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summary

Among modern strategies applied to cope with the problems of non-response, in
sample surveys, imputation is one of them. Imputation is the filling up method
of incomplete data by adapting the standard analytic model in statistics. The
purpose of the present work is to study the intelligible use of imputation meth-
ods in dealing with non-response at current occasion in two-occasion successive
(rotation) sampling. Chain-type regressions in ratio estimators have been pro-
posed for estimating the population mean at current occasion. Expressions for
optimum estimators and their mean square errors have been derived. To study
the effectiveness of the suggested imputation methods, performances of the pro-
posed estimators are compared in two different situations: with and without
non-response. Behaviors of the proposed estimators are demonstrated through
empirical studies.
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1 Introduction

There are many situations in agricultural, demographic and social surveys, where the sam-

pling units have to be observed a number of times at specified time intervals to estimate the

change in population parameters or to know their current estimates. Surveys, where units

spread over space and observations spread over time are defined in literatures as longitudinal

surveys. In such surveys practitioners are often concerned with measuring characteristics

of a population on several occasions to estimate the population means (or totals) of the

characteristics or to study a pattern of variation in these parameters over the different oc-

casions. For example, in an agricultural survey one may be interested in (i) estimating the

average amount of yield per acre of an important crop (say wheat) in current season, (ii)

estimating the change in average amount of yield for a province (county) for two different

seasons, and (iii) estimating both parameters from (i) and (ii) simultaneously. Successive

(rotation) sampling provides a strong statistical tool for generating the reliable estimates of

population characteristics at different occasions. Theory of rotation (successive) sampling

appears to have started with the work of Jessen (1942), in which entire information collected

in the previous investigations (occasions) was used for estimation at the current occasion.

This theory was extended by Patterson (1950), Rao and Graham (1964), Gupta (1979) and

Das (1982), among others. Sen (1971) developed estimators for the population mean on the

current occasion using information on two auxiliary variates available on previous occasion.

Sen (1972, 73) extended his work for more than two auxiliary variates. In addition to the

information from previous occasion, Singh et al. (1991) and Singh and Singh (2001) used

information on an auxiliary variate available only on the current occasion for estimating the

current population mean in two-occasion successive sampling. Singh (2003) generalized his

estimation procedures for h-occasions successive sampling. In many situations, information

on an auxiliary variate may be readily available on the first as well as on the second occa-

sion, for example (i) total cultivated area in agricultural survey is known, (ii) number of

academic institutions with their intake capacity is well known in an educational survey and

(iii) number of polluting industries is known in sample surveys on environment. Utilizing

the auxiliary information available on both the occasions, Feng and Zou (1997), Biradar

and Singh (2001), Singh (2005), Singh and Priyanka (2006, 2007 and 2008) have proposed

several chain-type ratio, difference and regression estimators for estimating the population

mean at the current (second) occasion in two-occasion successive sampling.

In sample survey, non-response is one of the major problems encountered by survey

statisticians. Longitudinal surveys are more prone to this problem than single-occasion

surveys. For example, in agricultural surveys, it might be possible that crop on certain

plots is destroyed due to some natural calamities or disease so that yield on these plots is

impossible to be measured. Such non-response (incompleteness) can have different patterns

and causes. It is well recognized by survey statisticians that, if the suitable information

about the nature of non-response in the population is unknown, the inference concerning

population parameters could be spoiled. Imputation is one of the many methods used to

minimize the negative effect of non-response in survey data. Imputation deals with the
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filling of missing item values in a data by artificial value. To deal with missing values

effectively, Sande (1979) and Kalton et al. (1981) suggested imputation methods that make

incomplete data sets structurally complete and its analysis simple. Kalton et al. (1982) and

Singh and Singh (1991) suggested useful imputation methods for surveys in which one uses

an estimation procedure based on complete data set and discards data for all those units

for which information is not available for at least one time stage. Imputation may also be

carried out with the aid of an auxiliary variate, if such is available. For example, Lee et al.

(1994, 1995) used the information on an available auxiliary variate for imputation purpose.

Later Singh and Horn (2002) suggested a compromised method of imputation. Further

utilizing auxiliary information Ahmed et al. (2006) and Singh (2009) suggested several new

imputation based methods to reduce the effect of non-response in sample surveys.

Motivated with the above arguments Singh et al. (2008) discussed some reliable imputa-

tion methods for the estimation of population mean at the current occasion in two-occasion

successive (rotation) sampling. Following the work of Singh et al. (2008), the objective of

the present work is to study the effect of non-response at current occasion in two-occasion

successive (rotation) sampling. It is assumed that all units in the sample respond at the

first occasion. Since, the units are responding at the first occasion, therefore they are fa-

miliar with the situations, hence they are expected to co-operate and will respond at the

current (second) occasion in the matched portions of the units. For example, in economic

surveys, the respondents who have co-operated at the first occasion and now they are well

acquainted with the pros and cons of the situations, they are supposed to co-operate at the

second occasion as well. At the current occasion a sample is drawn afresh from the remain-

ing units of the population, which has not been sampled at the previous occasion, so there is

a possibility of non-response in fresh sample at the current (second) occasion because they

are not familiar with the pros and cons of the situations. In the light of above discussions,

chain-type regression in ratio estimators, that use imputation are proposed for estimating

the population mean at the current (second) occasion in two occasions successive (rotation)

sampling. The performance of the proposed estimators is compared between two different

situations: with and without non-response and subsequent recommendation regarding the

choice of an appropriate imputation based estimation technique is made.

2 Notation and Proposed Estimators

Consider a finite population U = (U1, U2, . . . , UN ) of N units has been sampled over two

occasions. The character under study is denoted by x(y) on the first (second) occasion,

respectively. Let information on an auxiliary variable z, with the known population mean,

be available on both occasions. A simple random sample (without replacement) sn of n

units is drawn on the first occasion and it is assumed that we get complete response from

these units. A random sub-sample sm of m = nλ units is retained (matched) from sn for

its use on the current (second) occasion and it is further assumed these matched units are

completely responding at current occasion as well. A fresh simple random sample (without
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replacement) su of u = (n−m) = nλ units is drawn on the current (second) occasion from

the non-sampled units of the population so that the sample size on the current occasion

remains n. We assume that non-response occurs in the fresh sample drawn at the current

occasion. Let the number of responding units out of sampled u units, which are drawn

afresh at current occasion, be denoted by r, the set of responding units in su by Ru, and

that of non-responding units by Rc
u . λ and µ (λ+ µ = 1) are the fractions of the matched

and fresh sample, respectively, at current occasion. For every unit i ∈ Ru the value yi is

observed, but for the units i ∈ Rc
u the yi values are missing and instead imputed values are

derived. The following notations have been considered in this work:

X̄, Ȳ , Z̄ : Population mean of x, y and z respectively

x̄n, x̄m, ȳm, z̄u, z̄n, z̄m : Sample means of the respective variables of the of the

sample sizes shown in suffices

ȳr, z̄r : Response means of y and z respectively

ρyx, ρyz, ρxz : Correlation coefficient between the variables shown in suffices

S2
x = (N − 1)−1

∑N
i=1(xi − X̄)2 : Population mean square of x

S2
y , S

2
z : Population mean square of y, z respectively

f1(=
r
u ) : The fraction of respondents in the sample of size u

t = (1 − f1) : The fraction of non-respondents in the sample of size u

To estimate the population mean Ȳ on the current (second) occasion, two different

sets of estimators are considered. One set of estimators Tu = {T1u, T2u, T3u} based on

sample su of size u(= nµ) drawn afresh on the second occasion and the second set of

estimators Tm = {T1m, T2m} based on the sample sm of size m(= nλ ) common with both

the occasions. Estimators T1u, T2u and T3u of the set Tu are structured to cope up with

the problems of non-response at the current occasion. The missing values are replaced by

calibrate imputed values using the ratio and regression methods of imputation. Following

three different imputation techniques for imputing the missing values at current occasion

have been considered:

(i) y.i =





yi if i ∈ Ru

ȳr + b̂1
[u(Z̄−z̄r)

u−r + zi − z̄r

]
if i ∈ Rc

u,
(2.1)

where

b̂1 =
syz(r)

s2z(r)
, syz(r) =

1

(r − 1)

[ r∑

i=1

(yi − ȳr)(zi − z̄r)

]
and s2z(r) =

1

r − 1

[ r∑

i=1

(zi − z̄r)
2

]
.

The point estimator of Ȳ based on the imputation technique given in equation (2.1) is

T1u =
1

u

∑

iǫsu

y.i =
1

u

[ ∑

iǫRu

y.i +
∑

iǫRc
u

y.i

]
,
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which results in T1u = ȳr + b̂1(Z̄ − z̄r).

(ii) y.i =





yi if i ∈ Ru

ȳr + b̂2
[u(Z̄−z̄r)

u−r + zi − z̄r

]
if i ∈ Rc

u

(2.2)

where

b̂2 =
syz(r)

s2z(u)
and s2z(u) =

1

u− 1

[ u∑

i=1

(zi − z̄u)2
]
.

The point estimator of Ȳ based on the imputation technique given in equation (2.2) is

derived as T2u = ȳr + b̂2(Z̄ − z̄r).

(iii) y.i =





yi(

Z̄
z̄u

) if i ∈ Ru

δ( Z̄
z̄u
zi) if i ∈ Rc

u

(2.3)

where δ =
P

i∈Ru
yi

P

i∈Ru
zi

= ȳr/z̄r. The point estimator of Ȳ based on the imputation technique

given in equation (2.3) is obtained as T3u = (ȳr/z̄r)Z̄.

Estimators T1m and T2m of the set Tm are structured to estimate the population mean,

utilizing the information on an auxiliary character z and the information available from the

previous occasion as well. The estimators T1m and T2m, which are based on the matched

sample sm are defined as:

T1m = (ȳ∗m/x̄
∗

m)x̄∗n and T2m = (ȳ∗∗m /x̄∗m)x̄∗n, (2.4)

where ȳ∗m = ȳm + byz(m)(Z̄ − z̄m), x̄∗m = x̄m + bxz(m)(Z̄ − z̄m), x̄∗n = x̄n + bxz(m)(Z̄ − z̄n)

and ȳ∗∗m = ȳm + byx(m)(x̄n − x̄m), and byz(m), bxz(m), bxz(n) and byx(m) are the sample

regression coefficients between the variables shown in suffices and based on the sample sizes

shown in braces.

Considering the convex linear combination of the estimators of sets Tu and Tm, we have

the following sequence of estimators of population mean Ȳ at second (current) occasion:

Tij = ϕijTiu + (1 − ϕij)Tjm, (2.5)

where ϕij(i = 1, 2, 3; j = 1, 2) are the unknown constants to be determined under certain

criterion.

Remark 1. For estimating the mean on each occasion the estimator Tiu (i = 1, 2, 3) is

suitable, which implies that more belief on Tiu (i = 1, 2, 3) could be shown by choosing

ϕij (i = 1, 2, 3; j = 1, 2) as 1 (or close to 1), while for estimating the change from one

occasion to the next, the estimator Tjm (j = 1, 2) could be more useful so ϕij (i =

1, 2, 3; j = 1, 2) might be chosen as 0 (or close to 0). For asserting both the problems

simultaneously, the suitable (optimum) choice of ϕij (i = 1, 2, 3; j = 1, 2) is required.
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3 Properties of the Estimators

Since, Tiu (i = 1, 2, 3) are simple linear regression, ratio or chain-type ratio and regression

estimators, they are biased for population mean Ȳ . Therefore, the resulting sequence of

estimators Tij (i = 1, 2, 3; j = 1, 2) defined in equation is also biased estimator of Ȳ . The

bias B(.) and mean square error M(.) up-to the first order of approximations of Tij (i =

1, 2, 3; j = 1, 2) are derived using large sample approximations given below:

ȳr = (1 + e1)Ȳ , ȳm = (1 + e2)Ȳ , x̄m = (1 + e3)X̄, x̄n = (1 + e4)X̄, z̄r = (1 + e5)Z̄,

z̄m = (1 + e6)Z̄, z̄n = (1 + e7)Z̄, syz(r) = (1 + e8)Syz, syz(m) = (1 + e9)Syz,

sxz(m) = (1 + e10)Sxz, sxz(n) = (1 + e11)Sxz, syx(m) = (1 + e12)Syx,

s2z(r) = (1 + e13)S
2
z , s2z(m) = (1 + e14)S

2
z , s2z(n) = (1 + e15)S

2
z , s2x(m) = (1 + e16)S

2
x,

s2z(u) = (1 + e17)S
2
z ; such that E(ei) = 0 and |ei| < 1∀ i = 1, . . . , 17.

Under the above transformations we obtain

T1u = (1 + e1)Ȳ − (e5 + e5e8 − e5e13)βyzZ̄

T2u = (1 + e1)Ȳ − (e5 + e5e8 − e5e17)βyzZ̄

T3u = (1 + e1 − e5 − e1e5 + e25)Ȳ

T1m =
{
(1 + e2)Ȳ − (e6 + e6e9 − e6e14)βyzZ̄

}{
(1 + e4) − (e7 + e7e11 − e7e15)

βxz

X̄
Z̄

}[
1 + {e3 − (e6 + e6e10 − e6e14)

βxz

X̄
Z̄

]−1

T2m = (1 + e2 − e6 − e2e6 + e26)Ȳ + (e4 − e3 + e4e12 − e3e12 − e4e16

+e3e16 − e4e6 + e3e6)βyxX̄






(3.1)

Thus, we have the following theorems:

Theorem 1. Bias of the sequence of estimators Tij (i = 1, 2, 3; j = 1, 2) to the first order

of approximations is obtained as

B(Tij) = ϕijB(Tij) + (1 − ϕij)B(Tij); (i = 1, 2, 3; j = 1, 2), (3.2)

where

B(T1u) =

(
1

r
− 1

N

)(
α011α003

α2
002

− α012

α002

)
, B(T2u) =

(
1

u
− 1

N

)(
α011α003

α2
002

)
−

(
1

r
− 1

N

)(
α012

α002

)

B(T3u) =

(
1

r
− 1

N

)(
Ȳ

Z̄2
α002 −

α011

Z̄

)

B(T1m) =

(
1

m
− 1

N

)(
α011α003

α2
002

− α012

α002

)
+

(
1

m
− 1

n

)
Ȳ

X̄

×
[(

α200

X̄
− α110

Ȳ

)
+
α101

α002

(
α011

Ȳ
− α101

X̄
+
α102

α101
− α003

α002

)]

B(T2m) =

(
1

m
− 1

N

)(
Ȳ

Z̄2
α002 −

α011

Z̄

)
+

(
1

m
− 1

n

)(
α110α101

Z̄α200
+
α110α300

α2
200

− α210

α200

)
,
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where αrst = E[(x− X̄)r(y − Ȳ )s(z − Z̄)t]; (r, s, t are positive integers)

Proof. The bias of the sequence of estimators Tij (i = 1, 2, 3; j = 1, 2) is given by

B(Tij) = ϕijE(Tiu − Ȳ ) + (1 − ϕij)E(Tjm − Ȳ )

= ϕijB(Tiu) + (1 − ϕij)B(Tjm), (3.3)

where B(Tiu) = E(Tiu − Ȳ ) and B(Tjm) = E(Tjm − Ȳ ). Substituting the values of Tiu (i =

1, 2, 3), Tjm (j = 1, 2) from equations (3.1) in the equation (3.3) and taking expectations

up to o(n−1), we have the expression for the bias of the sequence of estimators Tij (i =

1, 2, 3; j = 1, 2) as described in equation (3.6).

Theorem 2. Mean square error of sequence of estimators Tij (i = 1, 2, 3; j = 1, 2) to the

first order of approximations is obtained as

M(Tij) = ϕ2
ijM(Tiu) + (1 − ϕij)

2M(Tjm) + 2ϕij(1 − ϕij)C(Tiu, Tjm); (i = 1, 2, 3; j = 1, 2)

(3.4)

where M(Tij) = E(Tij − Ȳ )2, C(Tij , Ti′j′) = E(Tij − Ȳ )(Ti′j′ − Ȳ ), i 6= i′ and

M(T1u) =

(
1

r
− 1

N

)
(1 − ρ2

yz)S
2
y (3.5)

M(T2u) =

(
1

r
− 1

N

)
(1 − ρ2

yz)S
2
y (3.6)

M(T3u) =

(
1

r
− 1

N

)
2(1 − ρyz)S

2
y

M(T1m) =

[(
1

m
− 1

N

)
(1 − ρ2

yz) +

(
1

m
− 1

n

)
(1 − 2ρyx − ρ2

xz + 2ρxzρyz)

]
S2

y

M(T2m) =

[(
1

m
− 1

N

)
2(1 − ρyz) +

(
1

m
− 1

n

)
(2ρxzρyx − ρ2

yx)

]
S2

y

C(T1u, T1m) = −S
2
y

N
(1 − ρ2

yz)S
2
y , C(T1u, T2m) = −S

2
y

N
(1 − ρ2

yz)S
2
y

C(T2u, T1m) = −S
2
y

N
(1 − ρ2

yz)S
2
y , C(T2u, T2m = −S

2
y

N
(1 − ρ2

yz)S
2
y

C(T3u, T1m) = −S
2
y

N
(1 − ρ2

yz)S
2
y , C(T3u, T2m) = −S

2
y

N
2(1 − ρyz)S

2
y (3.7)

Proof. It is obvious that mean square errors of the sequence of estimators Tij (i = 1, 2, 3; j =

1, 2) is given by

M(Tij) = E[ϕij(Tiu − Ȳ ) + (1 − ϕij)(Tjm − Ȳ )]2

= ϕ2
ijM(Tiu) + (1 − ϕij)

2M(Tjm) + 2ϕij(1 − ϕij)E[(Tiu − Ȳ )(Tjm − Ȳ )]. (3.8)

Using the expressions given in equation (3.1) and taking expectations up to o(n−1), we

have the expression of mean square error of the sequence of estimators Tij (i = 1, 2, 3; j =

1, 2) given in equation (3.4).
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Remark 2. From equations (3.5) and (3.6) it follows that up to the first order of approxi-

mation, the mean square error of the estimators T1u and T2u are equal, subsequently, the

mean square errors of the estimators Ti1 and T2j (i, j = 1, 2) are also equal.

3.1 Minimum Mean Square Error of the Sequence of Estimators

Tij (i = 1, 2, 3; j = 1, 2)

Since, mean square error of Tij (i = 1, 2, 3; j = 1, 2) in equation (3.4) is a function of

unknown constant ϕij (i = 1, 2, 3; j = 1, 2), therefore, it is minimized with respect to ϕij

and subsequently the optimum values of ϕij (i = 1, 2, 3; j = 1, 2) is obtained as

ϕij,opt =
M(Tjm) − C(Tiu, Tjm)

M(Tiu) +M(Tjm) − 2C(Tiu, Tjm)
; (i = 1, 2, 3; j = 1, 2) (3.9)

Now substituting the value of ϕij,opt (i, j = 1, 2) in equation (3.4), we get the optimum

mean square error of Tij as

M(Tij)opt =
M(Tiu)M(Tjm) − C(Tiu, Tjm)2

M(Tiu) +M(Tjm) − 2C(Tiu, Tjm)
; (i = 1, 2, 3; j = 1, 2). (3.10)

Further substituting the values of M(Tiu), M(Tjm) and C(Tiu, Tjm) (i = 1, 2, 3; j = 1, 2)

the simplified values of M(Tij)opt (i = 1, 2, 3; j = 1, 2) are shown below:

M(T11)opt = M(T21)opt =
[

µ∗2
11A10+µ∗

11A9+A8

µ∗2
11

A7+µ∗

11
A6+A1

]
S2

y

n

M(T12)opt = M(T22)opt =
[

µ∗2
12A15+µ∗

12A14+A13

µ∗2
12

A12+µ∗

12
A11+A1

]
S2

y

n

M(T31)opt =
[

µ∗2
31A19+µ∗

31A18+A13

µ∗2
31

A17+µ∗

31
A16+A2

]
S2

y

n

M(T32)opt =
[

µ∗2
32A24+µ∗

32A23+A22

µ∗2
32

A20+µ∗

32
A21+A2

]
S2

y

n ,






(3.11)

where A1 = (1 − ρ2
yz), A2 = 2(1 − ρyz), A3 = 1 − 2ρyx − ρ2

xz + 2ρxzρyz, A4 = 2ρxzρyx −
ρ2

yx, A5 = A1−A2, A6 = (f1−1)A1, A7 = f1A3, A8 = (1−f)A2
1, A9 = A1A3−fA1A6, A10 =

−fA1A7, A11 = f1(A2 +fA5)−A1, A12 = f1(A4−fA5), A13 = (1−f)A1A2, A14 = A1(A4 +

fA2) − ff1A1(A2 + fA5), A15 = −fA1A12, A16 = f1(A1 + fA5) − A2, A17 = f1(A3 −
fA5), A18 = A2A3+fA1{A2−f1(A2+fA5)}, A19 = ff1(fA1A5−A2A3), A20 = f1A4, A21 =

(f1 − 1)A2, A22 = (1 − f)A2
2, A23 = A2(A4 − fA21), A24 = −fA2A20, f = n

N and µ∗
ij (i =

1, 3; j = 1, 2) are fractions of fresh sample at the current (second) occasion for the estimators

Tij (i = 1, 3; j = 1, 2).

3.2 Optimum Replacement Policy

To determine the optimum values of µ∗
ij (i = 1, 3; j = 1, 2) (fraction of samples to be taken

afresh at second occasion) so that population mean Ȳ may be estimated with the maximum

precision, we minimize mean square errors of Tij (i = 1, 3; j = 1, 2) given in equations
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(3.11) respectively with respect to (i = 1, 3; j = 1, 2). This yields quadratic equations in

µ∗
ij (i = 1, 3; j = 1, 2), and respective solutions of µ∗

ij say µ̂∗
ij (i = 1, 3; j = 1, 2) are given

below:

Q1µ
∗2
11 + 2Q2µ

∗
11 +Q3 = 0 ⇒ µ̂∗

11 =
−Q2±

√
Q2

2
−Q1Q3

Q1

Q4µ
∗2
12 + 2Q5µ

∗
12 +Q6 = 0 ⇒ µ̂∗

12 =
−Q5±

√
Q2

5
−Q4Q6

Q4

Q7µ
∗2
31 + 2Q8µ

∗
31 +Q9 = 0 ⇒ µ̂∗

31 =
−Q8±

√
Q2

8
−Q7Q9

Q7

Q10µ
∗2
32 + 2Q11µ

∗
32 +Q12 = 0 ⇒ µ̂∗

32 =
−Q11±

√
Q2

11
−Q11Q12

Q10






(3.12)

where Q1 = A6A10 − A7A9, Q1 = A1A10 − A7A8, Q3 = A1A9 − A6A8, Q4 = A11A15 −
A12A14, Q5 = A1A15−A12A13, Q6 = A1A14−A11A13, Q7 = A16A19−A17A18, Q8 = A2A19−
A13A17, Q9 = A2A18 − A13A16, Q10 = A21A24 − A20A23, Q11 = A2A24 − A20A22, Q12 =

A2A23 −A21A22.

From equations (3.12) it is obvious that real values of µ̂∗
ij (i = 1, 3; j = 1, 2) exist iff,

the quantities under square roots are greater than or equal to zero. For any combination

of correlations ρyx, ρxz and ρyz, which satisfy the conditions of real solutions; two real

values of µ̂∗
ij (i = 1, 3; j = 1, 2) are possible. Hence, while choosing the values of µ̂∗

ij , it

should be remembered that 0 ≤ µ̂∗
ij ≤ 1. All the other values of µ̂∗

ij (i = 1, 3; j = 1, 2) are

inadmissible. Substituting the admissible values of µ̂∗
ij say µ

∗(0)
ij (i = 1, 3; j = 1, 2) from

equations (3.12) into equations (3.11) respectively, we have the optimum values of mean

square errors of Tij (i = 1, 3; j = 1, 2), which are shown below:

M(T 0
11)opt =

[
µ
∗(0)2
11 A10 + µ

∗(0)
11 A9 +A8

µ
∗(0)2
11 A7 + µ

∗(0)
11 A6 +A1

]
S2

y

n
, M(T 0

12)opt =

[
µ
∗(0)2
12 A15 + µ

∗(0)
12 A14 +A13

µ
∗(0)2
12 A12 + µ

∗(0)
12 A11 +A1

]
S2

y

n

M(T 0
31)opt =

[
µ
∗(0)2
31 A19 + µ

∗(0)
31 A18 +A13

µ
∗(0)2
31 A17 + µ

∗(0)
31 A16 +A2

]
S2

y

n
, M(T 0

32)opt =

[
µ
∗(0)2
32 A24 + µ

∗(0)
32 A23 +A22

µ
∗(0)2
32 A20 + µ

∗(0)
32 A21 +A2

]
S2

y

n
.

4 Comparisons and Conclusions

The percent relative loss in efficiencies of the estimators Tij (i = 1, 3; j = 1, 2) with respect

to the estimators for the similar circumstances but under the complete response case (with

no missing data) have been obtained to study the effect of non-response on the precision of

estimates under two-occasion successive sampling. Estimators τkj (k, j = 1, 2) are defined

under the same circumstances as the estimators Tij (i = 1, 3; j = 1, 2), but in the absence

of non-response and shown as

τkj = ψkjτku + (1 − ψkj)Tjm; (k, j = 1, 2)

where τ1u = ȳu + byz(u)(Z̄ − z̄u), τ2u = ȳu

z̄u
Z̄ and Tjm (j = 1, 2) are defined in equations

(2.4). ψkj (k, j = 1, 2) are unknown constants to be determined by the minimization of the

mean square errors of τkj (k, j = 1, 2). Following the methods discussed in sections 4 and
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5, the optimum mean square error of τkj (k, j = 1, 2) are given by

M(τ0
11)opt = B1

[
B1 + µ

(0)
11 B2

B1 + µ
(0)2
11 B2

− f

]
S2

y

n
M(τ0

12)opt

[
=
B11 + µ

(0)
12 B10 + µ

(0)2
12 B9

B1 + µ
(0)
12 B7 + µ

(0)2
12 B8

]
S2

y

n

M(τ0
21)opt =

[
B11 + µ

(0)
21 B12 + µ

(0)2
21 B13

B3 + µ
(0)
21 B14 + µ

(0)2
21 B15

]
S2

y

n
M(τ0

22)opt = B3

[
B3 + µ

(0)
22 B4

B3 + µ
(0)2
22 B4

− f

]
S2

y

n

and optimum values of µ
(0)
ij (i, j = 1, 2) are given by

µ
(0)
11 =

−B2 ±
√
B2

2 +B1B3

B1
µ

(0)
12 =

−P2 ±
√
P 2

2 − P1P3

P1

µ
(0)
21 =

−P5 ±
√
P 2

5 − P4P6

P4
µ

(0)
22 =

−B3 ±
√
B2

3 +B3B4

B3

where B1 = 1 − ρ2
yz, B2 = 1 − 2ρyx − ρ2

xz + 2ρxzρyz, B3 = 2(1 − ρyz), B4 = 2ρxzρyx − ρ2
yx,

B5 = B1 − B3, B6 = B3 + fB5, B7 = −(1 − f)B5, B8 = B4 − fB5, B9 = −fB1B8,

B10 = (B4−f2B5)B1, B11 = (1−f)B1B3, B12 = f2B1B5+B2B3, B13 = f(fB1B5−B2B3),

B14 = (1 + f)B5, B15 = B2 − fB5, P1 = B7B9 − B8B10, P2 = B1B9 − B8B11, P3 =

B1B10 −B7B11, P4 = B14B13 −B12B15, P5 = B3B13 −B11B15, P6 = B3B12 −B11B14 and

f = n
N

Remark 3. To compare the performance of the estimators Tij (i = 1, 3; j = 1, 2) and

τkj (k, j = 1, 2), we introduce an assumption ρxz = ρyz, which is an intuitive assumption,

considered, for example by Cochran (1977) and Feng and Zou (1997).

The percent relative losses in precision of Tij (i = 1, 3; j = 1, 2) with respect to τkj (k,

j = 1, 2) under their respective optimality conditions are given by

L1 =
M(T 0

11)opt −M(τ0
11)opt

M(T 0
11)opt

× 100, L2 =
M(T 0

12)opt −M(τ0
12)opt

M(T 0
12)opt

× 100

L3 =
M(T 0

31)opt −M(τ0
21)opt

M(T 0
31)opt

× 100, and L4 =
M(T 0

32)opt −M(τ0
22)opt

M(T 0
32)opt

× 100.

For N = 5000, n = 500 and different choices of ρyx and ρyz, Tables 1-4 give the optimum

values of µ
(0)
kj (k, j = 1, 2), µ

∗(0)
ij (i = 1, 3; j = 1, 2) and percent relative loss Li (i =

1, 2, 3, 4) in precision of Tij (i = 1, 3; j = 1, 2) with respect to τkj (k, j = 1, 2).

The following conclusions can be read out from Tables 1-4:

From Table 1 it is clear that:

(a) For the fixed value of ρyx and ρyz the value of L1 increases with the increasing values

of t whereas no definite patterns are visible in µ
∗(0)
11 . This phenomenon is obvious since,

the higher the non-response rate, the higher the loss in precision occurs.



Some Imputation Methods for Non-Response . . . 47

(b) For the fixed value of t and ρyx, the loss in precision L1 decreases with increasing

values of ρyz but the values of are increasing for some choices of ρyz and decreasing

for few choices of ρyz. This behavior is highly desirable, since, it concludes that if

highly correlated auxiliary character is available it pays in terms of enhance precision

of estimates.

From Table 2 it is observed that:

(a) For the fixed values of ρyx and ρyz the values of µ
∗(0)
12 and L2 increase with the

increasing values of t which shows that the higher the non-response rate, the larger

fresh sample is required at current occasion.

(b) For the fixed values of t and ρyx, no definite trends are seen in the values of µ
∗(0)
12 but

the values of L2 increases with the increase in the values of ρyz.

From Table 3 it can be seen that:

(a) For the fixed values of ρyx and ρyz the values of the behavior of µ
∗(0)
31 and L3 are same

as that of Table 1 when the value of t is increased.

(b) For the fixed values of t and ρyx the values of µ
∗(0)
31 and L3 decreases with the increasing

value of ρyz. This phenomenon indicates that if the correlation between the study

character and the auxiliary character is high it not only enhances the precision of

estimates but also reduces the cost of survey.

From Table 4 it is observed that:

(a) For the fixed values of ρyx and ρyz the patterns of µ
∗(0)
32 and L4 are similar as Table 1

when the value of t is increased.

(b) For the fixed values of t and ρyx the values of µ
∗(0)
32 and L4 decreases with the increasing

values of ρyz which is highly desirable.
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Table 1: Percent relative loss L1 in precision of T11 with respect to τ11

ρyz 0.3 0.5 0.7 0.9

t ρyx µ
(0)
11 µ

∗(0)
11 L1 µ

(0)
11 µ

∗(0)
11 L1 µ

(0)
11 µ

∗(0)
11 L1 µ

(0)
11 µ

∗(0)
11 L1

0.1 0.3 0.44 0.57 6.20 0.42 0.51 5.97 0.37 0.43 5.74 0.27 0.29 5.49

0.5 - * - 0.46 0.65 6.55 0.41 0.49 5.93 0.30 0.33 5.55

0.7 0.55 0.42 4.95 0.52 0.28 4.32 0.48 0.81 7.34 0.36 0.40 5.69

0.9 0.68 0.65 5.61 0.66 0.62 5.55 0.61 0.56 5.41 - * -

0.2 0.3 0.44 0.72 13.96 0.42 0.61 13.05 0.37 0.49 12.22 0.27 0.32 11.43

0.5 - * - 0.46 0.87 15.38 0.41 0.59 12.89 0.30 0.37 11.61

0.7 0.55 0.27 8.45 0.52 0.00 5.86 - * - 0.36 0.46 12.04

0.9 0.68 0.61 10.84 0.66 0.57 10.68 0.61 0.49 10.21 - * -

0.3 0.3 0.44 0.89 23.52 0.42 0.73 21.42 0.37 0.56 19.57 0.27 0.35 17.91

0.5 - * - - * - 0.41 0.70 21.08 0.30 0.41 18.28

0.7 0.55 0.08 10.26 - * - - * - 0.36 0.52 19.18

0.9 0.68 0.56 15.66 0.66 0.52 15.32 0.61 0.41 14.29 - * -

0.4 0.3 - * - 0.42 0.88 31.34 0.37 0.65 27.95 0.27 0.39 25.04

0.5 - * - - * - 0.41 0.84 30.70 0.30 0.46 25.68

0.7 - * - - * - - * - 0.36 0.59 27.26

0.9 0.68 0.50 19.99 0.66 0.45 19.40 0.61 0.31 17.56 - * -

0.5 0.3 - * - - * - 0.37 0.77 37.64 0.27 0.44 33.00

0.5 - * - - * - - * - 0.30 0.52 33.99

0.7 - * - - * - - * - 0.36 0.70 36.52

0.9 0.68 0.43 23.76 0.66 0.37 22.81 0.61 0.19 19.81 - * -

0.6 0.3 - * - - * - 0.37 0.93 48.99 0.27 0.51 42.03

0.5 - * - - * - - * - 0.30 0.61 43.50

0.7 - * - - * - - * - 0.36 0.84 47.30

0.9 0.68 0.33 26.81 0.66 0.25 25.37 0.61 0.02 20.76 - * -

“⋆” in the tables indicate that the admissible values of µ
∗(0)
ij (i = 1, 3; j = 1, 2) do not exist
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Table 2: Percent relative loss L2 in precision of T12 with respect to τ12

ρyz 0.3 0.5 0.7 0.9

t ρyx µ
(0)
12 µ

∗(0)
12 L2 µ

(0)
12 µ

∗(0)
12 L2 µ

(0)
12 µ

∗(0)
12 L2 µ

(0)
12 µ

∗(0)
12 L2

0.1 0.3 0.15 0.31 2.05 0.29 0.39 3.84 0.35 0.42 4.78 0.34 0.38 5.20

0.5 0.20 0.33 2.75 0.31 0.39 4.20 0.34 0.39 4.91 0.31 0.34 5.21

0.7 0.20 0.33 2.75 0.31 0.39 4.28 0.33 0.39 4.95 0.29 0.33 5.20

0.9 0.15 0.31 2.05 0.31 0.39 4.20 0.33 0.39 4.95 0.29 0.32 5.20

0.2 0.3 0.15 0.49 4.08 0.29 0.53 7.65 0.35 0.51 9.52 0.34 0.43 10.36

0.5 0.20 0.48 5.48 0.31 0.49 8.38 0.34 0.46 9.79 0.31 0.38 10.38

0.7 0.20 0.48 5.48 0.31 0.49 8.54 0.33 0.45 9.87 0.29 0.36 10.38

0.9 0.15 0.49 4.08 0.31 0.49 8.38 0.33 0.45 9.87 0.29 0.35 10.38

0.3 0.3 0.15 0.72 6.12 0.29 0.68 11.44 0.35 0.61 14.23 0.34 0.49 15.49

0.5 0.20 0.66 8.20 0.31 0.62 12.52 0.34 0.55 14.64 0.31 0.43 15.52

0.7 0.20 0.66 8.20 0.31 0.60 12.76 0.33 0.52 14.76 0.29 0.41 15.52

0.9 0.15 0.72 6.12 0.31 0.62 12.52 0.33 0.52 14.76 0.29 0.40 15.52

0.4 0.3 0.15 0.99 8.14 0.29 0.88 15.20 0.35 0.74 18.91 0.34 0.56 20.58

0.5 0.20 0.88 10.91 0.31 0.77 16.64 0.34 0.65 19.45 0.31 0.49 20.62

0.7 0.20 0.88 10.91 0.31 0.74 16.96 0.33 0.61 19.61 0.29 0.46 20.63

0.9 0.15 0.99 8.14 0.31 0.77 16.64 0.33 0.61 19.61 0.29 0.45 20.63

0.5 0.3 - * - - * - 0.35 0.91 23.55 0.34 0.66 25.63

0.5 - * - 0.31 0.97 20.73 0.34 0.78 24.22 0.31 0.57 25.69

0.7 - * - 0.31 0.93 21.13 0.33 0.73 24.42 0.29 0.53 25.70

0.9 - * - 0.31 0.97 20.73 0.33 0.73 24.42 0.29 0.52 25.70

0.6 0.3 - * - - * - - * - 0.34 0.79 30.65

0.5 - * - - * - 0.34 0.95 28.96 0.31 0.67 30.73

0.7 - * - - * - 0.33 0.89 29.20 0.29 0.62 30.75

0.9 - * - - * - 0.33 0.89 29.20 0.29 0.61 30.75

“⋆” in the tables indicate that the admissible values of µ
∗(0)
ij (i = 1, 3; j = 1, 2) do not exist
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Table 3: Percent relative loss L3 in precision of T31 with respect to τ21

ρyz 0.3 0.5 0.7 0.9

t ρyx µ
(0)
21 µ

∗(0)
31 L3 µ

(0)
21 µ

∗(0)
31 L3 µ

(0)
21 µ

∗(0)
31 L3 µ

(0)
21 µ

∗(0)
31 L3

0.1 0.3 - * - 0.64 0.73 7.896 0.45 0.50 6.339 0.28 0.30 5.559

0.5 - * - - * - 0.53 0.61 6.911 0.32 0.34 5.647

0.7 - * - - * - - * - 0.38 0.42 5.848

0.9 0.55 0.51 3.488 0.56 0.52 3.995 0.54 0.47 4.280 - * -

0.2 0.3 - * - 0.64 0.85 16.89 0.45 0.57 13.41 0.28 0.33 11.57

0.5 - * - - * - 0.53 0.71 14.85 0.32 0.38 11.80

0.7 - * - - * - - * - 0.38 0.48 12.36

0.9 0.55 0.46 6.631 0.56 0.46 7.575 0.54 0.40 7.946 - * -

0.3 0.3 - * - 0.64 0.98 27.18 0.45 0.65 21.35 0.28 0.36 18.12

0.5 - * - - * - 0.53 0.83 23.99 0.32 0.42 18.56

0.7 - * - - * - - * - 0.38 0.54 19.65

0.9 0.55 0.39 9.386 0.56 0.39 10.69 0.54 0.31 10.91 - * -

0.4 0.3 - * - - * - 0.45 0.75 30.32 0.28 0.41 25.33

0.5 - * - - * - 0.53 0.98 34.56 0.32 0.48 26.05

0.7 - * - - * - - * - 0.38 0.62 27.89

0.9 0.55 0.33 11.69 0.56 0.32 13.26 0.54 0.20 13.05 - * -

0.5 0.3 - * - - * - 0.45 0.87 40.58 0.28 0.46 33.35

0.5 - * - - * - - * - 0.32 0.54 34.46

0.7 - * - - * - - * - 0.38 0.73 37.30

0.9 0.55 0.23 13.45 0.56 0.22 15.16 0.54 0.06 14.18 - * -

0.6 0.3 - * - - * - - * - 0.28 0.53 42.46

0.5 - * - - * - - * - 0.32 0.64 44.06

0.7 - * - - * - - * - 0.38 0.87 48.23

0.9 0.55 0.10 14.52 0.56 0.08 16.23 - * - - * -

“⋆” in the tables indicate that the admissible values of µ
∗(0)
ij (i = 1, 3; j = 1, 2) do not exist
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Table 4: Percent relative loss L4 in precision of T32 with respect to τ22

ρyz 0.3 0.5 0.7 0.9

t ρyx µ
(0)
22 µ

∗(0)
32 L4 µ

(0)
22 µ

∗(0)
32 L4 µ

(0)
22 µ

∗(0)
32 L4 µ

(0)
22 µ

∗(0)
32 L4

0.1 0.3 0.46 0.65 6.544 0.44 0.57 6.189 0.42 0.49 5.922 0.36 0.40 5.679

0.5 0.45 0.60 6.336 0.43 0.52 6.030 0.39 0.45 5.807 0.33 0.36 5.602

0.7 0.45 0.60 6.336 0.43 0.51 5.993 0.38 0.44 5.769 0.31 0.34 5.571

0.9 0.46 0.65 6.544 0.43 0.52 6.030 0.38 0.44 5.769 0.31 0.34 5.562

0.2 0.3 0.46 0.87 15.34 0.44 0.71 13.91 0.41 0.58 12.87 0.36 0.45 12.01

0.5 0.45 0.78 14.50 0.43 0.64 13.29 0.39 0.52 12.45 0.33 0.40 11.76

0.7 0.45 0.78 14.50 0.42 0.62 13.14 0.38 0.50 12.32 0.31 0.38 11.67

0.9 0.46 0.87 15.34 0.43 0.64 13.29 0.38 0.50 12.32 0.31 0.37 11.64

0.3 0.3 - * - 0.44 0.89 23.41 0.41 0.69 21.03 0.36 0.51 19.11

0.5 0.45 0.99 24.77 0.43 0.77 21.97 0.39 0.61 20.08 0.33 0.45 18.59

0.7 0.45 0.99 24.77 0.42 0.75 21.64 0.38 0.58 19.78 0.31 0.42 18.39

0.9 - * - 0.43 0.77 21.97 0.38 0.58 19.78 0.31 0.41 18.34

0.4 0.3 - * - - * - 0.41 0.83 30.62 0.36 0.59 27.14

0.5 - * - 0.43 0.94 32.35 0.39 0.72 28.89 0.33 0.51 26.22

0.7 - * - 0.42 0.90 31.74 0.38 0.68 28.33 0.31 0.48 25.87

0.9 - * - 0.43 0.94 32.35 0.38 0.68 28.33 0.31 0.47 25.77

0.5 0.3 - * - - * - - * - 0.36 0.69 36.33

0.5 - * - - * - 0.39 0.86 39.15 0.33 0.59 34.85

0.7 - * - - * - 0.38 0.80 38.25 0.31 0.55 34.29

0.9 - * - - * - 0.38 0.80 38.25 0.31 0.54 34.14

0.6 0.3 - * - - * - - * - 0.36 0.82 47.01

0.5 - * - - * - - * - 0.33 0.69 44.78

0.7 - * - - * - 0.38 0.97 49.92 0.31 0.64 43.95

0.9 - * - - * - 0.38 0.97 49.92 0.31 0.63 43.73

“⋆” in the tables indicate that the admissible values of µ
∗(0)
ij (i = 1, 3; j = 1, 2) do not exist
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In this paper we consider the so-called preliminary test approach under Bayesian
setup. A class of shrinkage Bayes estimators is constructed and its performance
is investigated under balanced loss function for some special members, with focus
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1 Introduction

Let Y 1,Y 2, · · · , YN be independent and identically distributed (iid) as Np(θ,Σ) where the

mean vector θ and the positive definite covariance matrix Σ are both unknown. When

nothing is known about the mean vector θ, then the maximum likelihood estimator (MLE)

of θ as unrestricted estimator (UE) is given by

Ȳ =
1

N

N∑

i=1

Y i. (1.1)

It is well documented that James and Stein (1961) and Efron and Morris (1972, 1976)

considered a decision-theoretic approaches to the estimation of θ while Σ is known and

unknown respectively. More recently Srivastava and Saleh (2005) considered the estimation

of θ under subspace restriction for unknown Σ. Also Saleh and Kibria (2009) investigated

on some improved estimators of θ parallel to the latter work under elliptical symmetry. All

mentioned references took quadratic loss function into account to study the performance of

the estimators. In this approach we study the behavior of some improved estimators upon

UE under so called balanced loss function (BLF). Sanjari Farsipour and Asgharzadeh (2003)

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.
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also derived the Bayes estimators of θ and Σ under BLF. Importance of any estimation

problem is boosted if we can furnish our driven estimators with good performance in the

sense of having smaller risk. In this case, the loss function under study plays deterministic

role. However, selecting objective or subjective points of view changes the results, it is

utterly important to take reasonable and practical losses into account.

Let θ∗ denote any estimator of θ; then the quadratic loss function which reflects the

goodness of fit of the model is (θ∗ −Y )′(θ∗ −Y ) where Y = (Y 1, · · · ,Y N ). Similarly, the

precision of estimation of θ∗ is measured by the loss function (θ∗ − θ)′(θ∗ − θ). Generally,

both of the previous criteria are used to judge the performance of any estimator. Throughout

this paper, we shall consider the estimation problem through the following loss function

LW

ω,θ0
(θ∗;θ) = ωr

(
‖θ‖2

)
(θ∗ − θ0)

′W (θ∗ − θ0)

+(1 − ω)r
(
‖θ‖2

)
(θ∗ − θ)′W (θ∗ − θ), (1.2)

where ω ∈ [0, 1], r(.) is a positive weight function, W is a weight matrix, and θ0 is a

target estimator (natural estimator such as MLE and least squares estimator). This loss

is pioneered by Jozani et al. (2006) inspiring by Zellner’s (1994) balanced loss function.

This loss function takes both goodness of fit and error of estimation into account. The

ωr
(
‖θ‖2

)
(θ∗ − θ0)

′W (θ∗ − θ0) part of the loss is analogous to a penalty term for lack

of smoothness in nonparametric regression. The weight ω in (1.2) calibrates the relative

importance of these two criteria. Dey et al. (1999) also considered issues of admissibility

and dominance, under the loss (1.2) ignoring the term r(.) when W = Ip. For the case

ω = 0, we will simply write LW
0 (θ∗;θ) as the quadratic loss function. Of course, duty of the

weight function r(.) is clearly apparent in deriving the Bayes risk. In this paper, we take it

into consideration for the sake of generality.

Assume hi : R
p → R

p, i = 1, 2 are measurable functions.

Lemma 1.1.

(i) The estimator θ0+(1−ω)h1 dominates θ0+(1−ω)h2 under the balanced loss function

LW

ω,θ0
(θ∗;θ) if and only if θ0 +h1 dominates θ0 +h2 under the quadratic loss function

LW
0 (θ∗;θ).

(ii) Suppose the estimator θ0 has constant risk γ under the quadratic loss function LW
0 (θ∗;θ).

Then θ0 is minimax under the balanced loss function LW

ω,θ0
(θ∗;θ) with constant (and

minimax) risk (1− ω)γ if and only if θ0 is minimax under the quadratic loss function

LW
0 (θ∗;θ) with constant (and minimax) risk γ.

The proof is a direct consequence of Corollary 1 (b) and Theorem 1 of Jozani et al. (2006)

under multivariate case.

The gist of this paper is the estimation of the regression vector-parameter θ when it is

suspected that θ may belong to the sub-space defined by θ = Bη where B is a p x r matrix

of known constants with rank r and η ∈ R
r with focus on the preliminary test estimator

(PTE). Recent book of Saleh (2006) presents an overview on the topic under normal as well

as nonparametric theory covering many standard models.
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2 Proposed Estimators

If we know that for the known matrix B of rank r and η ∈ R
r, the hypothesis

H0 : θ = Bη (2.1)

holds, then the MLE of θ to be denoted by θ̂ as restricted estimator (RE) is given by

θ̂ = B(B′S−1B)−1B′S−1Ȳ , (2.2)

where

S =

N∑

i=1

(Y i − Ȳ )(Y i − Ȳ )′. (2.3)

(See Srivastava and Khatri, 1979 and Srivastava and Saleh, 2005.)

Now under Bayesian viewpoint, to determine the Bayes estimator of θ under the loss (1.2),

it is enough to find a value θ∗ which minimizes

E
[
LΣ

−1

ω,Ȳ (θ∗;θ)|Y
]

= ωE
[
r
(
‖θ‖2

)
|Y

]
(θ∗ − Ȳ )′Σ−1(θ∗ − Ȳ )

+(1 − ω)E
[
r
(
‖θ‖2

)
(θ∗ − θ)′Σ−1(θ∗ − θ)|Y

]
, (2.4)

where Ȳ is given by (1.1). Differentiating from (2.4) with respect to (w.r.t.) θ∗ and setting

the derivative equal to zero gives the Bayes estimator

θ̂B = ωȲ + (1 − ω)
E

[
r
(
‖θ‖2

)
θ|Y

]

E [r (‖θ‖2) |Y ]
. (2.5)

Also as

∂2E
[
LΣ

−1

ω,Ȳ
(θ∗;θ)|Y

]

∂θ∗′∂θ∗
= 2(1 − ω)Σ−1r

(
‖θ‖2

)
+ 2ωΣ

−1r
(
‖θ‖2

)

= 2Σ−1r
(
‖θ‖2

)
,

is a positive definite matrix, θ̂B actually corresponds to a minimum value.

However, different weight functions r(.) give various types of θ̂B ; for the sake of simplicity

we take r
(
‖θ‖2

)
= 1 throughout (one other choice can be r

(
‖θ‖2

)
= a

θ′θ
, a > 0). Then we

have

θ̂B = ωȲ + (1 − ω)E(θ|Y ). (2.6)

Now consider the normal-inverted Wishart distribution as a prior of (θ,Σ), i.e,

h(θ,Σ) ∝ |Λ|− 1
2 exp

[−1

2b
(θ − Bη)′Λ−1(θ − Bη)

]

×|Λ|−m
2 exp

[−1

2
trΛ−1Q

]
, (2.7)
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where b > 0, m > 2p, Λ = N−1
Σ and Q is a positive definite matrix.

Then the marginal posterior distribution of θ is given by

p(θ|Ȳ ,S) ∝
{
1 + (θ − θ∗)

′
Λ

−1
∗ (θ − θ∗)

}−
N+m−p

2 ,

where

θ∗ =
Ȳ + bBη

1 + b
, Λ∗ =

S + Q

1 + b
+

b

(1 + b)2
(Ȳ − Bη)(Ȳ − Bη)′,

which is the multivariate Student’s t-distribution.

Then the Bayes estimator θ̂B given by (2.5) is rewritten as

θ̂B =
1 + bω

1 + b
Ȳ +

(1 − ω)b

1 + b
Bη. (2.8)

It is convenient to use the estimate of θ given by (2.2) to obtain the empirical Bayes estimator

(EBE) of θ as a convex combination of Ȳ and θ̂ namely,

θ̂EB(b) =
1 + bω

1 + b
Ȳ +

(1 − ω)b

1 + b
θ̂

= Ȳ − (1 − ω)b

1 + b
(Ȳ − θ̂), (2.9)

where b is arbitrary and unknown. In the continuation we estimate b to determine the

specific estimator of θ. For this, it can be investigated that (1 + b)−1LN = Fq,m, where

LN =
m

q
N Ȳ

′
C(C ′SC)−1C ′Ȳ →D m

q
T 2

T 2 = N Ȳ
′
C(C ′SC)−1C ′Ȳ ,

m = N − q, q = p − r, →D stands for “equal in distribution”, C is a p × q matrix of rank

q such that C ′B = 0, and Fq,m denotes the F-distribution with (q,m) degrees of freedom.

Hence, (1 + b)−1 can be estimated by a scalar multiple of L−1
N . (See Srivastava and Saleh,

2005.)

More generally, let g(LN ), a real-valued function of LN , be an estimate of b
b+1 . Then

the estimator given by (2.9) becomes

θ̂EB(b̂) = Ȳ − (1 − ω)g(LN )(Ȳ − θ̂)

= θ̂ + (1 − ω) [1 − g(LN )] (Ȳ − θ̂). (2.10)

The estimator θ̂EB(b̂) is somehow similar to that introduced by Srivastava and Saleh (2005),

with an additional weight (1 − ω). Thus of course the performance of θ̂EB(b̂) for different

selections of g(LN ) should be the same as that discussed in earlier work under quadratic

loss function. However, it is worthwhile studying the performance of θ̂EB(b̂) under BLF by

the use of important role of Lemma 1.1.

Now consider the following three choices of g(LN ):
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(i) g(LN ) = 0, θ̂1 = θ̂EB(b̂) = Ȳ

(ii) g(LN ) = 1, θ̂2 = θ̂EB(b̂) = θ̂

(iii) g(LN ) = I(LN ≤ Fq,m(α)) = I(T 2 ≤ q
m Fq,m(α)) where Fq,m(α) is the upper 100α%

point of the Fq,m distribution

θ̂3 = θ̂
PT

= θ̂EB(b̂) = Ȳ − (1 − ω)I(T 2 ≤ q

m
Fq,m(α))(Ȳ − θ̂)

which is the preliminary test estimator (PTE) introduced by Bancroft (1944).

3 Risk Analysis

The risk function for any estimator θ∗ of θ associated with (1.2) is defined as

RΣ
−1

ω,Ȳ (θ∗;θ) = E[LΣ
−1

ω,Ȳ (θ∗;θ)]. (3.1)

In this section, first we determine the risk function using (3.1). For the case ω = 0, we will

simply write RΣ
−1

0 (θ∗;θ). Then some comparative results are given.

Simply

RΣ
−1

ω,Ȳ (Ȳ ;θ) = p (1 − ω). (3.2)

By making use of (2.2), H = Ip −B(B′S−1B)−1B′S−1 and the utilities in Srivastava and

Saleh (2005), we get

RΣ
−1

ω,Ȳ (θ̂;θ) = (1 − ω)E
[
(θ̂ − θ)′Σ−1(θ̂ − θ)

]
+ ωE

(
Ȳ

′
H ′

Σ
−1HȲ

)

=
1 − ω

N

(
p− q(n− p− 1)

n− q − 1
+
n− q + r − 1

n− q − 1
∆2

)

+
ω

N

(
q + ∆2 +

rm(q + ∆2)

q(m− 2)

)
, (3.3)

where ∆2 = Nθ′C(C ′
ΣC)−1C ′θ.

Finally for the risk of θ̂
PT

, using (3.3) and equation (3.12) of Srivastava and Saleh
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(2005), we have

RΣ
−1

ω,Ȳ (θ̂
PT

;θ) = (1 − ω)E
[
(θ̂

PT − θ)′Σ−1(θ̂
PT − θ)

]
+ ω(1 − ω)2

× E
[
I(T 2 ≤ q

m
Fq,m(α))(Ȳ − θ̂)′Σ−1(Ȳ − θ̂)

]

+
1 − ω

N

{
p− q

[
Gq+2,m

(
q

q + 2
Fq,m(α);∆2

)

− r

m− 2
Gq+2,m−2

(
q(m− 2)

m(q + 2)
Fq,m(α);∆2

)]

+ ∆2

[
2Gq+2,m

(
q

q + 2
Fq,m(α);∆2

)
−Gq+4,m

(
q

q + 4
Fq+4,m(α);∆2

)

+
r

m− 2
Gq+4,m−2

(
q(m− 2)

m(q + 4)
Fq,m(α);∆2

)]}

+
ω(1 − ω)2

N

{
q

[
Gq+2,m

(
q

q + 2
Fq,m(α);∆2

)

+
r

m− 2
Gq+2,m−2

(
q(m− 2)

m(q + 2)
Fq,m(α);∆2

)]

+ ∆2

[
Gq+4,m

(
q

q + 4
Fq+4,m(α);∆2

)

+
r

m− 2
Gq+4,m−2

(
q(m− 2)

m(q + 4)
Fq,m(α);∆2

)]}
, (3.4)

where Gr,s(.;∆
2) denotes the cdf of a non-central F-distribution with (r, s) degrees of free-

dom and non-centrality parameter ∆2.

Comparison between θ̂ and Ȳ can be easily done by making orders between the risk

functions. But for the comparison of θ̂
PT

and the others, based on BLF, we have the

following abstracted results.

Under quadratic loss function the estimator θ̂
PT

is always superior to the unbiased

estimator Ȳ whenever

0 ≤ ∆2 ≤ q

{
Gq+2,m

( q

q + 2
Fq,m(α);∆2

)
− r

m− 2
Gq+2,m−2

(
q(m− 2)

m(q + 2)
Fq,m(α);∆2

)}

×
[
2Gq+2,m

(
q

q + 2
Fq,m(α);∆2

)
−Gq+4,m

(
q

q + 2
Fq+4,m(α);∆2

)

+
r

m− 2
Gq+4,m−2

(
q(m− 2)

m(q + 4)
Fq,m(α);∆2

) ]−1

. (3.5)

Otherwise Ȳ is superior. This conclusion remains valid under BLF using Lemma 1.1 (i),

by taking h1 = 0 and h2 = I(T 2 ≤ q
m Fq,m(α))(θ̂ − Ȳ ). Now consider that under H0 :

θ = Bη, because C ′B = 0 we have ∆2 = Nη′B′C(C ′
ΣC)−1C ′Bη = 0. Hence the

relative efficiency of θ̂
PT

compared to Ȳ and θ̂ based on quadratic loss function, under H0,
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respectively given by

E(θ̂
PT

: Ȳ ) =

[
1 − q

p
D0

]−1

≥ 1

E(θ̂
PT

: θ̂) =

[
1 − q(N − p− 1)

p(N − q − 1)

]
E(θ̂

PT
: Ȳ ) ≥

[
1 − q(N − p− 1)

p(N − q − 1)

]

since for every α, Gq,m (Fq,m(α); 0) = 1 − α; where

D∆2 = Gq+2,m

(
q

q + 2
Fq,m(α);∆2

)

− r

m− 2
Gq+2,m−2

(
q(m− 2)

m(q + 2)
Fq,m(α);∆2

)
.

Thus, using Lemma 1.1 (i), under H0,

[
1 − q(N − p− 1)

p(N − q − 1)

]
≤ E(θ̂

PT
: θ̂) ≤ E(θ̂

PT
: Ȳ ). (3.6)

The inequality in (3.6) becomes strict whenever D0 ≤
(
1 − r

m−2

)
(see Srivastava and Saleh,

2005.)

Also using part (ii) of Lemma 1.1 and equation (3.2), the estimator Ȳ stays minimax

under BLF. We can also conclude that under H0 the restricted and preliminary test esti-

mators are minimax. We close this section by some graphical results on preliminary test

estimator performance w.r.t. the level of significance and weight coefficient w.

The following important points can be inferred from the Figures 1.

1. As w increases the risk values decrease. In other words, based on the structure of

BLF, it confirms that if the model fit is good then the risk values are decreased as a

natural consequence.

2. For approximate value ∆ = 1, the superiority order of the PTE for different levels of

significance changes. In fact, for larger values α we consider better performance up to

∆ = 1, and vice versa for ∆ > 1.

4 Numerical Analysis

In this section we proceed to a numerical computation of a real data to show the application

of the method discussed in this study. In this regard, consider the set of N = 25 observations

given in Anderson (2003) taken from Frets (1921) consisting of head length and breadth of

first and second son in a family. The full data is given in Table 1. In this case we have p = 4.

Assume that the prior knowledge is given by (2.7) for an empirical Bayesian study. For the

purpose of restricted and preliminary test estimation strategies we also need a matrix B.
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alpha=0.01 alpha=0.05 alpha=0.1
alpha=0.2

D
1 2 3 4 5 6 7 8 9 10

Risk

0.618

0.620

0.622

0.624

0.626

0.628

0.630

0.632

0.634

0.636

alpha=0.01 alpha=0.05 alpha=0.1
alpha=0.2

D
1 2 3 4 5 6 7 8 9 10

Risk

0.346

0.347

0.348

0.349

0.350

0.351

0.352

0.353

0.354

alpha=0.01 alpha=0.05 alpha=0.1
alpha=0.2

D
1 2 3 4 5 6 7 8 9 10

Risk

0.0690

0.0695

0.0700

0.0705

Figure 1: Risk Performance of PTE for w = 0.1, 0.5, 0.9

It is also important to find a matrix C for constructing the test statistic LN such that

C ′B = 0. It may be noted that computationally simple methods to obtain a matrix C

satisfying C ′B = 0 are given in Srivastava (2002). With this in hand, suppose that one is

desired to test the following null hypothesis

H0 :





θ1

θ2

θ3

θ4




=





150

50

100

500




⇒ B =





1 0

−1 2

0 1

2 2




, η =



 150

100



 , C =





1 0

−1 −1

4 3

−1 − 1
2




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Obs Y1 Y2 Y3 Y4 Obs Y1 Y2 Y3 Y4

1 191 155 179 145 14 190 159 195 157

2 195 149 201 152 15 188 151 187 158

3 181 148 185 149 16 163 137 161 130

4 183 153 188 149 17 195 155 183 158

5 176 144 171 142 18 186 153 173 148

6 208 157 192 152 19 181 145 182 146

7 189 150 190 149 20 175 140 165 137

8 197 159 189 152 21 192 154 185 152

9 188 152 197 159 22 174 143 178 147

10 192 150 187 151 23 176 139 176 143

11 179 158 186 148 24 197 167 200 158

12 183 147 174 147 25 190 163 187 150

13 174 150 185 152

Table 1: Head Lengths and Breadths of Brothers (Y1=Head Length of First Son, Y2=Head
Breadth of First Son, Y3=Head Length of Second Son, Y4=Head Breadth of Second Son)

Also from the given data we get,

Ȳ =





185.72

151.12

183.84

149.24




, S =





95.2933 52.8683 69.6617 46.1117

52.8683 54.3600 51.3117 35.0533

69.6617 51.3117 100.8067 56.5400

46.1117 35.0533 56.5400 45.0233




.

Thus, it can be concluded that

θ̂ =





4.86

40.85

22.86

55.45




, T 2 = 5073.41 ⇒

θ̂
PT

=





185.72

151.12

183.84

149.24




− (1 − ω)I

(
9119.28 ≤ 2

23
F2,23(α)

)





180.85

110.26

160.97

93.78




.
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At this stage any decision may be taken trough selecting a pre-specified level of significance.

Because T 2 is large enough such that I
(
9119.28 ≤ 2

23 F2,23(α)
)

= 0 for every reasonable α,

therefore in overall we deduce that θ̂
PT

= Ȳ . Overall, for all values α the null-hypothesis

H0 will be rejected. However, by making use of the equation (2.10) and the fact that

LN = 104868.20, taking g(LN ) = 105L−1
N (resulting in Stein-type estimator), we can obtain

better result than the latter (H0 does not reject).
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summary

Consider the simple linear regression model:Yi = β0 + β1xi + σzi, (i = 1, . . . , n),
where z1, . . . , zn are i.i.d. errors with exponential distribution, e−z, z ∈ R+. This
paper deals with the estimation and tests of hypothesis regarding the parameters,
θ = (β0, β1, σ)′ based on a few “regression quantiles” introduced by Koenker and
Bassett (1978). The question of optimum regression quantiles is addressed for
the problems. Further, estimation of the conditional regression function is also
considered along with the related optimum regression quantiles. In every case
the optimum spacings are independent of the design matrix.
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1 Introduction

It is well known that least squares estimators (LSE) of regression parameters are unbiased

with minimum variance and the quadratic estimator of σ2 is optimal in general. However,

this may not be so for the model with exponential errors. For the maximum likelihood

estimators (MLE) the Fisher information matrix for the parameter θ = (β0, β1, σ)′ is given

by the 3 × 3 matrix:

n

σ2





n nx 1

nx n(s2 + x2) x

1 x 1



 .
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In this paper we consider the estimation of θ based on a few selected regression quantiles

which is an extension of the sample quantiles in the location-scale model (See, Balakrishnan

and Basu, 1995; David and Nagaraja, 2003; Harter, 1963; Sarhan and Greenberg, 1962;

Saleh, 1981 and Saleh and Ali, 1966).

The objective of this paper is to basically, obtain (i) asymptotically best linear unbiased

estimator (ABLUE) of θ based on k(3 ≤ k ≤ n) optimum regression quantiles, (ii) propose

test-statistics for jointly testing θ = (β0, β1, σ)′ under local alternatives and discuss the

related optimum spacings and finally, (iii) propose ABLUE of a conditional quantile function,

y(ξ) = β0 + β1x0 + σ ln(1 − ξ)−1, 0 < ξ < 1 and related optimum spacings. Thus, as a first

step, we assume that n is large and

(i) lim
n→∞

xn = x and lim
n→∞

n−1




n nxn

xn

n∑
i=1

x2
i



 =



 1 x

x s2 + x2



 .

Let u = ln(1 − λ)−1 be the quantile function of the exponential distribution corresponding

to the spacing λ (0 < λ < 1) and let q0(λ) = 1 − λ be the corresponding density quantile

function. Further, let k(3 ≤ k < n) be a fixed integer and consider the spacing vector

λ = (λ1, . . . , λk)′ satisfying the relation 0 < λ1 < · · · < λk < 1.

Now, following Koenker and Bassett (1978) we obtain the k regression quantiles

β̂jn =
(
β̂jn(λ1), . . . , β̂jn(λk)

)′
, j = 0, 1

by minimizing
n∑

j=1

ζλj
(yj − β0 − β1xj), where ζλ(z) =| z | {λI(z > 0) + (1 − λ)I(z < 0)}

with I(A) as the indicator function of set A. Thus, using Theorem 4.2 of Koenker and

Bassett (1978) we see that the 2k–dimensional random variable
(√
n[β̂0n(λ) − β01k − σu]′,

√
n[β̂n(λ) − β11k]′

)′

converges in law (as n → ∞) to the 2k–dimensional normal distribution with mean 0 and

covariance matrix

σ2



 1 x

x s2 + x2




−1

⊗ Ω,

where Ω =
(

min(λi,λj)−λiλj

(1−λi)(1−λj)

)
, and 1k = (1, 1, . . . , 1)′, a k–tuple of ones and u = (u1, u2, . . . , uk)′,

and uj = ln(1 − λj)
−1, j = 1, . . . , k.

These results will be used in the subsequent sections.

2 Joint Estimation of (β0, β1, σ)′

We obtain the ABLUE of (β0, β1, σ)′ by minimizing the quadratic form

[β̂0n(λ) − β01k − σu]Ω−1[β̂0n(λ) − β01k − σu] + 2[β̂0n(λ) − β01k − σu]′Ω−1[β̂1n(λ) − β11k]

+ (s2 + x2)[β̂1n(λ) − β11k]′Ω−1[β̂1n(λ) − β11k]
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with respect to β0, β1, and σ to obtain the normal equation

Kθ∗

n = V,

where

K =





K1 xK1 K3

K1x (s2 + x2)K1 xK3

K3 xK3 K2



 and θ∗

n = (β∗

0n, β
∗

1n, σ
∗

0n)′ and V = (V0, V1, V2)
′,

with

V0 = Z0 + xZ1, V1 = xV1 + s2Z1, V2 = Z∗

0 + xZ∗

1

Zj = 1
′

kΩ−1β̂jn, Z∗

j = u
′

kΩ−1β̂jn, j = 0, 1

and ∆ = K1K2 −K2
3 . The explicit form of K1,K2, and K3 are given by

K1 = 1/eu1−1, K2 = u2
1/(e

u1−1) + L, and K3 = u1/(e
u1 − 1),

where L =
k∑

i=2

(ui−ui−1)
2

eui−eui−1 (see Saleh and Ali, 1966 and Saleh, 1981).

Now, as n→ ∞, the asymptotic distribution of

(√
n(β∗

0n − β0),
√
n(β∗

1n − β1),
√
n(σ∗

n − σ)
)′
,

follows the 3-dimensional normal distribution with mean 0 and dispersion matrix σ2
K

−1,

where | K |= s2K1∆. Hence, the joint asymptotic relative efficiency (JARE) of θ∗

n relative

to the MLE, say θn is given by

JARE(θ∗

n : θn) =
K1∆

n(n− 1)
=
e−u1(eu1 − 1)−2

n(n− 1)
Qk−1,

with Qk−1 =
k−1∑
i=1

(ti−ti−1)
2

(eti−eti−1 )
as in Saleh and Ali (1966).

Notice that JARE(θ∗

n : θn) as a function of u1 is decreasing and it has maximum near

the origin given by

λ0
1 =

2

2n+ 1
= 1 − e−u0

1 giving u0
1 = ln

(
2n+ 1

2n− 1

)

due to Saleh and Ali (1966). Then, conditionally on this spacing, the JARE is given by

(2n− 1)3

4n(n− 1)(2n+ 1)
Qk−1.
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Thus, maximizing Qk−1 with respect to (λ1, . . . , λk) one gets the optimum spacings given

by Ogawa (1951), which yields the spacings given by

λ∗1 =
1

n+ 1/2
and λ∗j+1 =

2 + (2n− 1)λ0
j

2n+ 1
, j = 1, . . . , k − 1,

where λ0
j (j = 1, . . . , k − 1) are the optimum spacings for the scale parameter alone which

are available in Sarhan and Greenberg (1962).

Some tabular values of the JARE are given in Table 1 below.

Table 1: Values of JARE(θ∗

n : θn) for selected k = 2(1)10 and n = 50(10)100

k n JARE k n JARE k n JARE k n JARE

2 50 0.6349 4 70 0.8785 6 90 0.9371 9 50 0.9561

2 60 0.6370 4 80 0.8800 6 100 0.9382 9 60 0.9593

2 70 0.6385 4 90 0.8812 7 50 0.9416 9 70 0.9616

2 80 0.6396 4 100 0.8822 7 60 0.9448 9 80 0.9633

2 90 0.6405 5 50 0.9087 7 70 0.9470 9 90 0.9646

2 100 0.6412 5 60 0.9117 7 80 0.9487 9 100 0.9657

3 50 0.8041 5 70 0.9138 7 90 0.9500 10 50 0.9605

3 60 0.8068 5 80 0.9154 7 100 0.9510 10 60 0.9637

3 70 0.8087 5 90 0.9167 8 50 0.9502 10 70 0.9660

3 80 0.8101 5 100 0.9177 8 60 0.9533 10 80 0.9677

3 90 0.8112 6 50 0.9289 8 70 0.9556 10 90 0.9690

3 100 0.8121 6 60 0.9320 8 80 0.9573 10 100 0.9701

4 50 0.8735 6 70 0.9342 8 90 0.9586

4 60 0.8764 6 80 0.9358 8 100 0.9596

3 Test of Hypothesis on (β0, β1, σ)′

In this section, we consider the joint test of hypothesis:

H0 : (β0, β1, σ)′ = (β0
0 , β

0
1 , σ

0)′

against

HA : (β0, β1, σ)′ 6= (β0
0 , β

0
1 , σ

0)′

based on β̂jn = (β̂jn(λ1), . . . , β̂jn(λk))′, (j = 0, 1), where (β0
0 , β

0
1 , σ

0)′ is a specified vector.

In this context, our objective is to assess the asymptotic relative efficiency (ARE) of a test
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based on (β∗
0n, β

∗
1n, σ

∗
n)′ relative to a test based on (β0n, β1n, σn)′. It is shown that the

optimum spacings for this problem remains the same as in the estimation problem.

We now define the test statistics Q∗
n for testing H0 against HA as follows:

Q∗

n = n(σ0)−2[K1(β
∗

0n − β0
0)2 +K2(σ

∗

n − σ0)2 + (s2 + x2)K1(β
∗

1n − β0
1)2

+ 2xK3(β
∗

0n − β0
0)(β∗

1n − β0
1) + 2xK3(β

∗

1n − β0
1)(σ∗

n − σ0) + 2K3(β
∗

0n − β0
0)(σ∗

n − σ0).

Then, the test function is defined by

φ(Q∗

n) =





1 if Q∗

n ≥ Q∗
n,α

0 otherwise.

Now under H0, Q
∗
n follows a central chi-squared distribution with 3 degrees of freedom

(DF), and we take Q∗
n,α = χ2

3,α, which is the upper α%-tile of the chi-squared distribution.

Similarly, we consider test-statistics based on θ = (β0n, β1n, σn)′ is given by

Qn = n(σ0)−2[n(β0n − β0
0)2 + (σn − σ0)2 + (s2 + x2)(β1n − β0

1)2

+ 2x(β0n − β0
0)(β1n − β0

1) + 2x(β1n − β0
1)(σn − σ0) + 2(β0n − β0

0)(σn − σ0)

giving the test-function

φ(Qn) =





1 if Qn ≥ Qn,α

0 otherwise.

As in the case Q∗
n, Qn follows a central chi-squared distribution with 3 DF under H0 and

Qn,α = χ2
3,α as before.

To find the asymptotic distribution of Q∗
n(Qn) under HA, we consider a sequence of local

alternatives {An}, where

An : β0(n) + β0
0 + n−

1
2 δ0, B1(n) = β0

1 + n−
1
2 δ1, Q(n) = σ0 + n−

1
2 δ2,

where δ′ = (δ0, δ1, δ2) 6= (0, 0, 0) is some fixed real vector in R2 × R+. Using the asymp-

totic distribution of (β∗
0n, β

∗
1n, σ

∗
n)′ and (β0n, β1n, σn)′ under {An}, we find the asymptotic

distribution of Q∗
n and Qn follows the non-central chi-squared distribution with 3 degrees

of freedom and the non-central parameters

∆∗ = δ′
Kδ/(σ0)2 and ∆ = δ′

Iδ/(σ0)2,

respectively. To compare Q∗
n and Qn, we note that the classical Pitman ARE result is

applicable since the tests have same size α and similar non-central chi-squared distribution.

So using Puri and Sen (1971) we obtain

ARE[Q∗

n : Qn] =
δ′

Kδ

δ′
Iδ

.
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By Courant-Fisher theorem (Rao, 1973) the extremes of the ratio of two quadratic forms

in δ are given by

Chmin(KI
−1) ≤ δ′

Kδ

δ′
Iδ

≤ Chmax(KI
−1),

where Chmin(A) and Chmax(A) are minimum and maximum characteristic roots of A. In

this case,

KI
−1 =





(K1−K3)
(n−1) x[ (K1−K3)

(n−1) − K1

n ] (K3−K1)
(n−1)

0 K1

n 0
[nK3−K1]

(n−1) x[nK3−K1

(n−1) ] (nK2−K3)
(n−1)




.

Further,

e(1) + e(2) + e(3) = tr(KI
−1)

= (n2K2 − 2K3 + (2n− 1)K1)

=
(eu1 − 1)−1

n(n− 1)
((nu1 − 1)2 + 2(n− 1) + n2(1 − e−u1)Qk−1),

where e(i), i = 1, 2, 3 are the eigen values of the the matrix {KI
−1}. This is a decreasing

function of u1. Hence, the optimal spacing for the maximum with respect to u1 yields

2/(2n + 1) as in the case of estimation. Rest of the spacings are obtained by maximizing

Qk−1.

Also, we have the product

e(1)e(2)e(3) =| KI
−1 |= K1∆/(n(n− 1)),

which is same as the JARE expression. Thus the optimum spacings are the same as the

estimation problem. As a measure of the ARE of the test one may use tr(KI
−1)/3 or the

geometric mean i.e. (K1∆)(1/3).

4 Estimation of Conditional Regression Quantiles

Consider the conditional regression quantiles

Q(ξ) = β0 + β1x0 + σ ln(1 − ξ)−1, 0 < ξ < 1,

where x0 and ξ are specified. We can estimate Q(ξ) using the two estimators of (β0, β1, σ),

namely (β∗
0n, β

∗
1n, σ

∗
n)′ and (β0n, β1n, σn)′ yielding

Q∗

n(ξ) = β∗

0n + β∗

1nx0 + σ∗

n ln(1 − ξ)−1 and Qn(ξ) = β0n + β1nx0 + σn ln(1 − ξ)−1

with the respective asymptotic variance given by

V ar[Q∗

n(ξ)] =
σ2

n
L
′
K

−1
L and V ar[Qn(ξ)] =

σ2

n
L
′
I
−1

l,
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where L = (1, x0 ln(1 − ξ)−1)′.

The ARE of Q∗
n(ξ) relative to Qn(ξ) is then given by

ARE[Q∗

n(ξ) : Qn(ξ)] =
L
′
I
−1

L

L′K−1L
,

where

Chmin(KI
−1) ≤ ARE[Q∗

n(ξ) : Qn(ξ)] ≤ Chmax(KI
−1).

Thus, the optimum spacings of the k regression quantiles are the same as the spacings

for the estimation and testing problems.
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