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summary

Let the random variables X0, X1, . . . , Xn be (n+ 1) observations from a general
discrete parameter stochastic process {Xn}, n ≥ 0, whose probability laws are
of a known functional form, but dependent on a finite dimensional parameter
θ ∈ Θ ⊂ Rk, k ≥ 1. Asymptotically optimal tests for testing a null hypoth-
esis H0 : θ = θ0 against a composite alternative for Locally Asymptotically
Normal (LAN) and Locally Asymptotically Mixture of Normal (LAMN) models
are derived, using the results on asymptotic expansion of the log-likelihood ratio
statistic (in the probability sense), its asymptotic distribution, asymptotic distri-
bution of certain random quantities which are closely related to the log-likelihood
ratios, and an exponential approximation result on the log-likelihood ratio statis-
tic. The concepts of contiguity, differentially equivalent probability measures and
differentially sufficient statistics play a key role in deriving the results. The test-
ing hypothesis problem is restricted to the case that k = 1, although all other
underlying results hold for k ≥ 1. The general case (k ≥ 1) will be discussed
elsewhere.

Keywords and phrases: asymptotic distribution, asymptotic expansion, exponen-
tial approximation, local asymptotic normality, local asymptotic mixed normality,
differentially sufficient statistics, asymptotically optimal tests.
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1 Introduction

Let X0, X1, . . . , Xn be (n + 1) observations form a general discrete parameter stochastic
process {Xn}, n ≥ 0. The random variables (r.v.’s) Xn are defined on the probability space
(X ,A, Pθ), θ ∈ Θ, where Θ is an open subset of Rk, k ≥ 1, and takes values in (S,S), where
S is a Borel subset of Euclidean space and S is the σ-field of Borel subsets of S. Let An
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be the σ-field induced by the r.v.’s X0, X1, . . . , Xn, An = σ(X0, X1, . . . , Xn), and let Pn,θ
be the restriction of Pθ to An. The process considered needs not be even stationary, in the
strict or in the wide sense of the term. The purpose of the paper is to restrict ourselves
presently to the case k = 1 and derive optimal tests (in an asymptotic sense) for testing the
hypothesis H0 : θ = θ0 against a one-sided alternative. Wald (1941, 1943) considered the
problem of deriving optimal tests when the underlying process consists of i.i.d. observations,
and the tests formulated by him are based on the maximum likelihood estimate (MLE) of
the parameter involved. Moreover, the regularity conditions on the population density used
to derive the tests are quite stringent. Later, Johnson and Roussas (1969, 1970) extend
the tests formulated by Wald to stationary Markov processes, under substantially weaker
conditions on the population density, and the proposed tests need not be based on the
maximum likelihood estimate of the parameter. Here in this paper, we further extend their
results to the case of general stochastic processes {Xn}, n ≥ 0.

Under suitable conditions on the process, the asymptotic expansion of the log-likelihood
ratio for general stochastic processes has been obtained in Roussas and Bhattacharya (2007),
for k ≥ 1. In the same paper, it has also been established that, in the neighborhood of θ
and for large n, the likelihood function behaves as if it were (approximately) an exponential
family. The exponential approximation of the likelihood ratio statistic derived therein, along
with some other auxiliary results, will play a key role in deriving the main results of this
paper. Let θ0 be an arbitrary but fixed point in Θ, and let ∆n(θ0) be a k-dimensional
vector defined in terms of the random variables X0, X1, . . . , Xn (see relation (2.6)). Let
∆∗n(θ0) be a suitable truncated version of ∆n(θ0) for which the exponential approximation
result (stated in Theorem 7) holds, and which plays the all-important role of the statistic
appearing in the exponent of an exponential family. Using ∆∗n(θ0) and for h ∈ Rk, we define
probability measures Rn,h, n ≥ 0, as in (3.4). The first two main results that are used in
the sequel are the following: (i) the sequences {Pn,θ} and {Rn,h} of probability measures
with h = n

1
2 (θ − θ0), θ ∈ Θ, are differentially equivalent (see Definition 5), and (ii) the

sequence {∆∗n(θ0)} is differentially sufficient (see Definition 6) at θ0 for the family {Pn,θ,
θ ∈ Θ}. These results are established in Propositions 2 and 3, respectively. Next, let {hn}
be a bounded sequence of h’s in Rk and set θn = θ0 + hnn

− 1
2 . Then, for testing hypotheses

about θ, we prove Theorem 8 which allows us to consider tests depending on ∆n(θ0) alone
in search of an optimal test (in the sense of maximizing the asymptotic power, say), under
the type of alternatives considered above; and Theorem 9, which asserts that one needs
not be concerned with tests not based on ∆n(θ0). In statistical applications, especially for
obtaining the power of a test, the asymptotic distribution of ∆n(θ0) under Pn,θn

is also
needed, which is established in Theorem 6.

Throughout the entire paper, we use the following notation: for a vector y ∈ Rk, y′

denotes the transpose of y, and for a square matrix D, |D| denotes the determinant of
D, ‖D‖ denotes the norm of D, defined by the square root of the sum of the squares of
its elements. The symbol ‘=⇒ ’ denotes convergence in distribution, whereas the symbol
‘ P→’ denotes convergence in probability. Unless otherwise stated, expectation of a random
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variable is to be understood under θ. Also, in order to avoid repetitions, it is stated that
all the limits are taken as n or a subsequence of {n} tend to infinity.

The main theorem established here depends on results derived in Roussas and Bhat-
tacharya (2007), and will be freely cited here.

The paper is organized as follows: Section 2 introduces the technical notation and the
relevant assumptions required to develop the main result. In the same section, some remarks
on the stated assumptions are made. In the following section, some preliminary results used
to derive the main theorem are stated and their justifications are given. In Section 4, the
case k = 1 is considered and asymptotically optimal tests for testing the hypothesis θ = θ0

against a one-sided alternative are constructed. They are discussed in Theorem 10 and
Theorem 11.

2 Notation and Assumptions

Consider the first (n + 1) r.v.’s X0, X1, . . . , Xn, and let An = σ(X0, X1, . . . , Xn) be the σ-
field induced by X0, X1, . . . , Xn. Let Pn,θ be the restriction of Pθ to An. It will be assumed
that, for n ≥ 0, the probability measures Pn,θ and Pn,θn

are mutually absolutely continuous
for all θ, θn ∈ Θ. Then the Radon-Nikodym derivative (the likelihood) of Pn,θn with respect
to Pn,θ is

dPn,θn

dPn,θ
= Ln(Xn; θ, θn) = Ln(θ, θn) = qn(Xn; θ, θn) = qn(θ, θn), say, (2.1)

where Xn = (X0, X1, . . . , Xn).
For n ≥ 1, set

φn(Xn; θ, θn) = φn(θ, θn) =
[
qn(θ, θn)
qn−1(θ, θn)

] 1
2

= [qn(Xn | Xn−1; θ, θn)]
1
2 , (2.2)

so that

Ln(θ, θn) =

 n∏
j=1

qj(Xj | Xj−1; θ, θn)

 q0(X0; θ, θn) = q0(θ, θn)
n∏
j=1

φ2
j (θ, θn) , (2.3)

and

Λn(θ, θn) = logLn(θ, θn) = log q0(θ, θn) + 2
n∑
j=1

log φj(θ, θn). (2.4)

Clearly, Λn(θ, θn) is well-defined with Pθ-probability 1 for all θ, θn ∈ Θ.
It will be assumed in the following that, for each θ ∈ Θ, the random functions φj(θ; ·),

j ≥ 1, are differentiable in quadratic mean (q.m.) at θ when the probability measure Pθ is
used. Let φ̇j(θ), j ≥ 1, be the derivatives in q.m. involved. Next, set

Γj(θ) = 4Eθ
[
φ̇j(θ)φ̇′j(θ)

]
, j ≥ 1, Γn(θ) =

1
n

n∑
j=1

Γj(θ), (2.5)
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and

∆n(θ) = 2n−
1
2

n∑
j=1

φ̇j(θ), n ≥ 1. (2.6)

The assumptions listed below are taken from Roussas and Bhattacharya (2007).

Assumptions

(A1) For each n ≥ 0, the (finite-dimensional) probability measures {Pn,θ; θ ∈ Θ} are
mutually absolutely continuous.

(A2) (i) For each θ ∈ Θ, the random functions φj(θ; ·) are differentiable in q.m. [Pθ]
uniformly in j ≥ 1. That is, there are k-dimensional random vectors φ̇j(θ), the
q.m. derivatives of φj(θ, θ∗) with respect to θ∗ at θ, such that

1
λ

∣∣∣ [φj(θ; θ + λh)− 1]− λh′φ̇j(θ)
∣∣∣→ 0 (2.7)

in q.m. [Pθ], as λ → 0, uniformly on bounded sets of h ∈ Rk and uniformly in
j ≥ 1.

(ii) For j ≥ 1, φ̇j(θ) is Aj × C-measurable, where C is the σ-field of Borel subsets of
Θ.

(A3) (i) For each θ ∈ Θ and each t ∈ Rk,
[
t′φ̇j(θ)

]2
, j ≥ 1, are uniformly integrable with

respect to Pθ. That is, uniformly in j ≥ 1,∫
{ [t′φ̇j(θ)]2> a}

[
t′φ̇j(θ)

]2
dPθ → 0, as a→∞. (2.8)

(ii) For each θ ∈ Θ and n ≥ 1, let the k × k covariance matrix Γn(θ) be defined by
(2.5). Then Γn(θ)→ Γ(θ) (in any one of the standard norms in Rk) and Γ(θ) is
positive definite, for each θ ∈ Θ.

(iii) For each θ ∈ Θ and for the probability measure Pθ, the WLLN holds for the
sequence of r.v.’s {[

t′φ̇j(θ)
]2}

, j ≥ 1, for each t ∈ Rk.

(iv) For each θ ∈ Θ and each t ∈ Rk,

1
n

n∑
j=1

[
Eθ

[
t′φ̇j(θ)

]2
|Aj−1

]
−
[
t′φ̇j(θ)

]2
→ 0, (2.9)

in Pθ-probability.

(A4) For each θ ∈ Θ, let q0(θ; ·) be defined by (2.1). Then q0(θ; ·) is A0×C-measurable and
continuous in Pθ-probability.
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Some Comments on the Assumptions

In the first place, assumption (A3)(iii) means that, for each θ ∈ Θ and each t ∈ Rk,

1
n

n∑
j=1

{[
t′φ̇j(θ)

]2
− Eθ

[
t′φ̇j(θ)

]2}
→ 0 (2.10)

in Pθ-probability. Then, on the basis of assumption (A3)(ii) and relation (2.5), rela-
tion (2.10) may be reformulated equivalently as follows:

(A3)(iii′) For each θ ∈ Θ and each t ∈ Rk,

1
n

n∑
j=1

[
t′φ̇j(θ)

]2
→ 1

4
t′Γ(θ)t in Pθ-probability. (2.11)

Next, on the basis of relations (2.9) and (2.10), it is clear that assumption (A3)(iv) may be
reformulated equivalently as follows:

(A3)(iv′) For each θ ∈ Θ and each t ∈ Rk, the r.v.’s{
Eθ
[[
t′φ̇j(θ)

]2
|Aj−1

]}
, j ≥ 1,

satisfy the WLLN when the probability measure Pθ is used.

Also, from relations (2.9) and (2.11), another equivalent reformulation of assumption
(A3)(iv) is the following:

(A3)(iv′′) For each θ ∈ Θ and each t ∈ Rk,

1
n

n∑
j=1

Eθ
{[
t′φ̇j(θ)

]2
|Aj−1

}
→ 1

4
t′Γ(θ)t in Pθ-probability. (2.12)

Assumption (A1) is not as strong as it may look. It is made primarily to simplify deriva-
tions. All results may be obtained without this assumption; this is so, by Theorem 5.1 in
Roussas (1972, also reprinted in a paperback form in 2008), because for any two sequences
of probability measures {Pn} and {P ′n}, there exist sequences {Qn} and {Q′n} of probability
measures such that Qn and Q′n are mutually absolutely continuous for all sufficiently large
n, and ‖Pn −Qn‖+ ‖P ′n −Q′n‖ → 0. It is to be recalled here that

Definition 2.1. For any two probability measures P and Q defined on (Ω,A∗), the sup-
norm ‖P − Q‖ is defined by ‖P − Q‖ = 2 sup{|P (A) − Q(A)|;A ∈ A∗}. Also, ‖P − Q‖ =∫

Ω
|f − g| dµ, where f = dP/dµ, g = dQ/dµ for some σ-finite measure µ dominating P and

Q (for example, µ = P +Q). For this reason, ‖P −Q‖ is also known as the L1-norm.
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Assumption (A2), which requires differentiability in q.m. of a certain random function, is
a weak assumption and replaces in effect the usual assumptions about existence of pointwise
derivatives of several orders.

Some examples, where assumptions (A1)–(A4), as they apply to them, have been checked
and found to hold (see Stamatelos (1976)).

3 Preliminary Results

We proceed further by recalling some known results.
To this end, refer to relations (2.1) and (2.4), and set

Λn(θ) = Λn(θ; θn) = log
[
dPn,θn

dPn,θ

]
, (3.1)

where θn = θ + hnn
−1/2, hn ∈ Rk with hn → h ∈ Θ.

Then for all sufficiently large n the following fundamental result holds, regarding the
asymptotic expansion of Λn(θ) in Pn,θ-probability.

Theorem 1. Let Λn(θ) and ∆n(θ) be defined by (3.1) and (2.6), respectively. Then,
under assumptions (A1)–(A4) and for each θ ∈ Θ, it holds

Λn(θ)− h′∆n(θ)→ −1
2
h′Γ(θ)h in Pn,θ-probability,

where Γ(θ) is given in assumption (A3)(ii).

The proof of this theorem is long, and is based on an extensive series of auxiliary re-
sults. The interested reader is referred to Roussas (1979), Section 5. Heuristically, Theo-
rem 1 states that in the neighborhood of θ, exp

[
− 1

2h
′Γ(θ)h+ h′∆n(θ)

]
dPn,θ approximates

dPn,θn/dPn,θ; that is, Ln(θ, θn) ' exp
[
h′∆n(θ)− 1

2h
′Γ(θ)h

]
. A precise formulation of this

heuristic interpretation is given in Theorem 7.
Below, the definition of weak convergence, which is used throughout this paper, is re-

called.

Definition 3.1. For n ≥ 1, let Ln and L be two probability measures defined on the m-
dimensional Euclidean space (Rm,Bm), (m ≥ 1). We say that {Ln} converges weakly to L
and write Ln =⇒ L, if

∫
Rm fdLn →

∫
Rm fdL for all real-valued bounded and continuous

functions f defined on Rm.

The assumptions made above also allow us to derive the asymptotic distribution of the
k-dimensional random vector ∆n(θ). Specifically, we have the following theorem:
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Theorem 2. Let ∆n(θ) be defined by (2.6), and suppose assumptions (A1)–(A4) hold.
Then, for each θ ∈ Θ,

L [∆n(θ)|Pn,θ] =⇒ N (0,Γ(θ)),

where Γ(θ) is given in assumption (A3)(ii).

The proof of this theorem can be found in Roussas and Bhattacharya (2007).
Now, combining Theorems 1 and 2, and employing the Slutsky theorem, we obtain the

following result:

Theorem 3. Under assumptions (A1)–(A4), in the notation of Theorems 1 and 2, and
for each θ ∈ Θ,

L [Λn(θ)|Pn,θ] =⇒ N
(
−1

2
h′Γ(θ)h, h′Γ(θ)h

)
.

Results similar to Theorems 1–3 also hold when the “fixed” probability measure Pn,θ
is replaced by the “moving” probability measure Pn,θn

. For this purpose, however, the
concept of contiguity is needed. This concept was introduced by Le Cam in his seminal
paper (1960). See also his book, Le Cam (1986), as well as an easier-to-read source Le
Cam and Yang (2000). However, the concept of contiguity was popularized early on by the
monograph Roussas (1972, 2008), written in a Markov process framework, where several
statistical applications were also discussed.

There are several characterizations of contiguity. The first one to be introduced here
allows for an intuitive interpretation, and the second is a working definition.

Definition 3.2. The sequences of probability measures {Pn} and {P ′n} defined on the
measurable spaces (X ,An) are said to be contiguous if Pn(An) → 0 for An in An implies
P ′n(An)→ 0, and vice versa.

Remark 1. It appears as if contiguity is akin to some kind of asymptotic mutual absolute
continuity of the pairs Pn and P ′n. It is to be pointed out, however, that {Pn} and {P ′n} may
be contiguous, and yet Pn and P ′n are not mutually absolutely continuous for any n. Also,
it is possible that Pn and P ′n be mutually absolutely continuous for all n, and yet {Pn} and
{P ′n} are not contiguous. These points are illustrated by Examples 2.1 and 2.2, pp.9–10, in
Roussas (1972, 2008). On the other hand, if ‖Pn −P ′n‖ → 0 (see Definition 2.1), then {Pn}
and {P ′n} are contiguous, as one would expect. The justification of the result is simple and
is given in Lemma 2.1, pp. 8–9, in Roussas (1972, 2008).

Another equivalent working definition of contiguity is the following:

Definition 3.3. In the setting of Definition 3.2, the sequences of probability measures {Pn}
and {P ′n} are said to be contiguous if the following is true: for any An-measurable r.v.’s Tn,
Tn → 0 in Pn-probability if and only if Tn → 0 in P ′n-probability.
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The equivalence of the two ways of defining contiguity in Definitions 3.2 and 3.3 is
established in Roussas (1972, 2008). There are additional equivalent characterizations of
contiguity; the interested reader is referred to pp.8,11,17,31–33, in Roussas (1972, 2008).

This last result allows us to establish the following proposition:

Proposition 3.1. Under assumptions (A1)–(A4), the sequences of probability measures
{Pn,θ} and {Pn,θ∗n} are contiguous, where θ∗n = θ + h∗nn

−1/2 and {h∗n} is bounded.

The proof of the above proposition can be found in Roussas and Bhattacharya (2007).
We may now proceed with the second installment of theorems.

Theorem 4. Under assumptions (A1)–(A4),

Λn(θ)− h′∆n(θ)→ −1
2
h′Γ(θ)h in Pn,θn-probability.

The proof of the theorem follows from Theorem 1, Proposition 3.1, and Definition 3.2.

Theorem 5. Under assumptions (A1)–(A4),

L [Λn(θ)|Pn,θn ] =⇒ N

(
1
2
h′Γ(θ)h, h′Γ(θ)h

)
.

The proof of the theorem follows from Theorem 3, Proposition 3.1, and Le Cam’s third
lemma (see Corollary 7.2, p.35, in Roussas 1972, 2008).

Theorem 6. Under assumptions (A1)–(A4),

L [∆n(θ)|Pn,θn ] =⇒ N
(
Γ(θ)h,Γ(θ)

)
.

The proof follows from Theorem 2, Theorem 1, Proposition 3.1, and Theorem 7.2, p.38,
in Roussas (1972, 2008).

It has been stated above (see discussion following Theorem 1) that, for any arbitrary
but fixed θ ∈ Θ, for all sufficiently large n, and in Pn,θ-probability,

Ln(θ, θn) = exp [Λn(θ, θn)] ' exp
[
−1

2
h′Γ(θ)h

]
exp [h′∆n(θ)] , h ∈ Rk. (3.2)

This loose interpretation leads to an exact exponential approximation (in the sup-
norm, or in the L1-norm sense). Looking at the right-hand side of (3.2), it is obvious
that Eθ [exp [h′∆n(θ)]] should be a multiple of the norming constant in the approximating
exponential family. The problem, however, is that this expectation needs not be finite.
This leads to the replacement of ∆n(θ) by a truncated version ∆∗n(θ), which ensures that
Eθ exp [h′∆∗n(θ)] < ∞. The relevant details will be outlined below. In most of what fol-
lows, the presence of θ is suppressed to avoid more cumbersome notation as long as it is
understood that θ is arbitrary but fixed. Here we recall (2.6),

∆n(θ) = 2n−
1
2

n∑
j=1

φ̇j(θ), n ≥ 1,
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and let ∆∗n (= ∆∗n(θ)) be a truncated version of ∆n (see (1.5), p.72, in Roussas (1972,
2008)), for which Eθ exp (h′∆∗n) <∞, so that

expBn(h) = Eθ exp (h′∆∗n) <∞, h ∈ Rk, (3.3)

and such that (see Proposition 2.3(ii), pp.73–74, in Roussas (1972, 2008))

Pn,θ (∆∗n 6= ∆n)→ 0, Pn,θn
(∆∗n 6= ∆n)→ 0, (3.4)

where θn = θ + hnn
−1/2, with hn ∈ Rk and {hn} bounded. Next, define Rn,h by

Rn,h(A) = exp [−Bn(h)]
∫
A

exp (h′∆∗n) dPn,θ, A ∈ An, (3.5)

so that

dRn,h
dPn,θ

= exp [−Bn(h)] exp (h′∆∗n) , h ∈ Rk (3.6)

= exp [h′∆∗n −Bn(h)] , h ∈ Rk

is an exponential p.d.f. with parameter h ∈ Rk. Then we have the following important
theorem:

Theorem 7. Let θn = θ + hnn
−1/2, with {hn} bounded, let Rn,h(A) be defined by (3.5),

and suppose assumptions (A1)–(A4) hold. Then

‖Rn,hn
− Pn,θn

‖ = (2 sup | Rn,hn
(A)− Pn,θn

(A) | ; A ∈ An)

=
∫
X

∣∣∣∣ dRn,hn

dPn,θ
− dPn,θn

dPn,θ

∣∣∣∣ dPn,θ
→ 0 . (3.7)

The proof of the theorem can be found in Roussas and Bhattacharya (2007). The
implication of the above theorem is very important in our context. It states that the
probability measures Pn,θn

and Rn,hn
are differentially (asymptotically) equivalent; in other

words, in the neighborhood of θ, either one of the sequences{Pn,θn} and {Rn,hn} is as
good as the other. To increase the smooth flow of the paper, the definition of differentially
(asymptotically) equivalent probability measures at θ, and the definition of a differentially
(asymptotically) sufficient statistic at θ for the family {Pn,θ; θ ∈ Θ} are recalled (Roussas
1972, 2008, pp.79–81).

Definition 3.4. For θ ∈ Θ, let {Pn,θ} and {P ∗n,θ} be two sequences of probability measures
defined on An. Then we say that these two sequences are differentially (asymptotically)
equivalent at θ0 if, for each bounded set C in Rk,

sup
[
‖Pn,θ − P ∗n,θ‖ n

1
2 (θ − θ0) ∈ C

]
→ 0 . (3.8)
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The definition states that, in the neighborhood of θ0, either one of the sequences {Pn,θ}
and {P ∗n,θ} is as good as the other.

By writing n
1
2 (θ − θ0) = h so that θ = θn = θ0 + hn−

1
2 , relation (3.8) becomes

sup
[
‖Pn,θn − P ∗n,θn

‖ h ∈ C, θn = θ0 + hn−
1
2

]
→ 0 . (3.9)

Now, let us introduce the following notation.
For each n and all θ ∈ Θ, define the probability measure R∗n,θ as follows:

R∗n,θ = Rn,n1/2(θ−θ0) (3.10)

Then the following result holds.

Proposition 3.2. Let R∗n,θ be defined by (3.10). Then the sequences of probability mea-
sures {Pn,θ} and {R∗n,θ} are differentially (asymptotically) equivalent at θ0.

Proof. It is to be shown that

sup
[
‖Pn,θ −R∗n,θ‖ n1/2(θ − θ0) ∈ C

]
→ 0, for every bounded set C in Rk.

By virtue of (3.10), this is equivalent to proving that

sup
[
‖Pn,θn −R∗n,θn

‖ h ∈ C, θn = θ0 + hn−
1
2

]
→ 0, for every bounded set C in Rk.

(3.11)
However, (3.11) is true because of (3.7). �

Definition 3.5. For θ ∈ Θ, let {Pn,θ} be a sequence of probability measures defined on An
and let {Tn} be a sequence of k-dimensional, An-measurable random vectors. Denote by
Bn the σ-field induced by Tn. Then the sequence {Tn} or {Bn} is said to be differentially
(asymptotically) sufficient at θ0 for the family {Pn,θ; θ ∈ Θ}, if there exists a family of
probability measures {P ∗n,θ; θ ∈ Θ}, such that, for each n, Tn or Bn is sufficient for the
family {P ∗n,θ; θ ∈ Θ} and {Pn,θ; θ ∈ Θ}, {P ∗n,θ; θ ∈ Θ} are differentially ( asymptotically)
equivalent at θ0.

According to the following result, the random vector ∆∗n, as defined in (3.4), possesses
the property of being differentially sufficient at θ0 for the family {Pn,θ, θ ∈ Θ}.

Proposition 3.3. Let ∆∗n (= ∆∗n(θ0)) be a truncated version of ∆n (as described just prior
to relation (3.4)) satisfying (3.4). Then the sequence {∆∗n} is differentially (asymptotically)
sufficient at θ0 for the family {Pn,θ; θ ∈ Θ}.

Proof. For each n and all θ ∈ Θ, define the probability measure R∗n,θ as follows:

R∗n,θ = Rn,n1/2(θ−θ0).
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From the definition of Rn,h in (3.6) and for each n, one has

dRn,h
dPn,θ0

= exp[−Bn(h)] exp (h′∆∗n) , h ∈ Rk, h = n
1
2 (θ − θ0). (3.12)

Using (3.10) and the definition of Rn,h in (3.6), we have

dR∗n,θ
dPn,θ0

=
dRn,n1/2(θ−θ0)

dPn,θ0

= exp
{
n

1
2 (θ − θ0)′∆∗n −Bn

[
n

1
2 (θ − θ0)

]}
= exp

{
−Bn

[
n

1
2 (θ − θ0)

]}
exp

(
n

1
2 θ′∆∗n

)
exp

(
−n 1

2 θ′0∆∗n
)
.

From the above expression, it is clear that, for each n, ∆∗n is sufficient for the family
{R∗n,θ; θ ∈ Θ}, or equivalently, for the family {Rn,h; h ∈ C} (C a bounded set in Rk)
and hence differentially (asymptotic) sufficient at θ0 for the family {Pn,θ; θ ∈ Θ}, since
{Pn,θ; θ ∈ Θ} and {Rn,h; h ∈ C} are differentially (asymptotically) equivalent at θ0. �

Finally, we state the following lemmas which are used to derive our main results:

Lemma 3.1. Let {Yn} be a sequence of random variables defined on some measurable space
(Ω,F), and for each n, let Qn be a probability measure on F . It is assumed that

L(Yn|Qn) =⇒ N(µ, σ2).

Then (i) For any numerical sequence {yn}, one has

Qn(Yn = yn)→ 0 .

Let the sequences of numbers {cn} and {γn} with 0 ≤ γn ≤ 1 for all n, be defined by

Qn(Yn > cn) + γnQn(Yn = cn) = α (0 < α < 1).

Then (ii) cn → µ+ σξα, where ξα is the upper αth quantile of a N(0, 1) variable.

Lemma 3.2. Consider the measurable space (Ω,F) and let Z be the logarithm of the like-
lihood ratio of Q relative to P , where P and Q are two probability measures on F such that
the density of P is f = dP/dµ and the density of Q is g = dQ/dµ for some dominating

σ-finite measure µ (e.g., µ = P +Q) and Z = log
(
g

f

)
. Then, for every ε > 0,

‖P −Q‖ ≤ 2
(
1− e−ε

)
+ 2P (|Z| > ε).

For a complete proof of the Lemmas, the reader is referred to Roussas (1972, 2008),
Lemmas 2.1 and 2.2, pp.97–99.
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4 Asymptotic Properties of Tests Based on ∆n(θ0)

The results discussed in Section 3 can be used to derive optimal tests for the hypothesis
H0 : θ = θ0 (asymptotically most powerful tests or asymptotically most powerful unbiased
tests, as the case may be) for a real-valued parameter θ. To proceed further we need to
prove two theorems stated below, where ∆n = ∆n(θ0). However, we first formulate the
following remark, which will be useful in the sequel.

Remark 2. For each h ∈ Rk, let {xn(h)} be a sequence of nonnegative numbers, let C be
any bounded set in Rk, and set xn = sup[xn(h); h ∈ C]. Then xn → 0 if and only if
xn(hn)→ 0 for any hn ∈ C.

Indeed, for any hn ∈ C, we have xn(hn) ≤ xn → 0, so that xn(hn)→ 0. Next, let εn ↓ 0.
Then, for each n, there exists at least one hn ∈ C such that xn(hn) > xn − εn. Hence
0 = limxn(hn) ≥ limxn − lim εn = limxn = limxn = 0; that is, xn → 0.

Theorem 8. Let {Zn} be a sequence of random variables such that |Zn| ≤ 1 for all n
and set Zn = Eθ0 [Zn|∆n(θ0)]. Then

sup
(∣∣Eθn

Zn − Eθn
Zn
∣∣)→ 0,

where θn = θ0 + hn−
1
2 and the sup is taken over all random variables bounded by 1 in

absolute value and over all h’s in a bounded set C in Rk.

Proof. We have,

EθnZn − EθnZn = E (Zn|Pn,θn)− E
(
Zn|Pn,θn

)
= I1(n, h) + I2(n, h) + I3(n, h),

where

I1(n, h) = E (Zn|Pn,θn
)− E (Zn|Rn,h) ,

I2(n, h) = E (Zn|Rn,h)− E
(
Zn|Rn,h

)
,

I3(n, h) = E
(
Zn|Rn,h

)
− E

(
Zn|Pn,θn

)
.

From the assumption that |Zn| ≤ 1, the definition of Zn and the fact that Rn,h and
Pn,θn

, as well as Pn,θn
and Pθ0 are differentially equivalent, we have that Zn is also bounded

by 1 almost surely(a.s.) [Rn,h] and [Pn,θn
]. Then with the sup as above, both sup |I1(n, h)|

and sup |I3(n, h)| are bounded by

sup [‖Pn,θn −Rn,h‖ h ∈ C] .

Setting xn = sup [‖Pn,θn
−Rn,h‖ h ∈ C], we have that xn → 0, because xn(hn) = ‖Rn,hn

−
Pn,θn

‖ → 0 by (3.7); this is so by Remark 2. We next investigate the behavior of sup |I2(n, h)|.
With sup as above, we will show that sup |I2(n, h)| = 0, which will complete the proof of
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the theorem. We observe that

E
(
Zn|Rn,h

)
= E [Eθ0 (Zn|∆n) |Rn,h]

=
∫
X
Eθ0 (Zn|∆n) dRn,h

=
∫
X
Eθ0 (Zn|∆n) exp [−Bn(h)] exp (h′∆∗n) dPn,θ0

=
∫
X
Eθ0 [Zn exp [−Bn(h)] exp (h′∆∗n) |∆n] dPn,θ0 ,

because ∆∗n is a function of ∆n

= Eθ0 {Eθ0 [Zn exp[−Bn(h)] exp [h′∆∗n|∆n]]}
= Eθ0 {Zn exp[−Bn(h)] exp (h′∆∗n)}

=
∫
X
Zn exp[−Bn(h)] exp (h′∆∗n) dPn,θ0

=
∫
X
ZndRn,h, using the definition of Rn,h

= E (Zn|Rn,h) .

Therefore |I2(n, h)| = 0, as was to be seen, and hence the proof of the theorem is completed.
�

The implication of the above theorem is that from the viewpoint of asymptotic power,
we may confine ourselves to tests which depend on ∆n(θ0) alone.

Now, the statistic ∆∗n = ∆∗n(θ0) is the all-important statistic appearing in the exponent
of the exponential family defined through relations (3.3)–(3.6), and therefore any (optimal)
tests would have to be expressed in terms of ∆∗n. However, Theorem 9 below states that
any tests may be based on ∆n(= ∆n(θ0)) rather than ∆∗n.

Theorem 9. Let {Zn} be a sequence of test functions defined on Rk and set θn = θ0+hn−
1
2 ,

h ∈ Rk. Then for any bounded subset C of Rk, we have

sup [| Eθn
Zn(∆n)− Eθn

Zn(∆∗n) | h ∈ C]→ 0 .

Proof. With θn = θ0 + hnn
−1/2 and hn ∈ C, a bounded set in Rk, we have

|EθnZn(∆n)− EθnZn(∆∗n)| =
∣∣∣∣∫
X
Zn(∆n)dPn,θn −

∫
X
Zn(∆∗n)dPn,θn

∣∣∣∣
=
∣∣∣∣∫
X

[Zn(∆n)− Zn(∆∗n)] dPn,θn

∣∣∣∣
=

∣∣∣∣∣{
∫

(∆n=∆∗n)

[Zn(∆n)− Zn(∆∗n)] +
∫

(∆n 6=∆∗n)

[Zn(∆n)− Zn(∆∗n)]
}
dPn,θn

∣∣∣∣∣
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=

∣∣∣∣∣
∫

(∆n 6=∆∗n)

[Zn(∆n)− Zn(∆∗n)]dPn,θn

∣∣∣∣∣
=
∣∣∣∣∫
X
{[Zn(∆n)− Zn(∆∗n)]I(∆n 6= ∆∗n)} dPn,θn

∣∣∣∣
≤ 2

∫
X
I(∆n 6= ∆∗n)dPn,θn

= 2Pn,θn
(∆n 6= ∆∗n) −→ 0 by (3.4).

But then

sup
[
|EθnZn(∆n)− EθnZn(∆∗n)| ; θn = θ + hn−1/2, h ∈ C

]
−→ 0

by Remark 2 with xn being the sup on the left-hand side above, and

xn(hn) = |EθnZn(∆n)− EθnZn(∆∗n)|

with θn = θ0 + hnn
−1/2. The justification of (3.4) may be found in Roussas (1972, 2008),

Proposition 2.3(ii), pp.73–74.
Hence

| Eθn
Zn(∆n)− Eθn

Zn(∆∗n) | ≤ 2Pn,θn
(∆n 6= ∆∗n), h ∈ C

→ 0,

since Pn,θn
(∆∗n 6= ∆n) → 0 as stated in (3.4). Thus the proof of the theorem is complete.

�

While deriving all the results stated above, we have considered moving parameter points
θn, where θn = θ0 + hn−

1
2 . Here as n → ∞, θn approaches the fixed parameter point θ0

at a prescribed rate. If θn either does not approach θ0 at that rate or it stays away from
θ0, equivalently, if n

1
2 (θn − θ0)→ ±∞, the results stated in the earlier sections need not be

true. This suggests the need for further assumptions to accommodate these cases. These
assumptions, stated as (A5) and (A5′), are listed below:

Let θ0 ∈ Θ and define ω = {θ ∈ Θ; θ > θ0} and ω′ = {θ ∈ Θ; θ < θ0}. Then
Assumption (A5): Consider a sequence {θn}, where θn ∈ ω for all n. Then

∆n(θ0)→∞ in Pn,θn -probability whenever n
1
2 (θn − θ0)→∞.

Assumption (A5′): Consider a sequence{θn}, where θn ∈ ω′ for all n. Then

∆n(θ0)→ −∞ in Pn,θn
-probability whenever n

1
2 (θn − θ0)→ −∞.

Here ∆n(θ0) is obtained, of course, from (2.6) for θ = θ0.
Assumptions (A5) and (A5′) are not particularly stringent, and they have been checked

and found to be true for a number of interesting cases (Roussas 1972, 2008).
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With Θ ∈ R, consider the problem of testing the simple hypothesis H0 : θ = θ0,
θ0 ∈ Θ, against the composite alternative A : θ ∈ ω. We shall restrict to sequences of
certain tests based on the r.v. ∆n(θ0) whose level of significance is α and we shall establish
that under assumptions (A1–A4) and (A5), the tests are optimal in the sense of being
asymptotically uniformly most powerful (AUMP). Under assumptions (A1–A4) alone, the
tests are asymptotically locally most powerful (ALMP).

Here the definition of an asymptotically uniformly most powerful (AUMP) test is re-
called.

Definition 4.1. For testing H0 : θ = θ0, θ0 ∈ Θ ⊆ R against A : θ ∈ ω = {θ ∈ Θ; θ > θ0},
the sequence of level α tests {ϕn} is said to be asymptotically uniformly most powerful
(AUMP) if, for any other sequence of level α tests {ωn}, one has

lim sup[sup(Eθωn − Eθϕn)] ≤ 0 . (4.1)

A similar expression is required to hold with θ > θ0 replaced by θ < θ0 when the
alternative is A : θ ∈ ω′ = {θ ∈ Θ; θ < θ0}.

Let ∆n(θ0) be given by (2.6) with θ replaced by θ0, and due to the earlier stated results
(Theorems 8 and 9), we define the sequence {ϕn} as follows:

ϕn = ϕn(∆n(θ0)) =


1 if ∆n(θ0) > cn

γn if ∆n(θ0) = cn

0 if ∆n(θ0) < cn,

(4.2)

where the sequences {cn} and {γn} are determined by the requirement

Eθ0ϕn = α for all n. (4.3)

Then we have the following theorem:

Theorem 10. Under assumptions (A1–A4) and (A5), the sequence of level-α tests {ϕn}
defined by (4.2) and (4.3) is AUMP for testing H0 : θ = θ0 against A : θ ∈ ω.

Proof. . The proof follows by contradiction. Let the sequence of tests {ϕn} be not AUMP.
Then it is possible to find some sequence of level-α tests {ωn} for which (4.1) is violated,
and let the left-hand side of (4.1) have the value δ > 0, that is,

lim sup[sup(Eθωn − Eθϕn)] = δ. (4.4)

Then there exists a subsequence {m} ⊆ {n} and a sequence {θm} with θm ∈ ω for which

Eθmωm − Eθmϕm → δ. (4.5)

Next, it is shown that (4.5) cannot happen, which implies that (4.4) also cannot hold,
and that would complete the proof of the theorem. We consider the following two cases: (i)
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the sequence {θm} is such that {m 1
2 (θm − θ0)} is unbounded and (ii) the sequence {θm} is

such that {m 1
2 (θm − θ0)} remains bounded.

Consider first that {m 1
2 (θm − θ0)} is unbounded. Then there exists a subsequence

{r} ⊆ {m} such that r
1
2 (θr − θ0)→∞. Then Assumption (A5) implies that

∆r(θ0)→∞ in Pr,θr
-probability. (4.6)

Now, Theorem 2 gives

L[∆n(θ0)|Pn,θ0 ] =⇒ N(0,Γ(θ0)),

and apply Lemma 3.1 stated above with

Yn = ∆n(θ0), Qn = Pn,θ0 , µ = 0 and σ2(θ0) = Γ(θ0),

to get that {cn} in (4.2) stays bounded. This together with (4.6) implies that

Pθr [∆r(θ0) > cr]→ 1 and Pθr [∆r(θ0) = cr]→ 0,

so that Eθr
ϕr → 1. This result together with (4.5) (with m replaced by r ) gives that (4.4)

cannot occur.
Now, consider the case where {m 1

2 (θm−θ0)} is bounded. Then there exists a subsequence
{s} ⊆ {m} such that s

1
2 (θs − θ0)→ h ≥ 0. Let us first consider the case that h > 0 and set

hs = s
1
2 (θs − θ0), so that θs = θ0 + hs−

1
2 with hs → h. Then by Theorem 6 of Section 3,

we have
L[h∆s(θ0)|Ps,θs] =⇒ N(h2σ2(θ0), h2σ2(θ0)).

Then Lemma 3.1 applies again with {n} replaced by {s} and with

Ys = h∆s(θ0), Qs = Ps,θs
, µ = σ2 = h2σ2(θ0).

It follows then that
Pθs [h∆s(θ0) = hcs]→ 0 . (4.7)

Also, by the same Lemma with Ys = h∆s(θ0), Qs = Ps,θ0 and µ = 0, we get hcs →
hσ(θ0)ξα, where ξα is the upper αth quantile of Φ, the distribution function of a standard
normal, so that

Pθs
[h∆s(θ0) > hcs] = 1− Pθs

[h∆s(θ0) ≤ hcs]

= 1− Pθs

[
h∆s(θ0)− h2σ2(θ0)

hσ(θ0)
≤ hcs − h2σ2(θ0)

hσ(θ0)

]
→ 1− Φ

(
hσ(θ0)ξα − h2σ2(θ0)

hσ(θ0)

)
= 1− Φ(ξα − hσ(θ0)), since hσ(θ0) =

(
Γ(θ0)

) 1
2 > 0 .
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Thus, we have
Pθs

[h∆s(θ0) > hcs]→ 1− Φ(ξα − hσ(θ0)). (4.8)

Relations (4.7) and (4.8) yield

Eθsϕs → 1− Φ(ξα − hσ(θ0)). (4.9)

Next, define the sequence of critical functions {ψs} as follows:

ψs(X0, X1, . . . , Xs) =


1 if Λ(θ0, θs) + 1

2h
2σ2(θ0) > ds

δs if Λ(θ0, θs) + 1
2h

2σ2(θ0) = ds

0 otherwise,

(4.10)

where Λ(θ0, θs) = log[dPs,θs
/dPs,θ0 ] and the sequences {δs} and {ds} are determined by the

size requirement of the test, that is,

Eθsψs = α, for all s. (4.11)

By Theorem 5, we have

L
[
Λ(θ0, θs) +

1
2
h2σ2(θ0)|Ps, θs

]
=⇒ N(h2σ2(θ0), h2σ2(θ0)),

so that by a way similar to the one by which (4.9) has been obtained, we have

Eθs
ψs → 1− Φ(ξα − hσ(θ0)). (4.12)

Then, by virtue of (4.9) and (4.12), we have

Eθs
ϕs − Eθs

ψs → 0 . (4.13)

Replacing m by s in (4.5) (which can be done since {s} ⊆ {m}), we have

Eθsωs − Eθsϕs → δ. (4.14)

Hence, using (4.13) and (4.14) we have

Eθs
ωs − Eθs

ψs → δ(> 0), so that

Eθs
ψs ≤ Eθs

ωs, for sufficiently large s. (4.15)

Now, consider the problem of testing H0 : θ = θ0 against the simple alternative As : θ =
θs (θs ∈ ω) at level α. By the Neyman-Pearson fundamental lemma, the test defined by
(4.10) and (4.11) is the most powerful one. Accordingly, relation (4.15) cannot be true. It
is to be noted that we arrived at (4.15) by assuming (4.5) and the existence of {s} ⊆ {m}
such that s

1
2 (θs − θ0)→ h ≥ 0. Therefore (4.5) and hence (4.4) cannot be true.
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Finally, it remains to show that the relation given in (4.4) also cannot be true for the case
that {m 1

2 (θm− θ0)} is bounded and the only convergent subsequence converges to zero. To
prove the above, let there be a subsequence {s} ⊆ {m} such that s

1
2 (θs− θ0) = hs → h = 0.

Then Theorem 1 implies that

Λ(θ0,θs)→ 0 in Ps,θs
-probability,

so that, for every ε > 0,
Pθ0(|Λ(θ0,θs)| > ε]→ 0 . (4.16)

Now, Lemma 3.2 applies with

P = Pθ0 , Q = Pθs
and Z = Λ(θ0, θs)

and gives
‖Pθ0 − Pθs‖ ≤ 2(1− e−ε) + 2Pθ0 [|Λ(θ0, θs)| > ε] . (4.17)

Relation (4.17) together with (4.16) implies that

‖Pθ0 − Pθs
‖ → 0 . (4.18)

Next, we observe that

|α− Eθsϕs|
= |{Pθ0 [∆s(θ0) > cs] + γsPθ0 [∆s(θ0) = cs]} − {Pθs

[∆s(θ0) > cs] + γsPθs
[∆s(θ0) = cs]}|

≤ |Pθ0 [∆s(θ0) > cs]− Pθs
[∆s(θ0) > cs]|+ γs |Pθ0 [∆s(θ0) = cs]− Pθs

[∆s(θ0) = cs]|
≤ 3‖Pθ0 − Pθs‖, by (4.17)

−→ 0, by (4.18),

so that
Eθs

ϕs → α. (4.19)

A similar calculation shows that the test ψs, which is most powerful, has also asymptotic
power α; that is, Eθs

ψs → α, so that

Eθs
ϕs − Eθs

ψs → 0 . (4.20)

Relation (4.20) is same as the relation (4.13) which led us to a contradiction to (4.4). Hence
(4.20) also implies that (4.4) cannot hold and hence the proof of the theorem is complete.
�

As it was pointed out in the course of the proof of Theorem 10, assumption (A5) was only
used for the purpose of arriving at a contradiction to (4.4) in the case that the alternatives θn
either do not approach θ0 sufficiently fast or stay away from it, in the sense that {n 1

2 (θn−θ0)}
is unbounded. So, if we restrict our alternatives to those θn’s such that θn tends to θ0 at
an appropriate rate, in the sense that {n 1

2 (θn − θ0)} stays bounded (from above), then the
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sequence of tests {ϕn} defined by (4.2) and (4.3) is asymptotically locally most powerful
for testing H0 : θ = θ0 against A : θ ∈ ω = {θ ∈ Θ; θ > θ0}.

When we want to test H0 : θ = θ0 against A′ : θ ∈ ω′ = {θ ∈ Θ; θ < θ0}, a theorem
analogous to Theorem 10 also holds true, the proof of which is essentially similar to the
proof of Theorem 10. More precisely, we define the sequence of tests {ϕ′n} as

ϕ′n = ϕ′n(∆n(θ0)) =


1 if ∆n(θ0) < c′n

γ′n if ∆n(θ0) = c′n

0 otherwise,

(4.21)

where the sequences {c′n} and {γ′n} are determined by the requirement

Eθ0ϕ′n = α for all n. (4.22)

Then we have

Theorem 11. Under assumptions (A1–A4) and (A5′), the sequence of level-α tests {ϕ′n}
defined by (4.21) and (4.22) is AUMP for testing H0 : θ = θ0 against A′ : θ ∈ ω′.

Under assumptions (A1–A4), the sequence of tests {ϕ′n} defined by (4.21) and (4.22) is
asymptotically locally most powerful for testing H0 : θ = θ0 against A′ : θ ∈ ω′ when we
restrict the alternatives θ′n’s in such a way that {n 1

2 (θn − θ0)} stays bounded (from below).
Examples where Theorems 10 and 11 can be applied to derive an optimal test, have been

given in Roussas (1972, 2008) for Markov processes.
When the alternatives are two-sided, AUMP tests do not exist as one would expect. How-

ever, one can construct tests which are asymptotically uniformly most powerful unbiased.
Let us recall the relevant definitions.

Definition 4.2. For testing H0 : θ = θ0, θ0 ∈ R, against A : θ ∈ ω′′ = {θ ∈ Θ; θ 6= θ0}
at asymptotic level of significance α, the sequence of tests {ϕn} is said to be asymptotically
unbiased if lim inf[inf(Eθϕn; θ ∈ ω′′)] ≥ α and is said to be AUMP unbiased (AUMPU) of
asymptotic level of significance α if it is asymptotically unbiased and of asymptotic level α
and

lim sup[sup(Eθωn − Eθϕn; θ ∈ ω′′)] ≤ 0

for any sequence of asymptotically unbiased and of asymptotic level of significance α tests
{ωn}.

When the sample size n is fixed, the unbiasedness of a test requires that its power remains
≥ α. When n is allowed to increase indefinitely, it seems natural to replace the concept of
unbiasedness of a test by asymptotic unbiasedness, as is done in Definition 4.2.

Consider the sequence of tests {ϕ′′n} defined by:

ϕ′′n = ϕ′′n(∆n(θ0)) =

 1 if ∆n(θ0) < an or ∆n(θ0) > bn (an < bn)

0 if an ≤ ∆n(θ0) < bn,
(4.23)
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where the sequences {an} and {bn} are chosen, so that

an → −ξ 1
2α

and bn → ξ 1
2α
, (4.24)

and ξp is the upper pth quantile of the N(0, Γ̄(θ0)), and Γ̄(θ0) is as in assumption (A3)(iii)
(with θ replaced by θ0).

Then we have the following result.

Theorem 12. Under assumptions (A1–A5), (A5′), the sequence of tests {ϕ′′n(∆n(θ0))}
defined by (4.23) and (4.24) is AUMPU of asymptotic level of significance α for testing
H0 : θ = θ0 against A : θ ∈ ω′′, where ω′′ is given in Definition 4.2.

Proof. (Outline) The proof of the theorem is presented in the following three stages. We
first show that {ϕ′′n(∆n(θ0))} is of asymptotic level of significance α. Next it is proved that
{ϕ′′n(∆n(θ0))} satisfies the condition of asymptotic unbiasedness; this is done by contradic-
tion. Finally, it is shown that {ϕ′′n(∆n(θ0))} is AUMP within the class of asymptotically
unbiased and of asymptotic level α tests. The proof of this fact is also by contradiction and
consists of two steps. First we take care of those parameter values θn for which {n 1

2 (θn−θ0)}
is unbounded. For those θn for which {n 1

2 (θn − θ0)} remains bounded, we employ the ex-
ponential approximation discussed in Section 3 in order to replace the given family by an
exponential family. For this latter family, we set up the appropriate UMPU test which
exists and then, by utilizing available results, we return to the original family and show
the required optimal character of the sequence of tests {ϕ′′n(∆n(θ0))}. The details of the
proof run along the same lines as those of the proof of Theorem 5.1 in Roussas (1972, 2008),
pp.115–120, and are omitted. �

5 Efficient Tests for Local Asymptotic Mixed Normal
Experiments

It has now become apparent that LAN is a valuable tool in drawing statistical inference about
the underlying parameter. However, it has also been noted that there exists many situations
where LAN is not satisfied. What is happening instead is that, under suitable conditions,
the log-likelihood ratio statistic and the other entities closely related to it converge to a
Locally Asymptotically Mixed Normal (LAMN) distribution. (For details the interested
readers are referred to Roussas and Bhattacharya (2009), Le Cam and Yang (2000) and
Jeganathan(1995), Davies(1985)). Let us introduce the concept of LAMN experiments in
brief, and for the general case Θ ∈ Rk, k ≥ 1.

Let θn = θ+δ−1
n h, where h ∈ Rk, δk×kn is a sequence of norming factors such that δk×kn is

a positive definite (p.d.) matrix with ‖δ−1
n ‖ → 0 as n→∞. The norming constants δn may

depend on θ but are independent of the observations. For all sufficiently large n, θn ∈ Θ
whenever θ ∈ Θ.
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Then the sequence of log-likelihood ratios is defined as

Λn(X1, X2, . . . , Xn; θ, θn) = Λn(θ, θn) = log
dPn,θn

dPn,θ
. (5.1)

Under a standard set of assumptions (see Roussas and Bhattacharya (2009)), it can be
shown that there exists a sequence of k-dimensional vectors {∆n(θ) = ∆n} and a sequence
of k × k symmetric almost sure (a.s.) p.d. random matrices {Tn(θ) = Tn} such that the
log-likelihood ratio statistic, as defined in (5.1), can be approximately written as a sum of
two terms, a term h′∆n, which is linear in the local parameter h, and a term − 1

2h
′Tnh,

which is quadratic in h; that is,

Λn(θn, θ)−
(
h′∆n −

1
2
h′Tnh

)
→ 0 in Pn,θ-probability. (5.2)

Further,
L[(∆n, Tn)|Pn,θ] =⇒ L(∆, T ), (5.3)

where T is an a.s. p.d. random matrix and ∆ is such that the conditional distribution of ∆,
given T , is Nk(0, T ).

If the matrices Tn in the quadratic term converge to a non-random matrix, then the se-
quence of log-likelihood ratios is Locally Asymptotically Normal (LAN). Then ∆ ∼ Nk(0, T )
and T is a p.d. matrix and a non-random quantity. These cases have been covered in earlier
sections.

Now, let the random vectors ∆n in equation (5.2) be represented in the form

∆n = T 1/2
n Wn, (5.4)

such that
L[(∆n, Tn)|Pn,θ] =⇒ L(∆, T ), ∆ = T 1/2W,

where T is an a.s. p.d. random matrix and W ∼ Nk(0, I) independent of T . Then the
sequence of models or experiments is Locally Asymptotically Mixture of Normals (LAMN).
Clearly, under the LAMN conditions, the distribution of ∆|T is Nk(0, T ), and E [(h′∆)2|T ] =
h′Th. Under the LAMN conditions, the limiting distribution of T does not depend on the
local parameter h; that is, L(Tn|θn = θ + δ−1

n h) has a limit independent of h. Moreover, it
can be shown that the sequences of probability measures{Pn,θ} and {Pn,θn

} are contiguous
for every h ∈ Rk.

In order to arrive at the efficient tests we need the following results stated in the form of
lemmas. Justifications of the results stated below can be found in Le Cam and Yang (2000),
Jeganathan (1995), Basu and Bhattacharya (1988, 1990, 1992), Davies (1985).

Lemma 5.1. If the sequence of experiments {En} satisfies the LAMN conditions at θ0 ∈ Θ,
then for every h ∈ Rk, we have

L{[Λ(θn, θ0),∆n, Tn]|Pn,θ0} =⇒ L(h′T 1/2W − 1
2
h′Th, T 1/2W,T ), (5.5)

L{[Λ(θn, θ0),∆n, Tn]|Pn,θn
} =⇒ L(h′T 1/2W +

1
2
h′Th, T 1/2W + Th, T ), (5.6)
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where W is a k × 1 standard normal vector independent of T .

Lemma 5.2. If the sequence of experiments {En} satisfies the LAMN conditions at θ0 ∈ Θ,
then for every h ∈ Rk, we have

L
(
T−1/2
n ∆n|Pn,θ0

)
=⇒ L(W ), (5.7)

L(T−1/2
n ∆n|Pn,θn) =⇒ L(W + T 1/2h). (5.8)

Lemma 5.3. If the sequence of experiments {En} satisfies the LAMN conditions at θ0 ∈ Θ,
then for every h ∈ Rk, we have the joint convergence of (∆n, Tn) as follows:

L [(∆n, Tn)|Pn,θ0 ] =⇒ L(∆, T ), where ∆ = T 1/2W, (5.9)

L [(∆n, Tn)|Pn,θn ] =⇒ L
(

∆̃, T
)
, where ∆̃ = T 1/2W + Th. (5.10)

Exponential approximation result similar to Theorem 7 also holds for the LAMN models
with respect to a certain truncated version of ∆n. (See Theorem 9.4 in Roussas and Bhat-
tacharya (2009)). However, the approximating family under LAMN framework no longer
belongs to a standard exponential family, but to a curved exponential family, so defined by
Efron (1975). Roughly speaking, an exponential family is curved when the dimensionality of
the sufficient statistics for θ is larger than the dimensionality of θ. For example, the normal
family N(θ, θ2), θ ∈ R, is a curved exponential family.

Let us consider the case where k = 1 and replace ∆n(θ0), Tn(θ0), ∆(θ0) and T (θ0) by
∆n, Tn, ∆ and T , respectively. We can define the following sequence of test functions {ϕ̃n}
for testing H0 : θ = θ0 against A′′ : θ = θn = θ0 + δ−1

n h:

ϕ̃n = ϕ̃n(∆n(θ0)) =


1 if Λ(θn, θ0) > c′′n

γ′′n if Λ(θn, θ0) = c′′n

0 otherwise,

(5.11)

where the sequences {c′′n} and {γ′′n} are determined by the requirement

Eθ0 ϕ̃n = α for all n. (5.12)

Using (5.2) for k = 1, we can rewrite (5.11) as

ϕ̃n = ϕ̃n(∆n(θ0)) =


1 if h∆n − 1

2h
2Tn > c′′n

γ′′n if h∆n − 1
2h

2Tn = c′′n

0 otherwise,

(5.13)

where the sequences {c′′n} and {γ′′n} are determined by the requirement Eθ0 ϕ̃n = α, for all
n.

Thus, we have the following theorem:



Asymptotically Optimal Tests under . . . 79

Theorem 13. Let the sequence of experiments {En} satisfy the LAMN condition at θ0 ∈ Θ
and let {ϕ̃n} be a sequence of tests defined by (5.11) and (5.12). Then for every h(6= 0) ∈ R,
the sequence of tests {ϕ̃n} is asymptotically most powerful of size α, and the upper bound
of the asymptotic power function βeϕn

(θn) of the test at θn is given by

lim
n←↩∞

supβeϕn
(θn) ≤ P

(
hT 1/2W +

h2

2
T > c′′

)
,

where W is a N(0, 1) variable independent of T , and c′′ is such that

Pθ0

(
hT 1/2W − h2

2
T > c′′

)
= α.

Proof. It is clear that the sequence of tests {ϕ̃n} defined by (5.11) and (5.12) is the Neyman-
Pearson test and hence is most powerful for testing H0 : θ = θ0 against A′′ : θ = θn. Now
we have seen that under LAMN condition Λ(θn, θ0) and h∆n − 1

2h
2Tn are differentially

(asymptotically) equivalent in the sense that the difference between Λ(θn, θ0) and h∆n −
1
2h

2Tn converges to zero in Pn,θ0 -probability. Since the probability measures Pn,θ0 and Pn,θn

are contiguous, the difference between Λ(θn, θ0) and h∆n− 1
2h

2Tn also converges to zero in
Pn,θn -probability. Thus, tests given by (5.11) and (5.13) are differentially (asymptotically)
equivalent and hence the tests defined by (5.13) and (5.12) are also asymptotically most
powerful. Now, let A be the class of all asymptotically size α tests ϕ̃′n for which the power
function βeϕ′n(θ) is continuous in θ and αn = Eθ0 ϕ̃′n → α, where 0 < α < 1. Then we have

βeϕ′n(θn) ≤ Pθn
(Λ(θn, θ0) > c′′n) + γ′′nPθn

(Λ(θn, θ0) = c′′n)

= Pθn

(
h∆n −

h2

2
Tn > c′′n

)
+ γ′′nPθn

(
h∆n −

h2

2
Tn = c′′n

)
→ P

(
hT 1/2W + h2T − h2

2
T > c′′

)
+ γ′′P

(
hT 1/2W + h2T − h2

2
T = c′′

)
= P

(
hT 1/2W +

h2

2
T > c′′

)
, (5.14)

using Lemma 3.1 and the fact that W is a N(0, 1) variable which is independent of T .
The constant c′′ (c′′n → c′′ as n→∞) is such that

Pθ0

(
hT 1/2W − h2

2
T > c′′

)
= α. (5.15)

Since ϕ̃′n ∈ A is arbitrary, we replace ϕ̃′n by ϕ̃n in the above proof and Theorem 13 follows.
�

It is usually difficult to find a test ϕ̃′n for which the power function βeϕ′n(θ) has the largest
value for each θ compared to any other test of the same size αn(θ0). However, it is possible
to compare two tests, ϕ̃′n and ϕ̃′′n, of the same size αn(θ0), by comparing their respective
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power functions β1eϕ′n(θ) and β2eϕ′′n(θ), which satisfy one kind of inequality for some values of
θ and the reverse inequality for the other values of θ in the admissible range of θ (see the
plot of the power functions in Bhattacharya and Roussas(1999)); i.e.,

β1eϕ′n(θ) ≥ β2eϕ′′n(θ), for some values of θ,

and

β1eϕ′n(θ) ≤ β2eϕ′′n(θ), for the other values of θ in the admissible range of values of θ.

Such knowledge is very useful in comparing two tests of the same size, but in practice
finding the power function for all admissible values of θ is extremely difficult. Thus for
comparison purposes, we prefer to depend on a single numerical measure which is easy to
compute, and the approach of comparison must be asymptotic in nature; i.e., such a measure
must be based on large samples. A first order criterion of asymptotic efficiency of a test is
defined as follows: a test is efficient when it maximizes the derivative of the power function
βeϕ′n(θ) at the point θ0; i.e., β′eϕ′n(θ0) is maximum (Rao 1973). If an AUMP test does not
exist, then we try to find tests which are best for alternatives close to the null hypothesis
(close in the sense that they converge to the null hypothesis at a fixed rate) and hope that
those tests will also perform well for distant alternatives. On the basis of this idea, locally
efficient tests may be derived.

The criterion for local efficiency of a test is given by the Pitman power which is defined
below.

Definition 5.1. The Pitman power βp(θ0;h, α) for any test ϕ̃n ∈ A, A being the class of
all asymptotically size-α tests for which the power function βeϕn

(θ) is continuous in θ and
αn = αn(θ0) = Eθ0 ϕ̃n → α, where 0 < α < 1, is defined as

βp(θ0;h, α) = lim
n→∞

βeϕn
(θn), where θn = θn(h) = θ0 + δ−1

n h and θn → θ0, (5.16)

when the limit exists.

Another criterion, known as local power criterion, is defined below.

Definition 5.2. The local power βl(θ0;α) of any test ϕ̃n ∈ A is defined as

βl(θ0;α) = lim
n→∞

{
δ−1
n

[
dβeϕn

(θn)
dθ

]∣∣∣∣
θ=θ0

}

= lim
n→∞

[δ−1
n β′eϕn

(θ0)], where β′eϕn
(θ0) =

dβeϕn
(θn)

dθ

∣∣∣∣
θ=θ0

, (5.17)

when the limit exists.

It is clear from (5.14) that the test defined by (5.13) and (5.12) maximizes the limiting
power function for a specified sequence of alternatives θn = θn(h) = θ0 + δ−1

n h in the
following sense:
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Let the derivative of the power function at θ0 exist and be non-zero. Thus

β′eϕn
(θn) = lim

θn→θ0

βeϕn
(θn)− βeϕn

(θ0)
θn − θ0

exists and is non-zero.

Hence as θn → θ0 at a specified rate, we have the following approximation (which also
can be obtained via a Taylor expansion of βeϕn

(θn) around θ0 and with βeϕn
(θ0) = α)

βeϕn
(θn) ' (θn − θ0)β′eϕn

(θn) + α. (5.18)

Now, for h > 0 (i.e., for θn − θ0 > 0), βeϕn
(θn) is maximized in the neighborhood of θ0

if β′eϕn
(θn) is maximized in the neighborhood of θ0. The test defined by (5.13) and (5.12),

being differentially (asymptotically) equivalent to the Neyman-Pearson most powerful test
defined by (5.11) and (5.12), is most powerful for testing H0 : θ = θ0 against A′′ : θ = θn,
and hence β′eϕn

(θn) becomes maximum; i.e.,

β′eϕn
(θn) ≥ β′eϕ′n(θn), for any other test ϕ̃′n ∈ A.

It is readily seen from the above discussion that the Pitman power is maximized for this
test.

According to the local power criterion (5.17), we have

βl(θ0;α) = lim
n→∞

{
δ−1
n

[
dβeϕn

(θn)
dθ

]∣∣∣∣
θ=θ0

}
= lim

n→∞
[δ−1
n β′eϕn

(θ0)]

= lim
n→∞

{
δ−1
n lim

θn→θ0

[
βeϕn

(θn)− βeϕn
(θ0)

θn − θ0

]}
= lim

n→∞
h−1[βeϕn

(θn)− βeϕn
(θ0)]

= lim
n→∞

h−1βeϕn
(θn)− α

h
. (5.19)

Again, (5.19) establishes that the test which will have maximum Pitman power will also
have maximum local power for fixed h; i.e., for a chosen sequence of alternatives θn(h) =
θ0 + δ−1

n h.
It is to be noted that the power function of the sequence of tests defined by (5.13) and

(5.12) is not free of h even in the limit, since the critical region of the tests ϕ̃n defined
by Rn = h∆n − 1

2h
2Tn > c′′n is not free of h even in the limit. This is due to the fact

that the convergence h∆n − 1
2h

2Tn =⇒ hT 1/2W + h2T − h2

2 T = hT 1/2W + h2

2 T under Pθn

holds. As a result, the sequence of tests is not AUMP for different values of h, though it is
asymptotically most powerful against the chosen sequence of alternatives θn(h) = θ0 +δ−1

n h.
Hence, under LAMN conditions, no AUMP test exists for testing H0 : θ = θ0 against
A′′ : θ = θn = θ0 + δ−1

n h. Bhattacharya and Roussas (1999) have discussed examples
from the LAMN model, where the asymptotically efficient tests for the parameter of an
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autoregressive process of order one have been derived. Performances of different tests have
been compared with respect to their Pitman power at different values of h. For better
understanding of the complexities that may arise in testing H0 : θ = θ0 against A′′ : θ =
θn = θ0 + δ−1

n h, under LAMN conditions, the interested reader is referred to Section 6.8 in
Le Cam and Yang (2000, pp.164–168).
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