Fn(x) is

ARE[FPT
n (x) : Fn(x)] = {1 − H3[χ

2
1(α); ∆2] + ∆2(2H3[χ

2
1(α); ∆2] − H5[χ

2
1(α); ∆2])}−1.

(4.3)

If we set ARE[FPT
n (x) : Fn(x)] = Ef(α; ∆2) say, the optimum level of significance of the

test may be obtained by solving the maximin problem:

maxα{min∆2 [ARE(α; ∆2)]} = Ef(α∗; ∆2
min) = Ef0, (4.4)

where Ef0 is prespecified. For some results, see Saleh (2006, Chapter 3). Thus, α∗ is the

optimum level of significance to be chosen in order to achieve a prespecified efficiency, Ef0.

Similarly, we consider the ARE of FS
n (x) relative to Fn(x), which is

ARE[FS
n (x) : Fn(x)] = [1 − (2/π)(2e−∆2/2 − 1)]−1. (4.5)

Under H0 : FX(x) = F0(x), we have that ∆2 = 0. Hence

ARE[FS
n (x) : Fn(x)] = [1 − (2/π)]−1 = π/(π − 2) = 2.75. (4.6)
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On the other hand

ARE[FPT
n (x) : Fn(x)] = {1 − H3[χ

2
1(α); 0]}−1 ≥ 1, (4.7)

which depends on the size of α. As ∆2 → ∞,

ARE[FS
n (x) : Fn(x)] = [1 + (2/π)]−1 = π/(2 + π) = 0.61, (4.8)

while ARE[FPT
n (x) : Fn(x)] → 1. These facts imply that FS

n (x) is superior to FPT
n (x) when

FX(x) is close to F0(x). On the other hand, the minimum guaranteed efficiency of FS
n (x)

relative to Fn(x) is 0.61, and that of FPT
n (x) is relative, depending upon α. In general,

ARE[FS
n (x) : Fn(x)] decreases from π/(π − 2) at ∆2 = 0 to a value of one at ∆2 = ln(4)

= 1.38, and then drops to the minimum value π/(2 + π) = 0.61 as ∆2 → ∞. By contrast,

ARE[FPT
n (x) : Fn(x)] has maximum value {1 − H3[χ

2
1(α); 0]}−1 at ∆2 = 0, dropping to a

value of one at ∆2 = 1. It continues to drop, reaching the minimum value of ADMSE, and

then increases towards a value of one as ∆2 → ∞. From this, one may note that the range

of ∆2 for which FS
n (x) is better than Fn(x) is wider than the range produced by FPT

n (x).

Further, FS
n (x) is independent of α, while the minimum of the ARE[FPT

n (x) : Fn(x)] depends

on the value of α. In general, FS
n (x) does not dominate FPT

n (x) uniformly except in the

range (0, ln(4)). Thus, considering the high efficiency of FS
n (x), and also the fact that it is

independent of the size α, of the test, the estimate FS
n (x) is preferable over FPT

n (x) if F0(x)

is close to FX(x).
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