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summary

The linear mixed models (LMM) and the empirical best linear unbiased predictor
(EBLUP) induced from LMM have been well studied and extensively used for a
long time in many applications. Of these, EBLUP in small area estimation has
been recognized as a useful tool in various practical statistics. In this paper, we
give a review on LMM and EBLUP from a aspect of small area estimation. Espe-
cially, we explain why EBLUP is likely to be reliable. The reason is that EBLUP
possesses the shrinkage function and the pooling effects as desirable properties,
which arise from the setup of random effects and common parameters in LMM.
Such important properties of EBLUP are clarified as well as some recent results
of the mean squared error estimation, the confidence interval and the variable
selection procedures are summarized.
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1 Introduction

The linear mixed models (LMM) and the empirical best linear unbiased predictor (EBLUP)
or the empirical Bayes estimator (EB) induced from LMM have been studied for a long
time in the literature. Especially, LMM is very useful in small area estimation. Small area
refers to a small geographical area or a group for which little information is obtained from
the sample survey. When only a few observations are available from a given small area,
the direct estimator based only on the data from the small area is likely to be unreliable,
so that the relevant supplementary information such as data from other related small areas
is used via suitable linking models to increase the precision of the estimate. The typical
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models used for the small area estimation are the Fay-Herriot model and the nested error
regression model (NERM), which are special models of LMM, and the model-based estimates
including EBLUP or EB are found to be very useful as illustrated by Fay and Herriot (1979)
and Battese, Harter and Fuller (1988). For a good review and account on this topic, see
Ghosh and Rao (1994), Rao (1999, 2003) and Pfeffermann (2002).

In this paper, we give a review on theory of the linear mixed model and applications to
small area estimation under the normality assumption. In Sections 2 and 3, we explain the
derivation of the mixed model equation and BLUP, asymptotic properties of the maximum
likelihood (ML) and restricted maximum likelihood (REML) estimators of variance com-
ponents, and EBLUP’s features and their relation with the structure of LMM. Especially,
we explain why EBLUP is likely to be reliable. As discussed there, desirable properties of
EBLUP are characterized as the shrinkage function and the pooling effect, namely, EBLUP
shrinks the sample mean of the small area towards a stable quantity constructed by pooling
all the data. These two features of EBLUP, shrinkage and pooling effects, come from the
structure of LMM described as (observation) = (common parameters) + (random effects)
+ (error terms), namely, the function of shrinkage arises from the random effects of LMM,
and the pooling effect is due to the setup of the common parameters in LMM. As seen from
the fact that EBLUP is interpreted as the empirical Bayes estimator, this perspective was
recognized by Efron and Morris (1975) in the context of the empirical Bayes method. While
BLUP or EBLUP was proposed by Henderson (1950), EBLUP is related to the shrinkage
estimator studied by Stein (1956), who established analytically that EBLUP improves on
the sample means when the number of small areas is larger than or equal to three. This fact
shows not only that EBLUP has a larger precision than the sample mean, but also that a
similar concept came out at the same time by Henderson (1950) for practical use and Stein
(1956) for theoretical interest.

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. Two of typical methods for measuring uncertainty
of EBLUP is the estimation of the mean squared error (MSE) and the confidence interval
based on EBLUP. In Section 4, we explain the results of the second-order approximation
of an unbiased estimator of MSE of EBLUP and the confidence interval which satisfies the
nominal confidence level with the second-order accuracy.

In Section 5, we explain the testing problem of the regression coefficients and the selection
of explanatory variables.

Since the topics and results treated in this paper are limited due to shortage of page
length, see Searle, Casella and McCulloch (1992) and Demidenko (2004) for LMM; Rao
(2003) for small area estimation; Banerjee, Carlin and Gelfand (2004) for spatial models;
Hsiao (2003) for econometric models; McCulloch and Searle (2001), McCulloch (2003),
Fahrmeir and Tutz (2001) and Molenberghs and Verbeke (2006) for the generalized linear
mixed models; Lawson (2006), Lawson, Browne and Vidal Rodeiro (2003), Diggle, Lian and
Zeger (1994), Verbeke and Molenberghs (2000) and Fitzmaurice, Laird and Ware (2004) for
disease mapping and other applications.
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2 Linear Mixed Models and BLUP

2.1 Linear Mixed Models

Consider the general linear mixed model

y = Xβ +Zv + ε, (2.1)

where y is an N × 1 observation vector of the response variable, X and Z are N × p and
N ×M matrices, respectively, of the explanatory variables, β is a p × 1 unknown vector
of the regression coefficients, v is an M × 1 vector of the random effects, and ε is an
N × 1 vector of the random errors. Here, v and ε are mutually independently distributed
as v ∼ NM (0,G(θ)) and ε ∼ NN (0,R(θ)), where θ = (θ1, . . . , θq)′ is a q dimensional
vector of unknown parameters, and G = G(θ) and R = R(θ) are positive definite matrices.
Throughout the paper, for simplicity, it is assumed that X is of full rank. Then, y has a
marginal distribution

N (Xβ,Σ(θ)) (2.2)

for
Σ = Σ(θ) = R(θ) +ZG(θ)Z ′. (2.3)

As specific models, LMM includes the nested error regression model (NERM), the Fay-
Herriot model and a basic area model with time series structures.

Example 2.1 (NERM). This model is described by

yij = x′ijβ + vi + εij , i = 1, . . . , k, j = 1, . . . , ni, (2.4)

where k is the number of small areas, N =
∑k
i=1 ni, xij is a p × 1 vector of explanatory

variables, β is a p× 1 unknown common vector of regression coefficients, and vi’s and εij ’s
are mutually independently distributed as vi ∼ N (0, σ2

v) and εij ∼ N (0, σ2). Here, σ2
v

and σ2 are referred to as, respectively, ‘between’ and ‘within’ components of variance, and
both are unknown, and (2.4) is also called the Variance Components Model. Let Xi =
(xi1, . . . ,xi,ni

)′, X = (X ′1, . . . ,X
′
k)′, yi = (yi1, . . . , yi,ni

)′, y = (y′1, . . . ,y
′
k)′ and let ε be

similarly defined. Let v = (v1, . . . , vk)′ and Z = block diag(j1, . . . , jk) for ji = (1, . . . , 1)′ ∈
Rni . Then, the model is expressed in vector notations as y = Xβ + Zv + ε, where the
asymptotics for large k are considered.

Battese, et al . (1988) used the NERM in the framework of a finite population model
to predict areas under corn and soybeans for each of k = 12 counties in north-central
Iowa. In their analysis, each county is divided into about 250 hectares segments, and ni
segments are selected from the i-th county. For the j-th segment of the i-th county, yij is
the number of hectares of corn (or soybeans) in the (i, j) segment reported by interviewing
farm operators, and xij1 and xij2 are the number of pixels (0.45 hector) classified as corn
and soybeans, respectively, by using LANDSAT satellite data. Since ni’s range from 1 to 5
with

∑k
i=1 ni = 37, the sample mean yi =

∑ni

j=1 yij/ni has large deviation for predicting the
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mean crop hectare per segment µi = x′iβ+vi for xi =
∑ni

j=1 xij/ni. The NERM enables us
to construct more reliable prediction procedures not only by using the auxiliary information
on the LANDSAT data, but also by combining the data of the related areas. For a further
account, see Section 3.2.

Example 2.2 (Fay-Herriot model). While NERM is an individual level model, the following
basic area model is useful in the small area estimation:

yi = x′iβ + vi + εi, i = 1, . . . , k, (2.5)

where k is the number of small areas, xi is a p × 1 vector of explanatory variables, β is
a p × 1 unknown common vector of regression coefficients, and vi’s and εi’s are mutually
distributed random errors such that vi ∼ N (0, θ) and εi ∼ N (0, di). Let X = (x1, . . . ,xk)′,
y = (y1, . . . , yk)′, and let v and ε be similarly defined. Then, the model is expressed in
vector notations as

y = Xβ + v + ε,

and y ∼ N (Xβ,Σ) where Σ = Σ(θ) = θIk +D for D = diag (d1, . . . , dk) and N = k.

Example 2.3 (A basic area model with time series structures). The Fay-Herriot type model
with time series or longitudinal structures is described by

yit = x′itβ + vit + εit, i = 1, . . . , k, t = 1, . . . , T, (2.6)

where k is the number of small areas, t is a time index, N = kT , xit is a p × 1 vector of
explanatory variables, β is a p × 1 unknown common vector of regression coefficients, and
vit’s and εit’s are random errors. Let Xi = (xi1, . . . ,xi,ni)

′, yi = (yi1, . . . , yi,ni)
′, and let

vi and εi be similarly defined. Then, the model is expressed in vector notations as

yi = Xiβ + vi + εi, i = 1, . . . , k.

Here, it is assumed that εi and vi are mutually distributed as εi ∼ N (0,Di) for a T × T
known diagonal matrix Di = diag (di1, . . . , diT ) and vi ∼ N (0, σ2

vΨ(ρ)) for unknown scalar
σ2
v and a T ×T unknown matrix Ψ(ρ) with a parameter ρ, |ρ| < 1. As typical cases of Ψ(ρ),

we have
Ψ(ρ) = (1− ρ)IT + ρjT j

′
T and Ψ(ρ) = mati,j(ρ|i−j|).

Letting X = (X ′1, . . . ,X
′
k)′, y = (y′1, . . . ,y

′
k)′ and letting v and ε be defined similarly, we

can express the model as y = Xβ + v + ε.

2.2 Mixed Model Equation and BLUP

2.2.1 BLUP

We now consider the estimation of the regression coefficients β and the prediction of the
random effects v in (2.1). When the covariance matricesG andR are known, there exists the
best unbiased predictor of v among the linear functions of y. This is called the Best Linear
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Unbiased Predictor (BLUP) and denoted by v̂. Also, there exists the best linear unbiased
estimator of β, denoted by β̂. Henderson (1950) showed that (β̂, v̂) can be derived by the
solution of the equation given by X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z +G−1

 β̂

v̂

 =

 X ′R−1y

Z ′R−1y

 , (2.7)

which is called the Mixed Model Equation, and the solution is given by

β̂ = (X ′Σ−1X)−1X ′Σ−1y, v̂ = GZ ′Σ−1(y −Xβ̂), (2.8)

where β̂ is the generalized least squares (GLS) estimator of β. When we want to estimate
µ = a′β + b′v for known vectors a ∈ Rp and b ∈ Rq, the BLUP of µ is given by

µ̂EB = a′β̂ + b′GZ ′Σ−1(y −Xβ̂), (2.9)

where we used the notation µ̂EB since it can be interpreted as an empirical Bayes procedure
as discussed below.

We here confirm that (β̂, v̂) is the solution of the mixed model equation (2.7). The
second equation in (2.7) is written as Z ′R−1Xβ̂ + (Z ′R−1Z +G−1)v̂ = Z ′R−1y, which
implies that

v̂ = (Z ′R−1Z +G−1)−1Z ′R−1(y −Xβ). (2.10)

It is noted that

(Z ′R−1Z +G−1)−1Z ′R−1

=GZ ′R−1 −G
{

(Z ′R−1Z +G−1)−G−1
}

(Z ′R−1Z +G−1)−1Z ′R−1

=GZ ′R−1 −GZ ′R−1Z(Z ′R−1Z +G−1)−1Z ′R−1

=GZ ′
{
R−1 −R−1Z(G−1 +Z ′R−1Z)−1Z ′R−1

}
=GZ ′Σ−1,

where at the last equality, we used the useful equality

Σ−1 = (ZGZ ′ +R)−1 = R−1 −R−1Z(G−1 +Z ′R−1Z)−1Z ′R−1. (2.11)

For instance, see Theorem 1.4.1 in Srivastava and Khatri (1979). Thus, v̂ given in (2.10) is
expressed as the form given in (2.8).

We next substitute v̂ = GZ ′Σ−1(y − Xβ̂) into the first equation of (2.7) given by
X ′R−1Xβ̂ +X ′R−1Zv̂ = X ′R−1y. Then,

X ′R−1Xβ̂ +X ′R−1ZGZ ′Σ−1(y −Xβ̂) = X ′R−1y,

which yields

X ′R−1(Σ−ZGZ ′)Σ−1Xβ̂ = X ′R−1(Σ−ZGZ ′)Σ−1y.

It is noted that Σ = ZGZ ′+R, namely, R−1(Σ−ZGZ ′) = I. Thus, we get the equation
X ′Σ−1Xβ̂ = X ′Σ−1y, which means that the solution β̂ is described as the form in (2.8).
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Example 2.4 (BLUP in NERM). As explained in Example 2.1, the mean crop hectare per
segment in NERM (2.4) is described by µi = x′iβ + vi for i = 1, . . . , k. Let θ1 = σ2,
θ2 = σ2

v , and let θ = (θ1, θ2)′. In this mode, G(θ) = θ2Ik, Σi(θ) = θ1Ini
+ θ2jij

′
i and

Σ(θ) = block diag(Σ1(θ), . . . ,Σk(θ)). Noting that

Σ−1
i =

1
θ1

(
Ini −

θ2
θ1 + niθ2

jij
′
i

)
,

from (2.9), it follows that the BLUP of µi is given by

µ̂EBi (θ) = x′iβ̂(θ) +
niθ2

θ1 + niθ2

{
yi − x′iβ̂(θ)

}
(2.12)

where yi =
∑ni

j=1 yij , and the GLS of β is

β̂(θ) =
{ k∑
i=1

(
xix

′
i −

n2
i θ2

θ1 + niθ2
xix

′
i

)}−1 k∑
i=1

(
xiy

′
i −

niθ2
θ1 + niθ2

xiyi
)
.

2.2.2 Derivation of the Mixed Model Equation

We explain how the mixed model equation (2.7) can be derived. Two of typical approaches
to the derivation are the maximum likelihood (ML) method and the empirical Bayes method.

To derive (2.7) based on the ML method, it is noted that the joint probability density
function of (y,v) is written as (2π)−N/2|G|−1/2|R|−1/2 · exp{−h(β,v)/2}, where h(β,v) =
v′G−1v+ (y−Xβ−Zv)′R−1(y−Xβ−Zv). To minimize h(β,v) with respect to (β,v),
we need to differentiate it with respect to β and v, which yields that

∂h(β,v)
∂β

=− 2X ′R−1(y −Xβ −Zv),

∂h(β,v)
∂v

=2G−1v − 2Z ′R−1(y −Xβ −Zv).

Hence, it is seen that (2.7) is a metrical expression of ∂h(β,v)/∂β = 0 and ∂h(β,v)/∂v = 0.
The other method is based on the conditional distribution of v given y. Since the

covariance matrix of (y,v) is given by

Cov (y,v) =

 Σ ZG

GZ ′ G

 , (2.13)

from the well known property of multivariate normal distribution, it follows that the condi-
tional distribution of v given y is written as

v|y ∼ Nq
(
GZ ′Σ−1(y −Xβ),G−GZ ′Σ−1ZG

)
.

It is noted that in the Bayesian context, this conditional distribution corresponds to the
posterior distribution. Using (2.11), we can see that the marginal distribution of y is given
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by y ∼ NN (Xβ,Σ), whose density function is described as (2π)−N/2|Σ|−1/2 exp{−(y −
Xβ)′Σ−1(y−Xβ)/2}. Thus, the ML estimator of β based on this marginal density function
is identical to the GLS estimator β̂. Since the Bayes estimator is the mean of the posterior
distribution, the expectation of the posterior distribution, given by

E[v|y] = GZ ′Σ−1(y −Xβ), (2.14)

is the Bayes estimator of v. Substituting β̂ into the Bayes estimator, we get the empirical
Bayes estimatorGZ ′Σ−1(y−Xβ̂), which is identical to v̂ given in (2.8). Hence, the solution
of the mixed model equation can be derived as the empirical Bayes estimator.

The distinction of the two methods described above is that the ML method estimates
v by the mode of the posterior distribution, while the empirical Bayes method estimate v
by the mean of the posterior distribution. Although both methods gives the same solution
in normal distributions, their solutions are different in general. In the context of Bayesian
statistics, the former method is called the Bayesian Maximum Likelihood method.

It is noted that the conditional expectation (2.14) means that we can predict the un-
observable variable v if v has a correlation with y, namely, the structure of the covariance
matrix given in (2.13) is essential for the predictability. This consideration has been widely
used in various fields like finite population models and incomplete data problems.

3 Estimation of Parameters and EBLUP

3.1 Estimation of the Variance Components

3.1.1 ML and REML Methods

In the LMM given in (2.1), the covariance matrices G and R are, in general, functions of
unknown parameters like variance components. The unknown parameters are here denoted
by θ = (θ1, . . . , θq)′, namely, the covariance matrix of y is described as

Σ = Σ(θ) = R(θ) +ZG(θ)Z ′.

The typical methods for estimating θ are based on the Maximum Likelihood (ML)
and Restricted Maximum Likelihood (REML) methods. Substituting the GLS β̂(θ) into
the marginal density function whose distribution is NN (Xβ,Σ(θ)), we can see that the
ML estimator of θ is derived as a solution of minimizing the function log |Σ(θ)| + (y −
Xβ̂(θ))′Σ(θ)−1(y −Xβ̂(θ)). On the other hand, let K be an N × (N − p) matrix sat-
isfying K ′X = 0. Then K ′y ∼ NN−p(0,K ′Σ(θ)K), and the REML method is the ML
method based on this distribution, namely, the REML estimator is derived as a solution of
minimizing the function log |K ′Σ(θ)K|+ y′K(K ′Σ(θ)K)−1K ′y. Let

Π = Π(θ) = Σ(θ)−1 −Σ(θ)−1X
{
X ′Σ(θ)−1X

}−
X ′Σ(θ)−1, (3.1)

and note that

(y −Xβ̂(θ))′Σ(θ)−1(y −Xβ̂(θ)) = y′Π(θ)y, Π(θ) = K(K ′Σ(θ)K)−1K ′.
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Also note that ∂i log |Σ| = tr [Σ−1∂iΣ], ∂iΠ = −Π(∂iΣ)Π, ∂i log |K ′ΣK| = tr [Π∂iΣ]
where ∂i denotes the differential operator ∂i = ∂/∂θi. Thus, the ML and REML estimators
are solutions of the following equations:

[ML] y′Π(θ){∂iΣ(θ)}Π(θ)y = tr
[
Σ(θ)−1{∂iΣ(θ)}

]
, (3.2)

[REML] y′Π(θ){∂iΣ(θ)}Π(θ)y = tr [Π(θ){∂iΣ(θ)}] . (3.3)

Since the l.h.s. of the above equations can be expressed as y′Π(θ){∂iΣ(θ)}Π(θ)y = (y −
Xβ̂(θ))′Σ(θ)−1{∂iΣ(θ)}Σ(θ)−1(y −Xβ̂(θ)) = −(y −Xβ̂(θ))′{∂iΣ(θ)−1}(y −Xβ̂(θ)),
we can use a convenient expression among these. For discussions about which is better,
ML or REML, see Section 6.10 in McCulloch and Searle (2001). In estimation of variance
components, REML seems better in that REML is closer to an unbiased estimator than
ML, while both have the same covariance matrix as explained below.

3.1.2 Asymptotic Properties of the ML and REML Estimators

The consistency and asymptotic normality of the ML and REML has been studied by
Sweeting (1980), Mardia and Marshall (1984) and Cressie and Lahiri (1993). We here
explain the asymptotic properties using the results of Kubokawa (2009b). To this end, we
use the notations

coli(ai) =


a1

...

aq

 , matij(bij) =


b11 · · · b1q
...

. . .
...

bq1 · · · bqq

 ,

and C(i) = ∂C/∂θi and C(ij) = ∂2C/∂θi∂θj for matrix C = C(θ). Let λ1 ≤ · · · ≤ λN
be the eigenvalues of Σ and let those of Σ(i) and Σ(ij) be λia and λija for a = 1, . . . , N
respectively, where |λi1| ≤ · · · ≤ |λiN |, |λ

ij
1 | ≤ · · · ≤ |λ

ij
N |. Then, we assume the following

conditions for large N and 0 ≤ i, j ≤ q:

(C1) The elements ofX, Z, G(θ), R(θ), Σ(θ), Σ(i)(θ), Σ(ij)(θ), a, b, p and q are bounded,
and X ′X is positive definite and X ′X/N converges to a positive definite matrix;

(C2) Σ(θ) is twice continuously differentiable in θ, and limN→∞ λN <∞, limN→∞ |λiN | <
∞ and limN→∞ |λijN | <∞.

(C3) The q×q matrixA2 = matij(tr [Σ(i)ΣΣ(j)Σ]) is positive definite andA2/N converges
to a positive definite matrix.

Since the conditions of Theorem 2 in Mardia and Marshall (1984) are satisfied by (C1), (C2)

and (C3), it can be seen that θ̂
M
− θ = Op(N−1/2).

Under further appropriate assumptions, θ̂
M
− θ can be asymptotically expanded as

θ̂
M
− θ = θ̂

M∗
+ θ̂

M∗∗
+Op(N−3/2), (3.4)
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where θ̂
M∗

= Op(N−1/2) and θ̂
M∗∗

= Op(N−1), and their terms are given by

θ̂
M∗

=A−1
2 a1 = A−1

2 coli(−tr [(Σ−1)(i)(yy′ −Σ)]),

θ̂
M∗∗

=−A−1
2

{
a0 −

b0
2

+A1A
−1
2 a1

}
,

for a1 = coli(−tr [(Σ−1)(i)(yy′−Σ)]), a0 = coli(tr [Qiyy
′]),A2 = matia(−tr [Σ(a)(Σ

−1)(i)]),
A1 = matia(tr [(Σ−1)(ia)(yy′−Σ)]), b0 = coli(

∑
a,bBiabθ̂

M∗
a θ̂M∗b ). Here,Qi = Σ−1Σ(i)P+

PΣ(i)Σ
−1 −PΣ(i)P for P = Σ−1X(X ′Σ−1X)−1X ′Σ−1, and Biab = tr [Σ(ab)(Σ

−1)(i)] +
tr [Σ(a)(Σ

−1)(ib)] + tr [Σ(b)(Σ
−1)(ia)]. For the details, see Datta and Lahiri (2000), Das,

Jiang and Rao (2004) and Kubokawa (2009b). Das et al . (2004) succeeded in the derivation
under the rigorous conditions, while Kubokawa (2009b) developed the third-order expansion

like θ̂
M
− θ = θ̂

M∗
+ θ̂

M∗∗
+ θ̂

M∗∗∗
+Op(N−2). Note that E

[
tr [C1(yy′ −Σ)]tr [C2(yy′ −

Σ)]
]

= 2tr [C1ΣC2Σ] under the distribution y ∼ N (0,Σ) for matrices C1 and C2. For
instance, see Lemma A.1 in Prasad and Rao (1990). Using this equality we can observe that

E[θ̂
M∗

] =0, Cov (θ̂
M∗

) = 2A−1
2 ,

E[θ̂
M∗∗

] =A−1
2 coli(tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X])

+A−1
2 coli(tr [A−1

2 mata,b(tr [Σ(ab)(Σ
−1)(i)])]).

It is noted that E[θ̂
M∗∗

] = A−1
2 coli(tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X]) when Σ or G and R

are matrices of linear functions of θ.
For the REML estimator, θ̂

R
− θ can be asymptotically expanded as

θ̂
R
− θ = θ̂

R∗
+ θ̂

R∗∗
+Op(N−2),

where θ̂
R∗

= θ̂
M∗

= A−1
2 a1 and

θ̂
R∗∗

= −A−1
2

{
a∗0 − b0/2 +A1A

−1
2 a1

}
,

where a∗0 = coli(tr [Qi(yy′ − Σ)]). Thus, E[θ̂
R∗

] = 0, Cov (θ̂
R∗

) = Cov (θ̂
M∗

) = 2A−1
2

and

E[θ̂
R∗∗

] = A−1
2 coli(tr [A−1

2 mata,b(tr [Σ(ab)(Σ
−1)(i)])]), (3.5)

where E[θ̂
R∗∗

] = 0 when Σ are matrices of linear functions of θ.

Example 3.1 (NERM). In the NERM, the parameters θ = (θ1, θ2)′ and Σ correspond to
θ1 = σ2, θ2 = σ2

v and Σ = blockdiag(Σ1, . . . ,Σk) for Σi = θ1Ii+θ2jij
′
i, Ii being the ni×ni

identity matrix. The ML estimators θ̂
M

= (θ̂M1 , θ̂M2 )′ of (θ1, θ2)′ are given as the solutions
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of the equations L1(θ̂
M

) = 0 and L2(θ̂
M

) = 0 where

L1(θ) =
1
θ21

k∑
i=1

‖yi −Xiβ̂(θ)− niθ2
θ1 + niθ2

(yi − x′iβ̂(θ))ji‖2 −
k∑
i=1

ni
θ1

(1− θ2
θ1 + niθ2

),

L2(θ) =
k∑
i=1

n2
i

(θ1 + niθ2)2
{yi − x′iβ̂(θ)}2 −

k∑
i=1

ni
θ1 + niθ2

,

since Σ(1) = I and Σ(2) = block diag(j1j
′
1, . . . , jkj

′
k). Note that A2 and a1 can be written

as

A2 =matij(tr [Σ(i)Σ
−1Σ(j)Σ

−1])

=

 (N − k)θ−2
1 +

∑
i(θ1 + niθ2)−2

∑
i ni(θ1 + niθ2)−2∑

i ni(θ1 + niθ2)−2
∑
i n

2
i (θ1 + niθ2)−2

 ,

a1 =

 ∑
i tr [Σ−2

i (yiy′i −Σi)]∑
i j
′
iΣ
−1
i (yiy′i −Σi)Σ−1

i ji

 .

Since θ̂
M∗

= A−1
2 a1, it is observed that E[θ̂

M∗
] = 0 and

Cov (θ̂
M∗

) =
2θ21
d(ψ)

 ∑k
i=1 n

2
i γ

2
i −

∑k
i=1 niγ

2
i

−
∑k
i=1 niγ

2
i (N − k +

∑k
i=1 γ

2
i )

 ,

where d(ψ) = (N − k +
∑k
i=1 γ

2
i )
∑k
i=1 n

2
i γ

2
i − (

∑k
i=1 niγ

2
i )2 and γi = (1 + niψ)−1 for

ψ = θ2/θ1. Also,

E[θ̂
M∗∗

] =
θ1
d(ψ)

 −p
∑k
i=1 n

2
i γ

2
i + (

∑k
i=1 niγi)c(ψ)

p
∑k
i=1 niγ

2
i − (N − k +

∑k
i=1 γi)c(ψ)

 ,

where c(ψ) = tr [(X ′Σ−1X)−1
∑k
i=1 n

2
i γ

2
i xix

′
i]. These were obtained by Datta and Lahiri

(2000).

The REML estimators θ̂
R

= (θ̂R1 , θ̂
R
2 )′ of (θ1, θ2)′ are given as the solutions of the equa-

tions given by

0 =L1(θ) + tr [(X ′Σ−1X)−1X ′Σ−2X],

0 =L2(θ) + tr [(X ′Σ−1X)−1X ′Σ−1block diag(j1j
′
1, . . . , jkj

′
k)Σ−1X].

Noting that θ̂
R∗

= A−1
2 a1 = θ̂

M∗
, we can see that E[θ̂

R∗
] = 0, Cov (θ̂

R∗
) = Cov (θ̂

M∗
)

and E[θ̂
R∗∗

] = O(N−2) as shown in Datta and Lahiri (2000).
As estimation methods other than ML and REML, Henderson’s methods and Rao’s

MINQUE methods are well known procedures in estimation of variance components. For
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Henderson’s methods and the MINQUE methods, see Rao and Kleffe (1988) and Searle et al .
(1992). Especially, Henderson’s methods provide explicit expressions of unbiased estimators.
Prasad and Rao (1990) derived estimators with explicit forms using the Henderson method
(III), which is given as follows: Let S = y′(IN − X(X ′X)−1X ′)y and S1 = y′(E −
EX(X ′EX)−1X ′E)y where E = block diag(E1, . . . ,Ek) for Ei = Ii − n−1

i jij
′
i. Then,

unbiased estimators of θ1 and θ2 are given by

θ̂U1 = S1/(N − k − p) and θ̂U2 = {S − (N − p)θ̂U1 }/N∗,

where N∗ = N − tr {(X ′X)−1
∑k
i=1 n

2
ixix

′
i} as suggested by Prasad and Rao (1990) . In

this case, θ̂Ui − θi = θ̂U∗i for i = 1, 2, and it is easy to see that E[θ̂U∗1 ] = 0, E[θ̂U∗2 ] = 0 and

Cov (θ̂
U∗

) =
2θ21
N − k

 1 −k/N
−k/N {k2 + (N − k)

∑k
i=1(1 + niθ2/θ1)2}/N2

+O(N−2).

Since θ̂U2 takes a negative value with a positive probability, it is reasonable to use the
truncated estimator θ̂TR2 = max{θ̂U2 , 0}.

3.2 EBLUP’s Features and their Relation with the Structure of
LMM

The Estimated (or Empirical) Best Linear Unbiased Predictor (EBLUP) is derived by sub-
stituting estimator θ̂ into BLUP given in (2.9), namely, EBLUP of µ = a′β + b′v is given
by

µ̂EB(θ̂) = a′β̂(θ̂) + b′G(θ̂)Z ′{Σ(θ̂)}−1{y −Xβ̂(θ̂)}. (3.6)

From Example 2.4, the EBLUP of µi = x′iβ + vi is written as

µ̂EBi (θ̂) = x′iβ̂(θ̂) +
niθ̂2

θ̂1 + niθ̂2

{
yi − x′iβ̂(θ̂)

}
, (3.7)

where θ̂ is a consistent estimator of θ given in Example 3.1. It is note that V ar(yi) =
θ1/ni + θ2. When ni is small or θ̂2/θ̂1 is large, the sample mean yi is not reliable because of
an unacceptable error variance, while the EBLUP µ̂EBi (θ̂) approaches to x′iβ̂(θ̂), which is
stable because the GLS β̂(θ̂) is constructed based on all the observations. When ni is large
or θ̂2/θ̂1 is small, on the other hand, yi is likely to be reliable, and µ̂EBi (θ̂) approaches to yi.
The feature depending on each small area tends to appear in yi rather than µ̂EBi (θ̂). This
shows that µ̂EBi (θ̂) gives stable and reliable predicted values by appropriately adjusting the
weight of yi and x′iβ̂(θ̂).

Such desirable properties of EBLUP are characterized as the shrinkage function and
the pooling effect, namely, µ̂EBi (θ̂) shrinks yi towards x′iβ̂(θ̂), which is constructed by
pooling all the data. The two features of EBLUP, shrinkage and pooling effects, come from
the structure of the linear mixed model described as (observation) = (common mean) +
(random effect) + (error term).
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3.2.1 Shrinkage via Random Effects

In the case that vi is a fixed parameter and β = 0, the best estimator of µi is yi. When vi
is a random effect, however, the covariance matrix of (yi, vi) is

Cov (yi, vi) =

 θ2 + θ1/ni θ2

θ2 θ2

 ,

namely, the correlation yields between yi and vi. From this correlation, it follows that
the conditional expectation is written as E[vi|yi] = θ2ni(θ1 + θ2ni)−1(yi − x′iβ), which
means that the conditional expectation shrinks yi towards x′iβ. Thus, the random effect vi
produces the function of shrinkage in EBLUP.

3.2.2 Pooling Data via Common Parameters

The regression coefficients β is embedded as a common parameter in all the small ares.
To estimate the common parameter, all the data are used, and this results in the pooling
effect. Thus, the setup via the common parameters leads to the pooling effect, and we get
the stable estimator x′iβ̂(θ̂) based on the weighted least squares estimator β(θ̂).

As stated above, we can obtain stable estimates via pooling data through restricting
parameters to some constraints like equality or inequality, and we can shrink yi toward
the stable estimates through incorporating random effects. This enables us to boost up
the precision of the prediction. As seen from that fact that EBLUP is interpreted as the
empirical Bayes estimator, this perspective was recognized by Efron and Morris (1975) in
the context of the empirical Bayes method, and the usefulness of the Bayesian methods may
be based on such perspective.

3.2.3 Henderson’s EBLUP and Stein’s Shrinkage

Consider the case that β = 0, p = 0, n1 = · · · = nk = n and N = nk, and treat the unbiased
estimator θ̂U1 and the truncated estimator θ̂TR2 in Example 3.1. Then 1+nθ2/θ1 is estimated
by max{1, 1+n[(N−k)S/S1−N ]/N}, which is equal to max{1, (n/k)

∑k
j=1 y

2
j/(S1/(N−k)}

since S =
∑
i,j y

2
ij = S1 +n

∑
i y

2
i for S1 =

∑
i,j(yij−yi)2. Then, the EBLUP given in (3.7)

can be expressed as for σ̂2 = S1/(N − k),

µ̂EBi (θ̂) = max
{

0, 1− kσ̂2

n
∑k
j=1 y

2
j

}
yi,

which is related to the positive-part Stein estimator. The Stein problem has been developed
as one of interesting topics in theoretical statistics since Stein (1956) established that the
shrinkage estimator can improve on the sample means in the context of the simultaneous
estimation for k ≥ 3. This fact shows not only that EBLUP has a larger precision than
the sample mean, but also that a similar concept came out at the same time by Henderson
(1950) for practical use and Stein (1956) for theoretical interest.
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4 Measurements for Uncertainty of EBLUP

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. Two methods for the purpose are to provide the
estimate of the mean squared error (MSE) of EBLUP and to construct the confidence
interval based on EBLUP, and the results with second-order accuracy are explained here.

4.1 MSE Estimation for EBLUP

Concerning the MLS estimation of EBLUP, asymptotically unbiased estimators of the MSE
with the second-order accuracy have been derived based on the Taylor series expansion by
Kackar and Harville (1984), Prasad and Rao (1990), Harville and Jeske (1992), Datta and
Lahiri (2000), Datta, Rao and Smith (2005) and Das, Jiang and Rao (2004). For some
recent results including jackknife and bootstrap methods, see Lahiri and Rao (1995), Hall
and Maiti (2006a) and Chen and Lahiri (2008). We first approximate the MSE of EBLUP
with second-order accuracy.

Let a and b be p× 1 and M × 1 vectors of fixed constants, and suppose that we want to
estimate the scalar quantity µ = a′β + b′v. Since the conditional distribution of v given y
is given by

v|y ∼ NM (G(θ)Z ′Σ(θ)−1(y −Xβ), (G(θ)−1 +Z ′R(θ)−1Z)−1), (4.1)

the conditional expectation E[µ|y] is written as

µ̂B(β,θ) =E[µ|y] = a′β + b′G(θ)Z ′Σ(θ)−1(y −Xβ)

=a′β + s(θ)′(y −Xβ), (4.2)

where s(θ) = Σ(θ)−1ZG(θ)b. This can be interpreted as the Bayes estimator of µ in the
Bayesian context. Substituting the GLS β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y into µ̂B(β,θ)
yields the BLUP

µ̂EB(θ) = µ̂B(β̂(θ),θ) = a′β̂(θ) + s(θ)′(y −Xβ̂(θ)), (4.3)

which is also called an empirical Bayes estimator in the Bayesian context.
We first provide an accurate approximation of the mean squared error (MSE) of µ̂EB(θ̂)

when N is large, where the MSE is given by

MSE(θ, µ̂EB(θ̂)) = E[{µ̂EB(θ̂)− µ}2].

For the purpose, we assume (C1), (C2) and the following conditions for large N and 1 ≤
i, j ≤ q:

(C4) a−X ′s(θ) = O(1), (y −Xβ)′F (θ)Σ(θ)s(i)(θ) = Op(1), (y −Xβ)′s(ij)(θ) = Op(1),
s(i)(θ)′Σ(θ)s(j)(θ) = O(1) and s(ij)(θ)′Σ(θ)s(k)(θ) = O(1) for F (θ) = Σ(θ)−1,
∂i{Σ(θ)−1} and ∂i∂j{Σ(θ)−1}, 1 ≤ i, j ≤ q;
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(C5) θ̂ = θ̂(y) = (θ̂1, . . . , θ̂q)′ is an estimator of θ which satisfies that θ̂(−y) = θ̂(y) and
θ̂(y +Xα) = θ̂(y) for any p-dimensional vector α.

(C6) θ̂ − θ is expanded as

θ̂ − θ = θ̂
∗

+ θ̂
∗∗

+ θ̂
∗∗∗

+Op(N−2), (4.4)

where θ̂
∗

= Op(N−1/2), θ̂
∗∗

= Op(N−1) and θ̂
∗∗∗

= Op(N−3/2). Let θ̂
∗

= (θ̂∗1 , . . . , θ̂
∗
q )′,

θ̂
∗∗

= (θ̂∗∗1 , . . . , θ̂∗∗q )′. These satisfy that E[θ̂∗i ] = O(N−1) and s(i)(θ)′Σ(θ)∇y θ̂
∗
j =

Op(N−1).

Defined g1(θ), g2(θ) and g∗3(θ) by

g1(θ) = b′(G(θ)−1 +Z ′R(θ)−1Z)−1b,

g2(θ) = (a−X ′s(θ))′(X ′Σ(θ)−1X)−1(a−X ′s(θ)),

g∗3(θ) = tr
[(∂s(θ)′

∂θ

)
Σ(θ)

(∂s(θ)′

∂θ

)′
Cov (θ̂

∗
)
]
,

for Cov (θ̂
∗
) = E[(θ̂

∗
− E[θ̂

∗
])(θ̂

∗
− E[θ̂

∗
])′].

Theorem 4.1. Under the conditions (C1), (C2) and (C4)-(C6), the MSE of µ̂EB(θ̂) is
approximated as

MSE(θ, µ̂EB(θ̂)) = g1(θ) + g2(θ) + g∗3(θ) +O(N−3/2). (4.5)

We next provide an asymptotically unbiased estimator of MSE(θ, µ̂EB(θ̂)) with the
second-order accuracy. Define g11(θ) and g12(θ) by

g11(θ) =
(∂g1(θ)

∂θ

)′
E[θ̂

∗
+ θ̂
∗∗

],

g12(θ) =
1
2

tr
[
B(θ)Cov (θ̂

∗
)
]
,

(4.6)

where the (i, j) element of B(θ) is given by

(B(θ))i,j = (b−Z ′s(θ))′(∂ijG(θ))(b−Z ′s(θ)) + s(θ)′(∂ijR(θ))s(θ). (4.7)

It is noted that g12(θ) = 0 when G and R are matrices of linear functions of θ. Define
mse(θ̂, µ̂EB(θ̂)) by

mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g#(θ̂), (4.8)

where
g#(θ) = g2(θ) + 2g∗3(θ)− g11(θ)− g12(θ). (4.9)

It is noted that g#(θ) = O(N−1).

Theorem 4.2. Under the same conditions as in Theorem 4.1, mse(θ̂, µ̂EB(θ̂)) is a second-
order unbiased estimator of MSE, namely, Then,

E[mse(θ̂, µ̂EB(θ̂))] = MSE(θ, µ̂EB(θ̂)) +O(N−3/2). (4.10)
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4.2 Corrected Confidence Intervals and an Example in NERM

Another method for measuring uncertainty of EBLUP is to provide a confidence inter-
val based on EBLUP, and the confidence intervals which satisfy the nominal confidence
level with the second-order accuracy have been derived based on the Taylor expansion by
Datta, Ghosh, Smith and Lahiri (2002), Basu, Ghosh and Mukerjee (2003) and Kubokawa
(2009a,b). Recently, Hall and Maiti (2006b) and Chatterjee, Lahiri and Li (2008) devel-
oped the method based on parametric bootstrap. We here provide a confidence interval of
µ = a′β + b′v which satisfies the nominal confidence level with the second-order accuracy.

Let mse(θ̂) = mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g#(θ̂) for g# given in (4.9). Since mse(θ̂) is
an asymptotically unbiased estimator of the MSE of the empirical Bayes estimator µ̂EB(θ̂),
it is reasonable to consider the confidence interval of the form

IEB(θ̂) : µ̂EB(θ̂)± zα/2
√
mse(θ̂). (4.11)

However, the coverage probability P [µ ∈ IEB(θ̂)] cannot be guaranteed to be greater than
or equal to the nominal confidence coefficient 1− α. To fix this shortcoming, we adjust the
significance point zα/2 as zα/2{1 + h(θ̂)} by using an appropriate correction function h(θ̂).
That is, the corrected confidence interval is described as

ICEB(θ̂) : µ̂EB(θ̂)± zα/2
[
1 + h(θ̂)

]√
mse(θ̂).

Here, we define the function h(θ) by

h(θ) =
z2
α + 1

8g1(θ)2
tr [
(∂g1(θ)

∂θ

)(∂g1(θ)
∂θ

)′
Cov (θ̂

∗
)]. (4.12)

Theorem 4.3. Under the same conditions as in Theorem 4.1, the corrected confidence interval
ICEB(θ̂) satisfies the nominal confidence coefficient up to the third-order, namely,

P [µ ∈ ICEB(θ̂)] = 1− α+O(N−3/2). (4.13)

Finally, we conclude this section with stating a remark and an example in NERM.
Although Theorems 4.1, 4.2 and 4.3 provide the results of the second-order approximations,
Kubokawa (2009b) showed that all the results still hold with the third-order accuracy under
additional appropriate conditions where the validity of the approximations are neglected in
the paper and the above theorems. Das, et al . (2004) succeeded in the derivation of the
conditions for the rigorous proofs of Theorems 4.1 and 4.2.

Example 4.1 (NERM). It is easy to see that the conditions (C1)-(C4) are satisfied in the
prediction of µi = x′iβ+ vi in NERM. The EBLUP of µi is µ̂EBi (θ̂) = x′iβ̂(θ̂) + {niθ̂2/(θ̂1 +
niθ̂2)}

{
yi − x′iβ̂(θ̂)

}
from (3.7). The MSE approximation of µ̂EBi (θ̂), its unbiased estimator

and the confidence interval based on µ̂EBi (θ̂) with the second-order accuracy are provided
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from Theorems 4.1, 4.2 and 4.3, where the functions g1(θ), g2(θ), g∗3(θ), g11(θ) and h(θ)
are expressed as g1(θ) = θ1θ2(θ1 + niθ2)−1, g2(θ) = θ21(θ1 + niθ2)−2x′s(X

′Σ−1X)−1xs,

g∗3(θ) =ni(θ1 + niθ2)−3(−θ2, θ1)Cov (θ̂
∗
)(−θ2, θ1)′,

g11(θ) =(θ1 + niθ2)−2(niθ22, θ
2
1)E[θ̂

∗
+ θ̂
∗∗

],

h(θ) =
z2
α + 1

8(θ1θ2)2(θ1 + niθ2)2
(niθ22, θ

2
1)Cov (θ̂

∗
)(niθ22, θ

2
1)′,

and g12(θ) = 0. For estimator θ̂ satisfying the conditions (C4) and (C5), we need to obtain
Cov (θ̂

∗
) and E[θ̂

∗
+ θ̂

∗∗
]. The ML, REML and Prasad-Rao estimators satisfy given in

Example 3.1 satisfy (C4) and (C5) and their covariances and biases are given there.
It should be remarked that the corrected confidence interval ICEB(θ̂) tends to be instable

near θ2 = 0, because the corrected function h(θ) given in (4.12) includes g1(θ) in the
denominator. In NERM, g1(θ) is g1(θ) = θ1θ2/(θ1 + niθ2) and takes values near zero when
θ2 is close to zero. This causes the instability of the confidence interval. One method for
fixing this problem is to use the truncation of the estimator θ̂2 as θ̂TR2 = max{θ̂2, N−2/3},
which was suggested in Kubokawa (2009a), For the practical use of ICEB(θ̂), we need such
a modification of the estimator θ̂.

5 Testing and Variable Selection

In this final section, we want to address the problem of selecting significant explanatory
variables. To this end, we explain the two approaches: testing hypothesis and information
criteria like model selection.

5.1 Testing Procedures for a Linear Hypothesis on Regression Co-
efficients

Consider the general linear regression model described in (2.2) without assuming the struc-
ture (2.3), namely, y ∼ N (Xβ,Σ(θ)) for θ = (θ1, . . . , θq)′. The hypothesis to be tested is
the linear restriction given by

H0 : Rβ = r,

where R is an r × p known matrix with rank r, r ≤ p, and r is an r × 1 vector. For given
θ, the unrestricted and restricted estimators of β are given by

β̂ =β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y,

β̃ =β̃(θ) = β̂(θ)− (X ′Σ(θ)−1X)−1R′W (θ)(Rβ̂(θ)− r),

for W (θ) = [R(X ′Σ(θ)−1X)−1R′]−1. Using these notations, we describe the unrestricted
and restricted estimators of (β,θ) as (β̂u, θ̂) and (β̃R, θ̃), where β̂u = β̂(θ̂) and β̃R = β̃(θ̃).
We also use the notations β̂R = β̂(θ̃) and β̃u = β̃(θ̂).
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5.1.1 The Wald, Likelihood Ratio and Lagrange Multiplier Test Statistics

As the general methods for testing hypotheses, the three procedures are known which are
based on the Wald, likelihood ratio and Lagrange multiplier test statistics. Consider the
general framework of testing H0 : a(ξ) = 0 against H1 : a(ξ) 6= 0, where a random variable
X has a likelihood function L(ξ|X), ξ is a p-dimensional unknown vector and a(ξ) is a
function from Rp to Rq for q ≤ p. Then, the Wald, likelihood ratio and Lagrange multiplier
test statistics are given by

FW =a(ξ̂)′[A(ξ̂)I(ξ̂)A(ξ̂)′]−1a(ξ̂),

FLR =− 2{logL(ξ̃|X)− logL(ξ̂|X)},

FLM =s(ξ̃)′I(ξ̃)−1s(ξ̃),

where A(ξ) = ∂a(ξ)/∂ξ′, I(ξ) = E[s(ξ)s(ξ)′] is the Fisher information matrix, s(ξ) =
∂ logL(ξ|X)/∂ξ is the score function, and ξ̂ and ξ̃ are unrestricted and restricted estimator
of ξ. The Lagrange multiplier statistic is also called the score test statistic or the Rao
statistic. These test statistics converge to the chi-square distribution with q degrees of
freedom under H0.

For testing the hypothesis H0 : Rβ = r in the general linear regression model (2.2),
these test statistics are written as

FW =(Rβ̂u − r)′W (θ̂)(Rβ̂u − r),

FLR =− 2[`(β̃R, θ̃)− `(β̂u, θ̂)],

FLM =(Rβ̃R − r)′W (θ̃)(Rβ̃R − r),

(5.1)

where W (θ) = [R(X ′Σ−1X)−1R′]−1 and −2`(β,θ) = log |Σ(θ)|+ (y −Xβ)′Σ(θ)−1(y −
Xβ). It is known that between these test statistics, there exist the inequalities FW ≥ FLR ≥
FLM .

5.1.2 Bartlett-Type Corrections in LMM

The Bartlett-type corrections of the test statistics given in (5.1) were derived by Rothenberg
(1984) under the null and local alternative hypotheses. Let

Ci =(Σ−1)(i)H(θ),

Dij =H(θ)
{

(Σ−1)(ij) − (Σ−1)(i)X(X ′Σ−1X)−1X ′(Σ−1)(j)
− (Σ−1)(j)X(X ′Σ−1X)−1X ′(Σ−1)(i)

}
,
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for H(θ) = X(X ′Σ−1X)−1R′W (θ)R(X ′Σ−1X)−1X ′. Then, we define functions b(θ),
c(θ) and d(θ) by

b(θ) =
1
2

tr
[
Cov (θ̂

∗
)matij

(
tr [H(θ)Σ−1Σ(i)Π(θ)Σ(j)Σ

−1]
)]
,

c(θ) =
1
2

tr
[
Cov (θ̂

∗
)matij

(
tr [CiCj ] +

1
2

tr [Ci]tr [Cj ]
)]
,

d(θ) =E[(θ̂
∗

+ θ̂
∗∗

)′coli(tr [Ci])] + tr
[
Cov (θ̂

∗
)matij

(
tr [Ci]tr [Cj ]

)]
+

1
2

tr
[
Cov (θ̂

∗
)matij

(
tr [Dij ]

)]
,

for Π(θ) defined in (3.1). Under appropriate conditions like (C1)-(C6), the Bartlett-type
correction of the Wald test statistic FW is given by

F ∗W = FW /
[
1 + (d̂− ĉ+ b̂)/q + ĉzα/{q(q + 2)}

]
,

where b̂ = b(θ̂), ĉ = c(θ̂), d̂ = d(θ̂), and zα is the 100α% upper point of the χ2
q-distribution.

Rothenberg (1984) showed that F ∗W satisfies the nominal significance level up to o(N−1),
namely, P [F ∗W ≥ zα] = α + o(N−1) under H0. When θ̂ and θ̃ are the unrestricted and
restricted ML estimators of θ, FLR and FLM are approximated as

FLR =FW −
1
2

(θ̂ − θ̃)′A2(θ̂ − θ̃) + op(N−1),

FLM =FW − (θ̂ − θ̃)′A2(θ̂ − θ̃) + op(N−1),

for A2 = matij(tr [Σ(i)ΣΣ(j)Σ]). The Bartlett-type corrections for FLR and FLM are given
by

F ∗LR =FLR/
[
1 + (d̂− ĉ)/q

]
,

F ∗LM =FLM/
[
1 + (d̂− ĉ− b̂)/q − ĉzα/{q(q + 2)}

]
,

which can be derived by evaluating the term (θ̂ − θ̃)′A2(θ̂ − θ̃). For the details of the
derivations, see Rothenberg (1984).

5.2 Information Criteria for Variable or Model Selection

Related to testing the hypothesis on the regression coefficients, the variable selection pro-
cedures are useful for choosing significant explanatory variables affecting the response vari-
ables. Of these, we here treat the Akaike Information Criterion (AIC), the conditional
Akaike Information Criterion (cAIC), the Bayesian Information Criterion (BIC) and the
Empirical Bayes Information Criterion (EBIC). For a good account of AIC, BIC and other
criteria, see Konishi and Kitagawa (2007),

For stating the concepts of these criteria, let f(y|v,β,θ) and f(v|θ) be the conditional
density of y given v and the marginal density of v, respectively, where y|v ∼ N (Xβ +
Zv,R(θ)) and v ∼ N (0,G(θ)). Then, the marginal density of y is written by fm(y|β,θ) =∫
f(y|v,β,θ)f(v|θ)dv, which has marginal distribution N (Xβ,Σ(θ)).
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5.2.1 AIC and cAIC

The AIC proposed by Akaike (1973, 1974) is based on the thought of choosing a model
which minimizes an unbiased estimator of the expected Kullback-Leibler information. The
expected Kullback-Leibler information is defined by

R(β,θ; β̂, θ̂) = Ey

[∫ (
log

fm(y∗|β,θ)

fm(y∗|β̂(y), θ̂(y))

)
fm(y∗|β,θ)dy∗

]
,

which can be interpreted as a risk function for estimating (β,θ) by (β̂, θ̂) relative to the
Kullback-Leibler distance. This quantity measures the prediction error in predicting future
variable y∗ based on the model fm(y∗|β̂(y), θ̂(y)). In this sense, AIC is a criterion of finding
a model which can provide a good prediction in light of minimizing the prediction error.
R(β,θ; β̂, θ̂) is rewritten as∫ ∫

{log fm(y∗|β,θ)}fm(y∗|β,θ)dy∗fm(y|β,θ)dy

−
∫ ∫
{log fm(y∗|β̂(y), θ̂(y))}fm(y∗|β,θ)dy∗fm(y|β,θ)dy,

Since the first term is irrelevant to the model fm(y∗|β̂(y), θ̂(y)), it is sufficient to estimate
the second term. Thus, the Akaike Information (AI) is defined by

AI = −2
∫ ∫
{log fm(y∗|β̂(y), θ̂(y))}fm(y∗|β,θ)fm(y|β,θ)dy∗dy,

and AIC is derived as an asymptotically unbiased estimator of AI, namely, E[AIC] =
AI + o(1). When AIC is an exact unbiased estimator of AI, it is called the exact AIC,
which was suggested by Sugiura (1978), but in general, it is difficult to get the exact AIC in
LMM. When β is estimated by the GLS β̂(θ̂) for a consistent estimator of θ, AIC is given
as

AICc = −2 log fm(y|β̂(θ̂), θ̂) + 2(p+ q), (5.2)

where −2 log fm(y|β̂(θ̂), θ̂) = N log(2π) + log |Σ(θ̂)| + y′Π(θ̂)y for Π(θ) defined in (3.1),
and p and q are dimensions of β and θ, respectively.

It is noted that the AIC stated above is based on the marginal distribution of y, namely, it
measures the prediction error of the predictor based on the marginal distributionN (Xβ,Σ).
This means that the marginal AIC is not appropriate for the focus on the prediction of
specific areas or random effects as explained in the context of the small area estimation.
Taking this point into account, Vaida and Blanchard (2005) proposed the conditional AIC as
an asymptotically unbiased estimator of AI, where AI is the conditional Akaike information
defined by

cAI = −2
∫ ∫ ∫

log{f(y∗|v̂(y), β̂(y), θ̂(y))}f(y∗|v,β,θ)f(y|v,β,θ)f(v|θ)dy∗dydv,

(5.3)
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where v̂(y) = v̂ is the empirical Bayes estimator of v given in (2.8). When θ is known, Vaida
and Blanchard (2005) derived an exact unbiased estimator of cAI, and it gives the same
value as DIC, the deviance information criterion proposed by Spiegelhalter, Best, Carlin
and van der Linde (2002) for Bayesian inference. Although an exact unbiased estimator of
cAI is hard to get in LMM, we can derive an asymptotically unbiased estimator of cAI,
given by

cAICc = −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)−∆c, (5.4)

where −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂) = N log(2π) + log |R̂|+ (y−Xβ̂)′(I− Σ̂−1ZĜZ ′)R̂
−1

(I−
ZĜZ ′Σ̂−1)(y −Xβ̂) for R̂ = R(θ̂), Ĝ = G(θ̂) and Σ̂ = Σ(θ̂).

5.2.2 BIC and EBIC

The Bayesian information criterion (BIC) proposed by Schwarz (1978) assumes a proper
prior distribution π(β,θ) formally and evaluate asymptotically the marginal distribution

fπ(y) =
∫ ∫

fm(y|β,θ)π(β,θ)dβdθ.

The Laplace approximation can be used to get the approximation as −2 log{fπ(y)} = BIC+
op(log(N)), where

BIC = −2 log{fm(y|β̂(θ̂), θ̂)}+ (p+ q) log(N), (5.5)

where −2 log{fm(y|β̂(θ̂), θ̂)} is given below (5.2). The distinction between AIC and BIC
appears in the penalty terms as seen from (5.2) and (5.5).

The Bayesian criteria like Bayes factors use all the prior information on (β,θ), while all
the prior information is neglected in BIC, because the prior information comes into neglected
terms asymptotically. Thus, we can consider the intermediate case, that is, the parameter
are decomposed into two parts of interest and nuisance, and we want to use only the prior
information on the interest parameters. For example, we consider the case that β is the
parameters of interest and θ is the nuisance parameters in LMM. Assume that (β,θ) has
the prior distribution

(β,θ) ∼ π1(β|θ,λ)π2(θ),

where given θ, β conditionally has π1(β|θ,λ) with hyperparameter λ. Let fπ,1(y|θ,λ) be
the conditional marginal density given by

fπ,1(y|θ,λ) =
∫
fm(y|β,θ)π1(β|θ,λ)dβ,

and λ̂ is the ML estimator of λ based on this distribution, namely,

λ̂ = arg maxλ{fπ,1(y|θ̂,λ)}.
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Then, Kubokawa and Srivastava (2009) proposed the empirical Bayes information criterion
(EBIC) as

EBIC = −2 log{fπ,1(y|θ̂, λ̂)}+ q log(N). (5.6)

Concerning the prior distribution of β, the common prior used in the ordinary linear
regression model is

π1(β|λ) = Np(0, λ−1W )

for an unknown scalar λ and a p× p known matrix W . The prior with W = N(X ′X)−1 is
called Zellner’s g-prior, and other choices of W are W = diag (N/x′(1)x(1), . . . , N/x

′
(p)x(p))

where X = (x(1), . . . ,x(p)) and W = Ip. Then, the marginal density fπ,1(y|θ, λ) is ex-
pressed as

fπ,1(y|θ, λ) =
1

(2π)N/2
1

|Σ(θ) +XWX ′/λ|1/2
exp
{
−1

2
y′Π∗(θ, λ)y

}
,

where

Π∗(ψ, λ) = Σ(θ)−1 −Σ(θ)−1X{X ′Σ(θ)−1X + λW−1}−1X ′Σ(θ)−1.

The hyper-parameter λ is estimated by λ̂ through the maximization of fπ,1(y|θ̂, λ) with
respect to λ, namely, it is given by λ̂ = max(λ0, 0) where λ0 is the solution of the equation

y′Σ̂−1X(X ′Σ̂−1X + λ0W
−1)−1W−1(X ′Σ̂−1X + λ0W

−1)−1X ′Σ̂−1y

=tr [(X ′Σ̂−1X + λ0W
−1)−1X ′Σ̂−1X]/λ0.

Then the EBIC is given by

EBIC = N log(2π) + log(|Σ(θ̂) + λ̂−1XWX ′|) + y′Π∗(θ̂, λ̂)y + q log(N). (5.7)

Finally, we should note that AIC and BIC are derived through different thoughts, which
results in a different asymptotic properties, namely, BIC has consistency for selecting the
true model, while AIC is not consistent. In general, BIC, EBIC and Bayesian procedures
based on proper priors are consistent. However, AIC and cAIC choose models which give
smaller prediction errors, while those Bayesian procedures do not guarantee such a property.
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