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summary

Increasingly, statisticians are faced with the problem of identifying interesting
subsets of predictors from among a large number of candidates. Existing meth-
ods for variable selection, such as stochastic search algorithms, tend to explore
the model space too slowly in large dimensions. Shotgun stochastic search (SSS)
algorithms have been proposed as an efficient alternative. As current SSS algo-
rithms rely on conjugacy, they are not appropriate for generalized linear models
without use of approximation methods. This article compares the frequently used
Laplace approximation with two alternatives based on Variational Bayes meth-
ods. The comparison is illustrated using several simulated data examples and
an application to the problem of predicting conception using data on timing of
intercourse in the menstrual cycle. This application also illustrates the problem
of selection of interactions.

Keywords and phrases: Approximation; Large p, small n; Model uncertainty;
Shotgun stochastic search; Subset selection; Variable selection.

1 Introduction

As the collection of massive amounts of information becomes more routine, there is a critical

need for more efficient methods for identifying promising subsets of variables from among the

very many candidates one is typically faced with. This problem occurs not only in genomics

and bioinformatics studies, where it has received the most focus, but also in epidemiologic

studies. For example, the application motivating this article focuses on using data on the

timing of intercourse in the menstrual cycle to predict conception. The data consist of daily

records of intercourse across the menstrual cycle and an indicator of conception status for

women enrolled in a European study (Dunson et al., 2002). Although the fertile interval of

the menstrual cycle is only 5-6 days for most women (Dunson et al., 1999), the timing of
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the fertile days is highly uncertain (Wilcox et al., 2000). Hence, there are many days in the

menstrual cycle during which intercourse can potentially result in a pregnancy. In addition,

potential interactions lead to a very high-dimensional set of candidate models.

One widely used approach for accommodating uncertainty in subset selection in linear

regression models is the stochastic search variable selection (SSVS) algorithm originally

proposed in George and McCulloch (1993), with numerous modifications later considered

(George and McCulloch, 1997; Ishwaran and Rao, 2005; Casella and Moreno, 2006). SSVS

algorithms rely on using a mixture prior for the regression coefficients, with one component

concentration at 0, allowing a predictor to effectively drop out of the model. Gibbs sam-

pling is then used to sample from the conditional posterior distributions of the coefficients,

resulting in stochastic changes to the variables included in the model across the MCMC

iterates. Such algorithms are very effective in modest sized models, but tend to explore the

model space too slowly as the number of candidate variables increases.

Motivated by this problem, Hans (2005) and Hans et al. (2007) proposed a new regression

model search algorithm named Shotgun Stochastic Search (SSS), with Jones et al. (2005)

applying this approach to graphical models. Compared to the variety of alternative methods

available (reviewed by Dellaportas et al. (2002)), Hans et al. (2007) argue that SSS is more

efficient at rapidly identifying the models with the highest posterior probabilities in large

model spaces. It is interesting to extend the SSS beyond linear regression to broader classes

of regression models, such as generalized linear models (GLMs). Hans (2005) and Hans

et al. (2007) proposed to use Laplace approximation for marginal likelihood approximations

in GLM, and used SSS to search in the model space. Ntzoufras et al. (2003) proposed a

reversible jump MCMC algorithm for posterior computation in GLMs when there is uncer-

tainty in the predictors to be included. In recent work, Wang and George (2007) proposed an

adaptive Bayesian criterion for variable selection in GLMs, relying on an integrated Laplace

approximation to allow rapid computation.

Our initial goal is to consider applications of SSS algorithms to GLM variable selection

in massive dimensions, with a particular emphasis on logistic regression models motivated

by the fertility application. For subject i (i = 1, . . . , n), let yi denote the binary response

variable and let xi = (xi1, . . . , xip)
′ denote a p × 1 vector of candidate predictors, with γj

a 0/1 indicator that the jth predictor is included in the model and xγ,i = {xij : γj = 1}

denoting the subset of included predictors. Then, the logistic regression model can be

expressed as

logit{Pr(yi = 1 |xi,γ)} = x′

γ,iβγ , (1.1)

where logit(x) = ln( x
1−x ), and βγ is a vector of the unknown regression coefficients in the

model indexed by γ.

Letting π(γ) denote the prior probability of model γ, the posterior model probability is

p(γ |Y ,X) =
p(γ) p(Y |X,γ)

∑

γ∗∈Γ p(Y |X,γ∗)
=

p(γ) p(Y |X,γ)

p(Y |X)
,

where Γ is the set of all 2p possible subsets and the marginal likelihood of the data under
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model γ is

p(Y |X,γ) =

∫

p(Y |Xγ ,βγ)p(βγ)dβγ , (1.2)

which is not available analytically in most cases. In logistic regression, the marginal likeli-

hood is expressed as the integral of the Bernoulli likelihood under the logistic model over

the prior distribution for the coefficients, which does not have a closed form.

To complete a Bayesian specification of the model uncertainty problem, explicit choices

are required for the prior probability of model γ and for the prior distribution on the coef-

ficients within that model βγ , for all γ ∈ Γ. The standard choice of prior for γ corresponds

to

p(γ) =

p
∏

j=1

φ1(γj=1)(1 − φ)1(γj=0), (1.3)

where 1(·) is a 0/1 indicator function, and φ is potentially given a beta hyperprior to allow

the data to inform more strongly about model size.

In conducting a high-dimensional model search, it is necessary to rapidly estimate or

approximate the Bayes factors for massive numbers of pairs of models. The Bayes factor

is the ratio of marginal likelihoods under competing models. A variety of approaches have

been proposed in the literature for Bayes factor estimation, with some of the approaches

relying on approximation of the marginal likelihoods for the individual models and other

approaches bypassing the need to estimate the individual model marginal likelihoods in

calculating the ratio. In this paper, we follow the approach of first obtaining marginal

likelihood approximations and then using these to approximate the Bayes factor. There are

many simulation-based methods that can be used for estimating the marginal likelihood for

comparing a small number of competing models (Gelfand and Smith, 1990; Gelfand and

Dey, 1994; Verdinelli and Wasserman, 1995; Chib, 1995; DiCiccio et al., 1997; Gelman and

Meng, 1998; Han and Carlin, 2001; Chib and Jeliazkov, 2001). However, most approaches

require substantial numbers of samples within each model to produce an accurate estimate,

so are impractical in conducting a model search.

Hence, it is necessary to focus on marginal likelihood approximations that can be cal-

culated very quickly. The Laplace approximation provides a convenient and widely used

approach, which often performs well (Tierney and Kadane, 1986). DiCiccio et al. (1997)

provide the details of the Laplace approximation to the marginal likelihood. Raftery (1996)

uses the Laplace approximation for Bayesian model selection in GLMs, while Hans (2005);

Hans et al. (2007) combined this approach with SSS. There are also other alternatives for

estimating the marginal likelihood in logistic regression. Jaakkola and Jordan (2000) pro-

posed a variational Bayes (VB) approach to approximate the posterior of β by a variational

transformation of the logistic function. Their paper suggests two different VB methods.

It is widely believed in the machine learning community that the VB approach provides

an improvement over the Laplace approximation. Srebro and Jaakkola (2003) pointed out

that for the Taylor expansion, the iterative improvement of the approximation is not always

monotonic, resulting in no guarantee of convergence. They also claimed that the VB method
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is more robust and the convergence is guaranteed. However, Wang and Titterington (2005);

Consonni and Marin (2006) proved that “the covariance matrices from the variational Bayes

approximations are usually “too small” compared with those for the maximum likelihood

estimator”. Our initial motivation was to apply the VB method in the high dimensional

variable selection setting to improve upon Laplace-based methods, though we found that

Laplace consistently outperformed VB in logistic regression.

We first introduce the Laplace and VB methods, and describe their use in applying

the shotgun stochastic search algorithm to high-dimensional variable selection. This is

followed by two simulation studies; the first compares accuracy of the marginal likelihood

approximations, and the second assesses predictive performance using VB or Laplace model

averaging. Finally, we implement the SSS algorithm with VB and Laplace for the fertility

data set.

2 Marginal Likelihood Approximations

2.1 Laplace Method

In this subsection, we provide a brief review of the Laplace approximation to the marginal

likelihood in logistic regression. Re-expressing marginal likelihood (1.2) in the form

∫

exp
[

log
{

p(Y |Xγ ,βγ) p(βγ)
}

]

dβγ ,

expanding the logarithm function using Taylor series, and keeping the items up to the second

order, we have the estimator

p̂(Y |Xγ) = (2π)(kγ+1)/2|Σ̂γ |
1/2 p(Y |Xγ , β̂γ)p(β̂γ), (2.1)

where kγ is the size of model γ, Σ̂−1
γ is the approximate posterior covariance matrix

Σ̂−1 = −
∂2

∂β̂i∂β̂j

[

log
{

p(Y |Xγ , β̂γ)p(β̂γ)
}

]

, (2.2)

and β̂γ is the posterior mode under model γ

β̂γ = argmaxβγ

{

p(Y |Xγ ,βγ)p(βγ)
}

. (2.3)

To find the posterior mode, βγ , for a logistic regression, a simple Newton-Raphson algo-

rithm can be used, with Raftery (1996) suggesting a one-step approximation that allows use

of maximum likelihood estimates. Here, we instead iterate the algorithm until convergence.

If the prior of βγ is N(0, τIkγ+1), the algorithm is based on the following updating equation:

β(t+1)
γ = β(t)

γ − G(β(t)
γ )−1g(β(t)

γ ), (2.4)
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where

G(βγ) =
1

τ
Ik+1 −

n
∑

i=1

xγ,ix
′

γ,iφγ,i(1 − φγ,i), g(βγ) = −
βγ

τ
+

n
∑

i=1

(yi − φγ,i)xγ,i,

φγ,i =
(

1 + exp(−x′

γ,iβγ)
)−1

.

Iterative updating of βγ tends to converge within a few iterations, so that the approximation

to the marginal likelihood under model γ, p̂(Y |Xγ) can be obtained very quickly.

2.2 Variational Bayes Approximations

In this section, we describe two VB approaches to approximate the logistic regression

marginal likelihood. The first approach was suggested by Jaakkola and Jordan (2000),

while the second approach is also briefly introduced in their paper, though they present it

as less appealing than the first approach.

2.2.1 Approach I

By Bayes’ Theorem,

p(Y |Xγ) =
p(Y |Xγ ,β∗

γ)p(β∗

γ)

p(β∗
γ |Y ,Xγ)

, (2.5)

where β∗

γ is any vector in ℜkγ . Expression (2.5) is commonly used in estimating marginal

likelihoods via Monte Carlo sampling (e.g. Chen, 2005; Chib and Jeliazkov, 2001). Following

Jaakkola and Jordan (2000), for any single observation yi, we have

p(yi|xγ,i,βγ) ≥ p(yi|xγ,i,βγ , ξ) = g(ξ) exp{(Xi − ξ)/2 + λ(ξ)(X2
i − ξ2)}, (2.6)

where g(ξ) = (1 + e−ξ)−1, λ(ξ) = [1/2 − g(ξ)]/(2ξ), and Xi = (2yi − 1)x′

γ,iβγ .

The inequality in (2.6) holds for any ξ. Because log(p(yi|xγ,i,βγ , ξ)) has a quadratic

form, when the prior of βγ is Gaussian, the posterior p(βγ |xγ,i, yi,xγ,i, ξ) is also Gaussian.

Potentially, one can choose ξ so that p(βγ |xγ,i, yi,xγ,i, ξ) provides a good approximation

to p(βγ |xγ,i, yi,xγ,i). From (2.6),
∫

p(yi|xγ,i,βγ , ξ)p(βγ)dβγ ≥

∫

p(yi|xγ,i,βγ , ξ)p(βγ)dβγ . (2.7)

Hence, the best possible approximation to the posterior utilizing the bound in (2.6) is

achieved by choosing the value of ξ that maximizes the right hand side of this inequality.

This maximization can proceed via the Jaakkola and Jordan (2000) EM algorithm. Letting

N(µγ,0,Σγ,0) denote the prior for βγ , initializing i = 0, and choosing an arbitrary positive

starting point for ξ, the algorithm iterates through the following steps for i = 1, . . . , n:

1. Apply the following updating equations:

Σ−1
γ,i = Σ−1

γ,i−1 + 2|λ(ξ)|xγ,ix
′

γ,i µγ,i = Σγ,i

{

Σ−1
γ,i−1µγ + (yi − 1/2)xγ,i

}
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2. Update ξ by:

ξ2 = x′

γ,iΣγ,ixγ,i + (x′

γ,iµγ,i)
2 (2.8)

Go back to Step 1 and repeat until convergence (Jaakkola and Jordan (2000) claim

6-7 iterations is sufficient).

3. Let i = i + 1 and go to step 1 until all subjects are added.

The estimated posterior p(βγ |Y ,Xγ)
d
= N(βγ ;µγ,n,Σγ,n). In using this VB approximation

to the posterior to obtain an approximation to the marginal likelihood via (2.5), we find

substantial sensitivity to the value of β∗

γ . Such sensitivity has been noted in previous use

of (2.5) in approximating marginal likelihoods, and we follow common practice in using the

posterior mean of β. This is convenient, as the posterior mean conveniently corresponds to

µγ,n, the value obtained at the final iteration of the above EM algorithm. We refer to the

resulting estimator of the marginal likelihood as the VB1 estimator.

2.2.2 Approach II

By the variational transformation (2.6), we can also obtain

p(Y |Xγ) ≥ p(Y |Xγ , ξ) =

∫ n
∏

i=1

p(yi|xγ,i,βγ , ξi)p(βγ)dβγ . (2.9)

The right hand side of the inequality (2.9) provides an alternative estimator of the marginal

likelihood, with the vector ξ chosen to maximize the lower bound. As in Section 3.1, the

EM algorithm can be used to estimate the optimal value of ξ. Initializing ξ, the algorithm

iterates as follows until convergence:

1. Update the estimated posterior covariance and mean as

Σ−1
γ = Σ−1

γ,0 + 2

n
∑

i=1

|λ(ξi)|xγ,ix
′

γ,i µγ = Σγ

{

Σ−1
γ,0µγ,0 +

n
∑

i=1

(yi − 1/2)xγ,i

}

2. Update the variational parameters ξ by:

ξ2
i = xT

γ,iΣγxγ,i + (x′

γ,iµγ)2, i = 1, . . . , n, (2.10)

After convergence, the approximation to the marginal likelihood is then

p(Y |Xγ , ξ) =

n
∏

i=1

g(ξi) exp

{

−

n
∑

i=1

(ξi

2
+ λ(ξi)ξ

2
i

)

}

|Σγ

∣

∣

1/2

|Σγ,0

∣

∣

1/2
exp

{

µ′

γΣ−1
γ µγ − µ′

γ,0Σ
−1
γ,0µγ,0

2

}

.

(2.11)

We refer to this estimator as VB2. Jaakkola and Jordan (2000) proposed this approach as

an alternative to VB1, but believed that VB1 is cleaner because optimizing the variational
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parameters sequentially instead of jointly is usually better. However, we find that VB2 has

the advantage of producing a much more stable estimator of the marginal likelihood than

VB1, which has a disturbing degree of sensitivity to β∗

γ . VB2 does take longer to compute,

particularly in cases involving large number of subjects, which implies a high-dimensional

ξ.

3 Shotgun Stochastic Search

Hans (2005) and Hans et al. (2007) proposed the Shotgun Stochastic Search (SSS) algorithm

as an alternative to SSVS for searching for high posterior probability models in cases in which

the model space is defined by all possible subsets of a high-dimensional vector of predictors.

Let γ′ ∈ η(γ) denote the subset of Γ corresponding to those models in a neighborhood of

γ, defined to consist of all those models obtained by adding or deleting a single predictor

or substituting the predictor for another from among the candidates.

The SSS algorithm searches the model space by iterating through the following steps a

large number of times after choosing an initial model γ:

1. Proceeding in parallel, calculate scores for all models in η(γ), the neighborhood of

the current model γ, with these scores defined to be proportional to p∗(γ |Y,Xγ) =

p(γ)p̂(Y |Xγ), where p̂(Y |Xγ) is an estimate of the marginal likelihood under model

γ. Note that one cannot calculate the posterior model probability p(γ |Y,Xγ) as the

normalizing constant involves summing over all possible subsets.

2. Randomly select one new model γ′ from η(γ) by sampling with probabilities propor-

tional to p∗(γ |Y,Xγ)α, where α ∈ [0, 1] is an annealing parameter.

By using annealing, with the annealing parameter tuned based on the problem, one

limits the tendency of SSVS algorithms to remain for long intervals in local regions of the

model space. There is no approach currently available for optimally choosing the annealing

parameter, and instead one can try different values and select the one which finds models

with highest posterior probabilities in training runs. For example, Jones et al. (2005) use

the SSS method for graphical model selection in a gene expression data set with 150 genes,

and find an annealing parameter value of 50 to yield good performance relative to other

values.

Empirically, the SSS algorithm has proven very efficient at finding the top models com-

pared to MCMC methods. Hans et al. (2007) compared the SSS algorithm with the MCMC

model composition (MC3) algorithm (Madigan et al., 1995; Raftery, 1996) and the Gibbs

sampling algorithm (George and McCulloch, 1997) on a standard dataset and show that SSS

is much better than the other two in terms of the accumulated posterior mass of the models

visited given the same number of model evaluations. Based on a simulation study they also

show empirically that the SSS algorithm improves over MCMC approaches in terms of the

average number of steps needed before the true model is found.
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4 Simulation Analysis

Unfortunately, it is very difficult to compare the three methods described in Section 2

(Laplace, VB1, VB2) theoretically. If the marginal likelihoods were analytically tractable,

then one would not need these approximation methods, and it has proven difficult to theo-

retically justify the tightness of the VB lower bounds, as this is entirely problem dependent.

Hence, we rely on simulations to assess relative performance. In assessing accuracy of the

marginal likelihood approximations, one challenge is that we lack knowledge of the exact

marginal likelihoods even for simulated data. To address this problem, we follow the ap-

proach of implementing importance sampling (IS) for a very large number of samples, with

the resulting estimated marginal likelihood used as the gold standard. Up to about 20-30

dimensions, importance sampling is well known to produce very accurate results if suffi-

cient numbers of samples are collected. However, such an approach is certainly not a useful

method in practice in model search problems, as it requires a substantial computational

burden to estimate the marginal likelihood for a single model, and when there are many

models under consideration, it is necessary practically to rapidly approximate the marginal

likelihood so one can spend more time searching for good models. We also tried a num-

ber of recently proposed Monte Carlo methods for estimating the marginal likelihood, but

found that alternative approaches often did not converge to the same estimate even when

using a 100,000s of samples. In contrast, one could easily judge convergence of importance

sampling, and collect sufficient numbers of samples to produce a highly-accurate estimate.

In Section 4.1, we assess the relative performance of Laplace, VB1 and VB2 in estimating

marginal likelihoods for logistic regression models in different simulated data sets. In Section

4.2, we then compare predictive performance of Bayesian model averaging using posterior

model probabilities estimated under the three different approaches.

4.1 Accuracy of Marginal Likelihood Estimation

Let g(βγ) correspond to the multivariate t distribution, with low degrees of freedom (ν = 3)

and with the mean and variance chosen as the VB2 approximated posterior mean and

variance. Then, rewrite p(Yγ |Xγ) in (1.2) as

p(Y |Xγ) =

∫

p(Y |Xγ ,βγ)p(βγ)

g(βγ)
g(βγ)dβγ . (4.1)

By simulating samples of βγ from g(βγ), the marginal likelihood can be estimated by

p(Y |Xγ) ≈

N
∑

i=1

p(Y |Xγ ,β
(i)
γ )p(β

(i)
γ )

g(β
(i)
γ )

, (4.2)

where β
(i)
γ is the ith sample from g(β). We use N = 100, 000 samples, since we find this

empirically to give a highly accurate estimate of the marginal likelihood.

To motivate our choice of g(βγ), first note that it is standard practice to use multivari-

ate Gaussian approximations to the posterior, which are justified by Bernstein von Mises
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theorems that ensure asymptotic normality of the posterior. However, in finite samples, the

normal approximation may have insufficiently heavy tails to be valid as a proposal for use

in importance sampling. For this reason, we follow the approach of inflating the heaviness

of the tails to satisfying the condition that the tails of the proposal are at least as heavy as

the tails of the target. The use of 3 degrees of freedom will lead to very heavy tails, so is a

conservative choice.

In assessing accuracy of Laplace, VB1 and VB2 approximations, we simulated data sets

under three different cases in which there were 6 candidate predictors, with the size of the

true model equal to 1, 3, or 5 predictors. For each case, we simulated 100 data sets having

n = 50 samples per data set, with the coefficients for the predictors that were included

sampled independently from N(0, 42). For one simulated data set for each model size, we

used importance sampling (IS), Laplace, VB1 and VB2 to estimate the marginal likelihoods

under each of the 26 = 64 possible models, and we then sorted the models by the marginal

likelihood estimates based on IS.

Figure 1 plots the IS, Laplace, VB1 and VB2 estimated log marginal likelihoods under

the 64 sorted models in the model size 1 simulations, while Figures 2 and 3 present the cor-

responding results for the size 3 and size 5 simulations, respectively. Because the IS estimate

was considered indistinguishable from the true marginal likelihood, all three plots indicate

that the Laplace approximation is very close to the true marginal likelihood. Interestingly,

the VB methods tend to be highly accurate for models with relatively low marginal like-

lihoods, but tend to substantially underestimate the marginal likelihood for good models.

For example, when there is only one predictor, the 32 models that do not include the true

predictor have a low marginal likelihood, and all the three approximation methods have

very similar estimates to the importance sampling results. On the other hand, for the other

32 models that include the true predictor, the VB1 and VB2 estimates are both poor.

To avoid randomness from one data set, we have also tested the marginal likelihood

estimation performance by different methods on all 100 data sets. The results are very

similar to what we have shown in Figure 1, 2, and 3. As an example, Figure 4 shows the

difference between the highly accurate IS estimate and the three fast approximate estimates

averaging over the 100 simulated data sets in the model size 3 case. For each data set, we

sort all the possible models by their estimated marginal likelihood by importance sampling,

and compute the difference between importance sampling and the other three methods.

Then for each rank of the model, we take the average of the differences. We can see from

the plot that although Laplace approximation is underestimating a little bit the marginal

likelihood, its estimation line is almost parallel to the estimation line made by importance

sampling, which makes the model selection by Laplace approximation more robust. For

the two variational methods, as we have addressed before, their estimation precision both

become worse as the model becomes better, while VB2 is better than VB1.



196 Zhang & Dunson

0 10 20 30 40 50 60

−4
0

−3
5

−3
0

−2
5

−2
0

True model size=1

Model index

Lo
g 

M
ar

gi
na

l L
ik

el
ih

oo
d

IS
Laplace
VB1
VB2

Figure 1: The estimated log-marginal likelihoods under importance sampling (IS), Laplace
and the two variational Bayes methods (VB1, VB2) in a simulation case in which the true
model size is 1. The models are ordered to be increasing in the IS estimated marginal
likelihood.
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Figure 2: The estimated log-marginal likelihoods under IS, Laplace, VB1 and VB2 when
the true model size is 3.
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Figure 3: The estimated log-marginal likelihoods under IS, Laplace, VB1 and VB2 when
the true model size is 5.
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Figure 4: The average difference between the log-marginal likelihood estimated by IS and
the estimates under Laplace, VB1 and VB2 for the 100 simulated data sets when the true
model size is 3.
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4.2 Prediction Performance by Bayesian Model Averaging

When the model space is large, there are typically many models with similar posterior

probabilities, so that it is not ideal to base prediction on a single selected model, and model

averaging is recommended. In particular, given predictors X∗ for a new set of subject, the

model-averaged predictive distribution of y∗ is

p(y∗|X∗,Y ,X) =
∑

γ∈Γ

p(y∗|X∗

γ)p(γ|Y ,X). (4.3)

In binary data, when p(yn+1|xn+1,Y ,X) > 0.5, subject n+1 is predicted to have yn+1 = 1

and otherwise the subject is predicted to have yn+1 = 0.

To test the predictive performance of the three methods, we simulate a data set with 200

potential predictors and 500 samples, with the size of the true model to be 9. After using

SSS to search for the top 50 models for each marginal likelihood estimation method, we

implement model averaging to do out-of-sample predictions for an additional 2000 samples.

The results show that the Laplace approximation has a misclassification rate of 307/2000,

while both VB1 and VB2 have a misclassification rate of 305/2000. In contrast, conducting

prediction based on maximization of the true logistic regression model resulted in a rate

of 308/2000. Hence, all three methods did as well as a frequentist analysis under the true

model.

The average of the estimated posterior probabilities of yi = 1 (yi = 0) for subjects in the

test sample with yi = 1 (yi = 0) was 0.728 (0.803) under the Laplace approximation and

0.709 (0.781) for both VB1 and VB2. Furthermore, the root mean square errors (square

root of the sum of the square of the difference between the true probabilities of yi = 1 and

the estimated probabilities) of Laplace approximation, VB1, and VB2 are 2.615, 3.348, and

3.351, respectively. Hence, there is some gain in predictive performance for the Laplace ap-

proximation relative to the VB approaches in a high dimensional logistic regression setting.

5 Daily Fecundability Data Analysis

5.1 Description of Data and Scientific Problem

We now apply SSS with the three different approximation methods to build a predictive

model for the probability of conception in a menstrual cycle based on daily records of inter-

course timing. Data were drawn from the European Study of Daily Fecundability (ESDF),

which followed women using the sympto-thermal method of natural family planning, collect-

ing daily data on intercourse, basal body temperature and characteristics of cervical mucus

secretiions. We focus on intercourse data in a 19 day window indexed relative to the last

day of hypothermia, which is a commonly used marker of the ovulation day that can be

obtained based on the basal body temperature charts. The 19 window started 12 days prior

to the marker of ovulation and ended 6 days after, which means that ovulation corresponds

to day 13. Intercourse data consisted of a 0/1 indicator of intercourse for each day in each

menstrual cycle under study.
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As described by Bigelow et al. (2004) and Scarpa et al. (2006), increasing mucus score

tends to be highly predictive of an increased day-specific probability of conception. Scarpa

and Dunson (2007) used Bayesian variable selection combined with a decision-theoretic

analysis to identify optimal rules for timing intercourse to achieve conception. Their analysis

focused on simple rules based on the timing in the cycle, allowing for an interaction with

timing and the effect of the mucus score on the probability of conception. However, given the

use of typical SSVS methods in their analysis, it was not computationally possible to consider

models that allow for interactions. In particular, although it is typically assumed that sperm

introduced on different days commingle and then compete independently in attempting to

fertilize the ovum, it is quite possible biologically that the independent competing risks

assumption is not fully accurate biologically. However, in allowing interactions between

the effects of intercourse on different days, one obtains an enormous number of possible

regression models.

The European data base is particular suited to exploring different models, because it

is very large compared to typical prospective studies of fecundability and collected quite

detailed records. Data were available for 2832 cycles from 660 different couples. Previous

analyses of day-specific conception probabilities have focused on simple, biologically-based

competing risk models, which require conception probabilities to be zero if no intercourse

is reported within the potentially fertile interval of the cycle (refer, for example, to Dunson

and Stanford, 2005). Here, we instead focus on a logistic regression model and avoid the

assumption that no reported intercourse implies zero conception probabilities, motivated by

the fact that intercourse will be unreported some of the time. For example, most studies of

this type have at least a few “immaculate conceptions” in which conception occurs in cycles

with no reported intercourse.

5.2 High-dimensional Logistic Regression

We build a standard logistic regression model to study the relationship between intercourse

and women’s conception time. The response variable Y is set as the binary conception

variable, and X consists of the 19-day intercourse variable, and all the second-order inter-

actions between them. As a result, in total there are 190 potential predictors of Y in our

logistic regression model. The prior of βγ is N(0, Iγ), which corresponded to a ridge regres-

sion shrinkage prior that expressed our view that the coefficients for the included predictors

should have a low probability of falling outside of the interval within ±2 of 0. To set the

sparsity prior for model selection, we assume apriori that on average there are 10 predictors

in the model (φ = 10/190), and the annealing parameter for SSS is 1. For all the 2832

observations, we run SSS in parallel for 10,000 iterations using 50 CPU cores, and record

the top models by the three marginal likelihood approximation methods. The top 5 models

found by each method are listed in Table 1. We can also notice in the table that Laplace

approximation is the fastest approximation method in the three methods.

Dunson et al. (1999) reported that the probability of conception is near zero unless

intercourse occurs in a five day fertile interval ending on the day of ovulation. This result
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Method Top 5 Models Score Running Time (s)

9 10 11 12 (9 10) (10 11) (11 12) -1147.41

9 10 11 12 (6 8) (10 11) (11 12) -1147.59

Laplace 9 10 11 12 (8 13) (9 10) (10 11) (11 12) -1147.65 2140

9 10 11 12 (3 14) (9 10) (10 11) (11 12) -1147.75

9 10 11 12 (9 10) (9 12) (10 11) (11 12) -1147.97

10 11 12 (3 9) (10,11) (11,12) -1153.32

9 10 11 12 (9 10) (10 11) (11 12) -1153.55

VB1 10 11 12 (3 9) (8 13) (10 11) (11 12) -1153.79 9304

9 10 11 12 (9 10) (11 12) -1153.82

9 10 11 12 (9 10) (9 12) (10 11) (11 12) -1153.86

9 10 11 12 (9 10) (10 11) (11 12) -1148.84

9 10 11 12 (6 8) (9 10) (10 11) (11 12) -1149.17

VB2 9 10 11 12 (9 12) (10 11) (11 12) -1149.19 72020

10 11 12 (3 9) (10 11) (11 12) -1149.20

9 10 11 12 (6 8) (9 10) (11 12) -1149.28

Table 1: The top 5 models of the daily fecundability data obtained by SSS and the three
marginal likelihood approximation methods. The scores are proportional to the posterior
probabilities of the top models which are obtained by the Laplace, VB1 and VB2.

is consistent with days 8-13 being included in the model for the conception probability. To

our knowledge, all previous analyses of day-specific conception probabilities have assumed

independent competing risks, therefore have not allowed interactions between intercourse

acts occurring on different days. Interestingly, our results suggest that a narrower four day

fertile interval ending one day prior to the estimate day of ovulation is appropriate (days 9,

10, 11 and 12), but with interactions of intercourse occurring between days (9,10), (10,11),

and (11,12). (The sparsity prior plays a role here. If the sparsity prior is less sparse, then the

model will be richer, and days 8, 13 will be in the model with a lot of other non-appealing

days or interactions). These interactions all have high marginal inclusion probabilities.

It can also be suggested that intercourse happening in two continuous days may increase

the probability of conception. This is exactly shown by the coefficients estimated in the

top models containing the interactions of days (10,11) and (11,12), while for the interaction

(9,10), the probability of conception with intercourse in both days is less than the intercourse

in day 10 only, but more than that in day 9 only, because the influence of day 9 is relatively

low (not sure about the reason). On the other hand, several top models also select some

other interactions, such as (6,8) and (8,13), where the days themselves are not included in

the model. Those interactions usually have a positive coefficient, which means they may
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Method (True Value) 50% 60% 70% 80% 90%

Laplace (Y=1) 0.1987 0.2047 0.2091 0.2108 0.2025

VB1 (Y=1) 0.2023 0.2101 0.2141 0.2168 0.2105

VB2 (Y=1) 0.2021 0.2089 0.2141 0.2171 0.2100

Laplace (Y=0) 0.1347 0.1348 0.1399 0.1415 0.1451

VB1 (Y=0) 0.1465 0.1459 0.1520 0.1541 0.1577

VB2 (Y=0) 0.1466 0.1460 0.1519 0.1541 0.1576

Table 2: The mean predictive probabilities of conception for true values of response that
are equal to 1 or 0 in the test data respectively. Different training sample sizes are tried
(50% - 90%).

also contribute to the conception a little.

To assess the model selection performance of the three methods, we use cross-validation

to compare the three methods. First, 10% of the data, which mean 283 observations, are

randomly picked out to form the test data. For the other 2549 observations, we try different

sample size of the training data, i.e., randomly select 1416, 1699, 1982, 2266 and 2549

observations (50% - 90% of the total 2832 cycles) to form 5 individual training data sets.

To compare different approximation methods for different sizes of the training data sets,

we first use SSS to do the model selection, and then use Bayesian model averaging on the

top 50 models to obtain predictive probabilities of conception for the test data. The other

settings such as priors are the same as the analysis for the full data.

In this cross-validation analysis, it is not suitable to use 0.5 threshold to make prediction

on Y based on the predictive probabilities, because the percentage of 1’s in the population

is so low (about 0.153), otherwise it may give a prediction set with all 0’s. A nice way to

look at is to compare the mean predictive probabilities of conception given the true value

of Y in the test data for different sizes of the training data, and different approximation

methods (Table 2).

From Table 2, the VB approximations does not have noticeably worse performance than

Laplace in terms of prediction. This is because VB1 and VB2 order the models almost

correctly, but just under-estimate the marginal likelihoods for the better models, flattening

out the posterior probabilities across the better models. This may have a modest impact on

predictive performance that may not show up compellingly in the cross validation exercise,

but clearly in the previous simulation analysis. Also, it is quite intriguing that Laplace

usually gives less mean predictive probabilities of conception than VB1 and VB2, and the

predictive probabilities using training data with sizes from 50% to 80% keep increasing

in each row, while we think what happens to the 90% training data is just because of

randomness.
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6 Conclusion

This article was originally motivated by the goal of using variational Bayes approximations

to improve methods for high-dimensional model selection and averaging. The VB approaches

have been increasingly widely used in machine learning applications, and have conceptual

appeal in resulting from maximization of a formal lower bound on the marginal likelihood.

Although the tightness of the lower bound is in general quite difficult to assess theoretically,

the good performance of VB procedures in various predictive settings has been reassuring.

However, to our knowledge, the performance of VB relative to traditional Laplace methods

of estimating the marginal likelihood with the goal of model selection has not been assessed.

In the setting of logistic regression model selection, this article uses simulations to com-

pare the accuracy of Laplace and two types of VB approximations (VB1, VB2). We find

that Laplace is highly accurate, while VB1 and VB2 have a disturbing tendency to under-

estimate the marginal likelihood for high posterior probability models. When the goal is

model selection or accurate estimate of posterior model probabilities, this type of under-

estimation is particularly troubling, since one will under-estimate the probabilities for good

models and over-estimate the probabilities for bad models. On the positive side, the VB

approaches do tend to rank the models appropriately; it is only the scores that are mis-

estimated. Perhaps for this reason, we have observed only a slight decrease in predictive

performance for the VB approaches relative to Laplace in settings with few important pre-

dictors and a high-dimensional set of candidates.

The performance of the VB approach is critically dependent on the accuracy of the

product factorization of the joint posterior. This gives us a clue as to the reason for our

results. In particular, it is our expectation in the variable selection setting that the product

factorization provides a good approximation for bad models, since bad models correspond to

exclusion of important predictors and inclusion of predictors that actually have no impact.

However, we expect that the approximation breaks down when several important predictors

are included and the coefficients for these predictors are correlated a posteriori, as one would

typically expect in regression models. Because the implementation of VB methods is so tied

to the product factorization, it is difficult to entirely eliminate this problem. However, one

strategy is to attempt a factorization under a parameterization chosen to reduce posterior

dependence.
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