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summary

In this paper, we consider multiple testing procedures in which we simultane-
ously test a large number m of null hypotheses H1, . . . , Hm using the test statis-
tics T1, . . . , Tm. The currently used procedure of controlling the false discovery
rate (FDR) at a specified level requires that the statistics T1, . . . , Tm be either
independently distributed or positively related. In practice Ti’s are rarely inde-
pendent and it is not known how to ascertain the positive relationship between
Ti’s. In this paper, we propose to control the expected value of the Average False
Discovery (AFD) at some specified level. This AFD procedure controls its level
at the specified value independent of how Ti’s are related. This specified value
can be chosen to control k-FWER or γFWER and even FDR at their respective
specified levels. Using simulation, we compare our proposed AFD procedure with
the FDR procedure. In terms of power and stability, the proposed AFD procedure
has an edge over the FDR procedure, as well as over k-FWER procedure. Two
illustrative examples are given to compare the number of differentially expressed
genes obtained by the two methods.

Keywords and phrases: Familywise error rate, false discovery rate, microarray
datasets, multiple testing, power, sample size smaller than dimension, variability.

1 Introduction

One of the most important issue in large-scale multiple testing is how to choose or even
define the type I error rate, usually called level of significance, although no such problem
arises if our interest is only in testing globally the hypothesis H =

⋂m
i=1Hi against the

alternative that at least one Hi is false. This alternative will be written A 6= H. In this
case, the type I error rate is well defined and is given by

P(rejecting H|H is true) ≤ α ,

where α is a pre-assigned number, 0 < α < (1/2). This is also called Familywise Error
Rate or simply FWER. However, when the hypothesis H is rejected, we need to know,
which Hi or Hi’s may have caused the rejection of the hypothesis H. For small m, we
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may choose α/m as a significance level for each individual hypothesis and maintain, albeit
conservatively, the significance level α by using the Bonferroni inequality, which does not
require the independence of the statistics Ti’s used in testing the hypothesis Hi, But when
m is large, α/m becomes too small. Even if Ti’s are independently distributed, the exact
level γ/m at which each hypothesis Hi may be tested is obtained by solving the equation

1− (1− γ/m)m = α.

For large m, γ ' α. Thus, it is not the conservativeness of the Bonferroni inequality that
causes the problem, but rather the largeness of m. Thus, we shall consider other kinds
of ‘Type I’ errors which may not necessarily translate into finding confidence intervals for
each parameter at a pre-assigned confidence level. To define other kinds of type I errors in
connection with simultaneously testing m hypotheses Hi’a using the test statistics Ti’s, let
m0 be the number of true null hypotheses. Then, there are m1 = m−m0 false hypotheses,
but both the numbers m0 and m1 are unknown. In fact, it is not known which m0 of the
Hi’s are true hypotheses. Similarly, we do not know which m1 of the m hypotheses are false
hypotheses. We shall denote by Λ0, the set of m0 true null hypotheses, and by Λ1 the set of
m1 false hypotheses. Let R be the number of total rejections which contain a total of V false
rejections (of the true hypotheses), and R − V correct rejections (of the false hypotheses).
But V is not observable and we only observe R and m. It is customary to represent these
numbers as in the following table.

Number of Rejected Not Rejected Total

True null V m0 − V m0

False null S m1 − S m1

Total R m−R m

Table 1: The outcomes of a multiple testing procedure.

We first note that the familywise error rate FWER mentioned earlier is defined by

FWER = PΛ0(V ≥ 1). (1.1)

which is controlled at a specified level of significance, say α, usually achieved by Bonferroni
inequality. Benjamini and Hochberg (1995) introduced and defined a type I error, called
False Discovery Rate, FDR. It is given by

FDR = E[(V/R)I(R > 0)]

= E[(V/R)|R > 0]P (R > 0), (1.2)

where I(·) denotes the indicator function in which I(R > 0) = 1 if R > 0 and takes the
value zero if R = 0; it may be noted that when m0 = m,FDR = FWER. The expected
value in (1.2) is obtained when true null holds for V and false null holds for S = R− V .
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Benjamini and Hochberg showed that the FDR can be controlled at any specified level,
say, α by using the step-up procedure of Simes (1986), provided the statistics Ti’s used for
testing the hypotheses Hi are independently distributed. Later, Benjamini and Yekutieli
(2001) showed that the FDR can be controlled if Ti’s are independently distributed or
positively related. And if these conditions are not satisfied, then FDR is controlled at level
α
∑m
j=1 (1/j). Thus, in the general case the boundaries of Sime’s procedure have to be

modified to control FDR at level α, making FDR less powerful To distinguish it from other
procedures, we shall call the above procedure due to Benjamini and Hochberg (1995) as the
BH-FDR procedure.

Hommel and Hoffman (1988), and Lehmann and Romano (2005) considered to control
another kind of Type I error by proposing to control,

PΛ0 {V ≥ k} ≤ α (1.3)

for some chosen k. This can be controlled by using constant rejection region, no matter
how the statistics Ti’s are related, as opposed to the varying rejection regions of the FDR.
Romano and Shaikh (2006) extended this result to varying critical regions, similar to FDR,
which improved the power but the level of α is rarely achieved for both the cases. But, the
problem of how to choose k in (1.3) remains. To overcome this difficulty Du and Srivastava
(2006) proposed to control

PΛ0

{
V

m0
≥ γ

}
≤ α (1.4)

and called it γFWER procedure, and chose γ = .05, and 0.10, α=0.05 and compared it with
the BH-FDR procedure at level α = 0.05. For (m0/m) ≥ 0.7, the procedure (1.4) has a
better power than the BH-FDR procedure while the FDR of the (1.4) procedure remained
at or about the same level as BH-FDR.

The procedures given in (1.2) - (1.4) do not control the number of false discoveries V .
While it may be difficult to control it in large scale hypotheses testing, it may be possible
to control the expected value of V/m0, since neither V nor m0 is observed, almost similar
to the FDR case which is also the expected value of an unobserved random variable. Thus,
in this paper, we propose to control

AFD = EΛ0(V/m0) =
1
m0

∑
j∈Λ0

P(reject Hj |Hj). (1.5)

which we call Average False Discovery procedure. It will be shown in Section 2, that the
AFD can be controlled by a fixed rejection region procedure at any specified level, say, δ,
irrespective of how the statistics Ti’s used for testing the hypothesis Hi are related.

It may be noted that when m0 = m, the AFD defined above becomes PCER, the per
comparison error rate, see, Dudoit et al.(2003), for example.
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It is shown in Section 2.4, that the control level of the AFD procedure can be chosen
to control the level of the k-FWER procedure also, but it can not be chosen to control the
level of PCER procedure unless m0 = m.

Next, we discuss the selection of the values of δ required to carry out the AFD procedure.
Clearly, it is no different than the selection of ‘α’ in FWER or FDR procedures. In Section
2.3, we give a method to choose δ so that the FDR can also be controlled at some specified
level when T ′is are independent and m is large. In fact, in all our simulations, the FDR
of the proposed AFD procedure is controlled even when T ′is are not independent. In our
simulation, we choose δ = 0.005 in order that the FDR be controlled at level 0.05. Thus, the
proposed procedure can control both AFD and FDR by choosing δ appropriately as given
in Section 2.3 . Alternatively, δ may be chosen to control k-FWER or γFWER as shown
in Section 2.4. In any case, δ may be chosen so that there are no more than 5 or 10 per
thousand of false discoveries.

The organization of this article is as follows. In Section 2, we describe the proposed
procedure along with some properties of this procedure. In Section 3, we describe the BH-
FDR procedure of Benjamini and Hochberg (1995). The power of the two procedures is
compared in Section 4 and two examples of microarrays are analyzed in Section 5. The
paper concludes in Section 6.

2 The Average False Discovery and Other Related Pro-
cedures.

Genovese and Wasserman (2002) showed that asymptotically for large m, the BH-FDR pro-
cedure in the independent statistics case, is equivalent to a constant critical region procedure
obtained at some level ε, 0 < α/m ≤ ε ≤ α < 1

2 but it is not known how to choose ε. The
proposed AFD procedure thus fills this gap.

To motivate the AFD procedure, let us recall that in a single testing situation, one tries
to control the probability of rejecting the hypothesis H when it is actually true. Let V = 1
if the hypothesis H is rejected and V = 0 otherwise. Then the type I error rate in a single
hypothesis testing situation can be written as

P(reject H|H) = P(V = 1|H) = E[V |H]. (2.1)

Suppose T is an appropriate test statistic for H. Suppose t is an observed value of T and
large values of t are evidence against H. Then the p-value of T at t is given by

p = P(T ≥ t|H). (2.2)

Consider the procedure that rejects H if p ≤ α for a specified value α. Then this testing
procedure has a significance level α. In other words, the type I error rate is controlled at
level α.
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In the multiple testing situation, let us consider the average of the type I error rates of
all of the true cases. That is,

1
m0

EΛ0 [V ] =
1
m0

∑
j∈Λ0

P(reject Hj |Hj), (2.3)

where Λ0 is the set of the true null hypotheses.
Suppose that T1, . . . , Tm are appropriate test statistics for the multiple hypotheses

H1, . . . ,Hm, and t1, . . . , tm their observed values. Large values of tj ’s are evidence against
Hj ’s. Then the p-values of T1, . . . , Tm are given by

pj = P(Tj ≥ tj |Hj). (2.4)

When the p-values are considered as random variables, we denote them by Pj ’s. It will be
assumed that for any 0 < ν ≤ 1,

P(Pj ≤ ν|Hj) = ν, (2.5)

which holds, when the samples are taken from the continuous model.
Consider the procedure of rejecting the hypothesis Hj if pj ≤ δ, where δ is a pre-specified

value. Then

AFD =
1
m0

E[V |Λ0] =
1
m0

E

∑
j∈Λ0

I(Pj ≤ δ)|Λ0


=

1
m0

∑
j∈Λ0

P(Pj ≤ δ|Hj) =
1
m0

∑
j∈Λ0

δ = δ, (2.6)

where I(·) is the indicator function. Therefore, a procedure that rejects Hj when pj ≤ δ

controls the AFD at level δ. Values of δ can be chosen in the same manner as the value of
α; it does not depend on the value of m,m0 or m1.

Theorem 2.1. A procedure that rejects each hypothesis Hj if the corresponding p-value
pj ≤ δ controls the average false discovery at level δ. That is

AFD = δ. (2.7)

It may be noted that E[V |Λ0] = m0δ ≤ mδ, which provides a good bound for the average
of false discoveries as in most practical situations m0/m ≥ 0.90.

In the next four subsections, we study the properties of the AFD procedure. We start
with the power.

2.1 Power of the AFD procedure

We consider the average power

π = E[S]/m1, (2.8)
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where S is the number of false hypotheses that have been rejected and m1 is the total
number of false hypotheses.

Without loss of generality, suppose that the first H1, . . . ,Hm1 are false hypotheses. And
assume that the alternative hypotheses A1, . . . , Am1 are equal, that is,

X1, . . . , Xm1 ∼ A.

Then, when Xj ’s are continuous random variables, the average power is given by

π = E[S/m1] =
1
m1

∑
j 6∈Λ0

E[I(Pj ≤ δ)|Aj ]

=
1
m1

∑
j 6∈Λ0

P(Pj ≤ δ|A) =
1
m1

∑
j 6∈Λ0

F (δ) = F (δ), (2.9)

where F (δ) = P(Pj ≤ δ|A) is unknown, but depends on the alternative distribution of
X1, . . . , Xm1 . This implies that the average power of the proposed AFD procedure stays
constant irrespective of the number m1 when the alternative distributions are the same.
This result is of great significance since some analysts may choose only a smaller number
m∗ ≤ m of important hypotheses, which obviously may have smaller number m∗1 ≤ m1 of
false hypotheses. Then, it is important that the power should not be dependent on m1.

The above result is summarized in the following theorem.

Theorem 2.2. Assume that all the m1 alternative hypotheses have the same distribution.
Then the power of the AFD procedure remains constant.

2.2 Variance of V/m0

The variance of V/m0 is given by the following two lemmas, with the proofs given in the
Appendix.

Lemma 2.1. When the samples are taken from continuous models, under general conditions,

VarΛ0(V/m0) =
δ

m0
+

1
m2

0

∑
j,l∈Λ0,j 6=l

EΛ0 [I(Pj ≤ δ)I(Pl ≤ δ)]− δ2.

Lemma 2.2. Let the test statistics are student’s t-statistics with the distribution function
G. Let G−1(1− δ) = t0. Then for large N ,

VarΛ0(V/m0) ' δ

m0
+

1
m2

0

∑
j,l∈Λ0,j 6=l

ψ(δ, ρjl)− δ2,

where ρjl’s are the correlation coefficients between the test statistics, and

ψ(δ, ρjl) =
1√
2π

∫
|x|≥t0

Φ

−t0 + ρjlx√
1− ρ2

jl

+ Φ

−t0 − ρjlx√
1− ρ2

jl

 exp(−x2/2)dx,

with Φ(·) being the standard normal distribution function.
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From above, we get the following corollary.

Corollary 2.1. When the test statistics are independently distributed,

VarΛ0(V/m0) = δ(1− δ)/m0.

2.3 Controlling the FDR of the AFD Procedure under the Inde-
pendence of Ti’s or Pi’s

In this section, we shall assume that the statistics Ti’s for testing the hypotheses Hi’s are
independently distributed. Thus the p-values are independently distributed. Suppose we
wish to control the FDR of the BH procedure at level α. We shall assume that

0 < lim
m→∞

(mi/m) < 1, i = 0, 1.

Then from the law of large numbers

V

m0
=

1
m0

∑
i∈Λ0

I(Pi < δ)
p−→ PΛ0(Pi ≤ δ) = δ.

Similarly,
S

m1
=

1
m1

∑
i∈Λ1

I(Pi < δ)
p−→ PΛ1(Pi ≤ δ) = F (δ),

under the assumption that when i ∈ Λ1 all the Pi are independently and identically dis-
tributed with common cumulative distribution function F. Also, since the random variable
V
R is a decreasing function of R and the random variable I(R > 0) is an increasing function
of R, it follows from Theorem 1.10.5 of Srivastava and Khatri (1979, page 26) that

FDR = E

[(
V

R

)
I(R > 0)

]
≤ E

(
V

R

)
P (R > 0)) ≤ E

(
V

R

)
,

where R = V + S. Hence,

FDR ≤ E
(
V

R

)
= E

[ ∑
i∈Λ0

I(Pi ≤ δ)∑
i∈Λ0

I(Pi ≤ δ) +
∑
i 6∈Λ0

I(Pi ≤ δ)

]

=
δ

δ + m1
m0
F (δ)

+O(m−
1
2 ) .

Thus, the FDR can be controlled asymptotically at level α if

δ

δ + m1
m0
F (δ)

≤ α ,

or equivalently if

(1− α)δ ≤ αm1

m0
F (δ) . (2.10)
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That is, if

F (δ) ≥ m0

m1

1− α
α

δ. (2.11)

In most practical situations, m1/m ≤ 0.20. Since m1, would never be known, it would be
prudent to guard against all these situations and choose (m0/m1) = 4. Thus, we shall chose
δ so that F (δ) ≥ 4 (1−α)

α δ. For α = 0.05 and δ = 0.005, F (0.005) ≥ 0.38, which is satisfied
in all our simulations. Thus, for large m, FDR is controlled at level 0.05, when AFD is
controlled at level 0.005 for the AFD procedure. If a good knowledge of m1 is available,
other choices of δ can also be made. The above suggestion is on the conservative side.

2.4 Choosing δ to control k-FWER and γFWER.

From the Markov inequality see, e.g. Lehmann and Romano (2005), we have

PΛ0{V > k} ≤ EΛ0(V )
k

=
m0

k
AFD ≤ m

k
AFD .

Thus to control k-FWER at level α, we require that

AFD ≤ k

m
α = γα

where γ = k/m. Thus, in order to control k-FWER or γFWER at level α, we need to choose
δ less than (k/m)α = γα. This also shows that the k-FWER procedure and its variants are
controlled conservatively at level α, while AFD procedure is controlled exactly at level α.

3 Benjamini-Hochberg Procedure Controlling FDR

Benjamini and Hochberg (1995) introduced the concept of False Discovery Rate, FDR.
Define a random variable η by

η = (V/R)I(R > 0). (3.1)

Then as in (1.2), the FDR is given by

FDR = E[η]. (3.2)

It may be noted that since V is unobservable, η is also an unobservable random variable.
However, Benjamini and Hochberg (1995) showed that the FDR can be controlled at a speci-
fied level, say, α by using Simes (1986) step-up procedure described as follows, provided that
the statistics Ti’s used in testing the hypotheses Hi’s are independently distributed. Ben-
jamini and Yekutieli (2001), however, have relaxed the independence condition to positive
relationship between Ti’s. Let

pi = P{Ti > ti|Hi} (3.3)
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be the observed p-value for the observaed value of the statistics ti. Let

p(1) ≤ · · · ≤ p(m) (3.4)

be the ordered values of the pi’s. As before, when pi and p(i) are random, they will be
denoted by Pi and P(i) respectively. The hypothesis corresponding to P(i) will be denoted
by H(i). Then according to Simes’ procedure, the hypotheses H(1), . . . ,H(j∗) are rejected if
j∗ is the largest value of j for which p(j) ≤ jα/m. That is

j∗ = max1≤j≤m{j : p(j) ≤ jα/m} . (3.5)

If T1, . . . , Tm are independently distributed or positively related, then

FDR = EΛ(η) ≤ (m0/m)α ≤ α. (3.6)

However, if Ti’s are not independently distributed or positively related, then j∗ is defined
by

j∗ = max
1≤j≤m

[
j : p(j) ≤

jα

mCm

]
, Cm =

m∑
i=1

(
1
i

)
(3.7)

for (3.6) to hold. From (3.6), it follows that for large m1 and m, it is a very conservative
procedure. Thus, it will have less power for large m1 and m. The power of any procedure
is defined by

EΛ1

(
S

m1

)
, (3.8)

see Table 1 for the definition of S and m1. No expression for the power is available in the
literature for the HB-FDR procedure.

4 Comparison of the AFD Procedure with the BH-FDR
Procedure: A Simulation Study.

In our simulation, we consider one-sample multiple hypotheses testing

Hj : µj = 0 v.s. Aj : µj 6= 0, j = 1, . . . ,m. (4.1)

We use the multivariate normal model Nm(µ,Σ) to generate the data. We select m = 1000.
Given m, we consider different values of the proportion m0/m of the true cases and select
m0/m = 0.2, 0.4, 0.6, 0.7, 0.8, 0.9. For given m and m0, let the first m0 components follow
the null hypotheses and have mean values µ1, . . . , µm0 = 0 and for the alternative cases, we
generate the mean values µm0+1, . . . , µm iid from Unif(0.5, 1). For the covariance matrix Σ,
we choose

Σ = (ρij), ρij = (0.8)|i−j|
1/7
. (4.2)
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For each combination of parameters, we simulate 10,000 datasets of sample size N = 15.
For the AFD procedure, we have chosen δ = 0.005 and for the BH-FDR procedure we have
chosen α = 0.05. For a fair comparison, the FDR of AFD is also controlled at level 0.05,
assuming that Ti are independent and m0/m ≥ 0.80. From (4.2), it is clear that Ti’s are
neither independently distributed nor positively related and thus the procedure (3.7) should
been used; we have, however, still used (3.6).

In Table 2, the estimated powers, FDR, and AFD of the two procedures, the BH-FDR
and AFD are given along with their standard deviations below them. The standard devia-
tions appear to be within acceptable limits although the standard deviation of the BH-FDR
is always higher than the AFD. The power of the AFD procedure remains constant and have
the same level for all the cases. The power of the BH-FDR procedure decreases as (m0/m)
increases. The power of the BH-FDR procedure is always higher than the AFD procedure
for m0/m ≤ 0.70 but it has come at the cost of higher AFD. The BH-FDR procedure con-
trols FDR at level α = 0.05, but the entries show that it is only conservatively controlled
for all the cases. This may be the reason for loss of power for this procedure. The FDR of
the AFD procedure, although not controlled, is always below 0.05.

mo/m 0.2 0.4 0.6 0.7 0.8 0.9

AFD 0.391 0.393 0.394 0.391 0.391 0.391

(se) (0.119) (0.122) (0.125) (0.128) (0.131) (0.141)

Power

BH-FDR 0.631 0.566 0.474 0.404 0.320 0.212

(se) (0.138) (0.155) (0.168) (0.175) (0.175) (0.166)

AFD 0.005 0.005 0.005 0.005 0.005 0.005

(se) (0.024) (0.026) (0.024) (0.021) (0.019) (0.020)

AFD

BH-FDR 0.025 0.020 0.015 0.012 0.008 0.006

(se) (0.073) (0.065) (0.060) (0.055) (0.044) (0.042)

AFD 0.002 0.006 0.013 0.018 0.027 0.050

(se) (0.011) (0.025) (0.043) (0.057) (0.075) (0.118)

FDR

BH-FDR 0.009 0.018 0.027 0.030 0.032 0.033

(se) (0.026) (0.051) (0.078) (0.090) (0.099) (0.115)

Table 2: Attained Power, AFD, and FDR: δ = 0.005, α = 0.054, m = 1000. Correlation
Structure as in (4.2)
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From Table 2, it is clear that for (m0
m ) ≥ 0.7, AFD performs better than the BH-FDR

procedure.

Next in Table 3, we consider the case when the components are independently dis-
tributed. That is Σ = σ2I. In this case the FDR of the BH-FDR procedure can always be
controlled at a specified level α which has been taken to be 0.05. The AFD for the AFD
procedure is controlled at the level δ = 0.005.

mo/m 0.2 0.4 0.6 0.7 0.8 0.9

AFD 0.393 0.392 0.393 0.393 0.392 0.393

(se) (0.017) (0.020) (0.024) (0.028) (0.035) (0.049)

Power

BH-FDR 0.645 0.586 0.500 0.437 0.350 0.217

(se) (0.022) (0.027) (0.036) (0.044) (0.054) (0.073)

AFD 0.005 0.005 0.005 0.005 0.005 0.005

(se) (0.005) (0.004) (0.003) (0.003) (0.002) (0.002)

AFD

BH-FDR 0.026 0.018 0.010 0.007 0.004 0.001

(se) (0.012) (0.007) (0.004) (0.003) (0.002) (0.001)

AFD 0.003 0.008 0.019 0.029 0.048 0.058

(se) (0.003) (0.006) (0.011) (0.015) (0.023) (0.044)

FDR

BH-FDR 0.010 0.020 0.030 0.035 0.040 0.045

(se) (0.004) (0.007) (0.012) (0.016) (0.023) (0.045)

Table 3: The attained FDR of the AFD and BH-FDR; δ = 0.005, FDR = 0.05. Independent
Components. Here, FDR of AFD is also controlled at 0.05 for m0/m ≥ 0.8.

Again, from the Table 3, it is clear that for (m0/m) ≥ 0.7, AFD performs better than
the BH-FDR procedure.

Finally, we consider the case when Σ = σ2[(1−ρ)Im+ρ11′], that is, the components have
intraclass correlation structure. Here Im is an m×m identity matrix and 1 is an m-vector
of ones, 1′ = (1, . . . ,1). We choose ρ = 0.5 so that from Benjamini and Yekutieli (2001) ,
the FDR of the BH-FDR procedure can be controlled at the desired level. The simulation
results are presented in Table 4, which shows that the AFD procedure still performs better
than the BH-FDR procedure. Throughout the situation α = 0.05 and δ = 0.005.
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mo/m 0.2 0.4 0.6 0.7 0.8 0.9

AFD 0.391 0.393 0.388 0.390 0.391 0.393

(se) (0.229) (0.231) (0.229) (0.231) (0.232) (0.232)

Power

BH-FDR 0.601 0.547 0.461 0.408 0.388 0.234

(se) (0.282) (0.288) (0.290) (0.288) (0.273) (0.242)

AFD 0.005 0.005 0.005 0.005 0.005 0.005

(se) (0.017) (0.014) (0.017) (0.016) (0.016) (0.015)

AFD

BH-FDR 0.022 0.017 0.012 0.009 0.007 0.004

(se) (0.053) (0.044) (0.040) (0.036) (0.034) (0.030)

AFD 0.010 0.020 0.035 0.048 0.061 0.063

(se) (0.056) (0.082) (0.114) (0.140) (0.152) (0.189)

FDR

BH-FDR 0.010 0.018 0.027 0.032 0.033 0.035

(se) (0.041) (0.062) (0.090) (0.105) (0.112) (0.127)

Table 4: The attained Power, AFD , and FDR for the AFD and BH-FDR. Intraclass
Correlation Structure, correlation= 0.5; α = 0.05, δ = 0.005.

5 Examples from Microarrays

In this section, we use the multiple testing procedures discussed in previous sections to
analyze two datasets from microarrays. The datasets are described next.

• Colon Data: This dataset, obtained by Affymetrix technology, contains the expres-
sion levels of 6500 genes, which were measured on 22 normal and 40 tumor colon
tissues. From the original 6500 genes, Alon et al. (1999) has selected 2000 genes with
the highest minimal intensity across the samples. Thus the selected dataset contains
p = 2000 gene expression levels on N1 = 22 normal subjects and N2 = 40 tumor
subjects.

• Leukemia Data: This dataset contains gene expression levels of 72 patients either
suffering from acute lymphoblastic leukemia (ALL, 47 cases) or acute myeloid leukemia
(AML 25 cases) and was obtained from Affymetrix oligonucleotide microarrays. More
informationcan be found in Golub, et al. (1999). Following the protocol in Dudoit et
al. (2002), we preprocess them by thresholding, filtering, a logarithmic transformation
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and standardization, so that the data finally comprise the expression value of p = 3571
genes, and the degrees of freedom available for estimating the covariance is only 70.

The description of the above datasets and prepocessing are due to Dettling and Bühlmann
(2002), except that we do not process the datasets such that each tissue sample has zero
mean and unit variance across genes, which is not explainable in our framework. We roughly
check the normality assumption by QQ-plotting around 50 genes selected randomly. The
results are nearly satisfactory.

Before we embark on determining the number of differentially expressed genes by any of
the methods, we need to check if the mean vectors of the two samples are indeed different.
Also, to apply the BH-FDR procedure, we need to know if the statistics used for each
hypothesis are independently distributed or at least positively related. We do these tasks
in subsections 5.1, 5.2 and 5.3 respectively. In subsection 5.4, we obtain the differentially
expressed genes by the BH-FDR and AFD methods and compare them with the lower bound
given by Meinshausen and Bühlmann (2005) for these two data sets.

5.1 Testing the Equality of the Two Mean Vectors.

Denote the mean vectors of the two samples based on N1 and N2 observation vectors xij , j =
1, . . . , Ni, i = 1, 2 , by

x1 = N−1
1

N1∑
j=1

x1j , x2 = N−1
2

N2∑
j=1

x2j ,

and the pooled sample covariance matrix by

S = n−1
2∑
i=1

Ni∑
j=1

(xij − xi) (xij − xi)′ , n = N1 +N2 − 2

= (sij) ,

Let Ds = diag(s11, . . . , smm), be the m×m diagonal matrix and

R = D
− 1

2
s SD

− 1
2

s

be the correlation matrix. For testing the equality of the mean vectors of the two samples,
we use the statistic, due to Srivastava and Du (2008),

T =
q(x1 − x2)′D−1

s (x1 − x2)− (n/n− 2)m
[2(trR2 −m2/n)cm,n]

1
2

,

where
q = N1N2/(N1 +N2), and cm,n = 1 + trR2/m

3
2 .

Under the hypothesis that the two mean vectors are equal, it is asymptotically distributed
as N(0, 1). The values of the statistics T are 4.6882 and 17.0758 respectively. Hence, the
two mean vectors are not equal in both the examples. We also used the statistic proposed
by Srivastava (2007) and obtained the same result.
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5.2 Test for Independence.

In order to test for the independence of the t-statistics, we need to test the hypothesis that
the population covariance matrix is a diagonal matrix. For this, Srivastava (2005, 2006)
proposed two test statistics. One of them is given by

Q =
(n+ 2)

∑
i<j z

2
ij − 1

2m(m− 1)√
m(m− 1)

→ N(0, 1),

where

zij =
1
2

log
1 + rij
1− rij

, i 6= j, i, j = 1, . . . ,m .

Under the hypothesis of independence, the test statistics Q is N(0, 1). The p-values are
zero for both data sets; the second test, not presented here, also gives zero p-values. Hence,
the hypothesis of diagonality for both datasets is rejected.

5.3 Test for Positively Relatedness of the Statistics for Testing the
Hypotheses, Hi, i = 1, . . . ,m

Benjamini and Yekutieli (2001) have shown that the student’s t-statistics will be positively
related if the covariance matrix is of intraclass correlation structure with positive correlation.
Applying an orthogonal transformation of Helmert’s type, Srivastava (2006) showed that it
is equivalent to testing the spherecity of an (m − 1) × (m − 1) matrix. The p-value of this
test is also zero which implies that for both datasets the test statistics may not be positively
related.

5.4 Differentially Expressed Genes for the Two Data Sets

From the results of sections 5.2 and 5.3, it is clear that the control of the FDR for the
BH-FDR procedure cannot be guaranteed. Using the two-sample student’s t-statistics Tj ,
we obtain

pj = P{|Tj | ≥ |tj |}, j = 1, . . . ,m,

where the probability depends on both the set Λ0 of true null hypotheses and the correlation
structure of Tj ’s. We then order the obtained p-values as p(1) ≤ p(2) ≤ · · · ≤ p(m).

Using nominal significane level α = 0.05, we have the following results shown in Table 3.
The AFD numbers are closer to the numbers given by Meinshausen and Bühlmann

(2005). In any case, the AFD procedure appears to be a viable procedure in determining
the number of differentially expressed genes. In fact, since the Ti’s are neither independently
distributed nor positively related, the procedure in (3.7) should have been used.
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Colon: m 2000 Leukemia: m 3571

BH-FDR 354 BH-FDR 1105

AFD 292 AFD 865

MB 286 MB 957

Table 5: First two rows show the Numbers of differentially expressed genes selected by
each AFD and BH-FDR procedure for colon and leukemia datasets, respectively. Nominal
significance level α = 0.05; δ = 0.005. The last row is the lower bound given in Meinshausen
and Bühlmann (2005) at level 0.05.

6 Conclusion

We observed that both the BH-FDR and the AFD procedures control the expected values of
some unobservable random variables. When m0 = m, the FDR procedure becomes FWER
procedure. Similarly, when m0 = m, the AFD procedure becomes PCER procedure. The
BH-FDR can be controlled at the specified level if the statistics Ti’s used in testing the
hypotheses Hi’s are independently distributed or positively related. The Attained Signifi-
cance Level (ASL) however, depends om m1 and m. For large m1, the ASL of the BH-FDR
procedure has been found to be much smaller than the specified level α, and thus resulting
in loss of power. On the other hand, the AFD can be controlled irrespective of how these
Ti’s are related and the values of m1 and m. The power of the BH-FDR method, depends
not only on the alternative hypotheses or the false hypotheses but also on the number of
the false hypotheses m1 as well as on the total number of hypotheses m. This is not the
case with the AFD procedure. In fact, if in the alternative all the false hypotheses have
the same distribution, the power of the AFD procedure remains constant irrespective of
the values of m0,m1 and m. In power comparison, we notice that the BH-FDR has higher
power than the AFD procedure when the ratio m0/m ≤ 0.70 at the cost of higher AFD,
but have always smaller power when m0/m > 0.70 and AFD above the specified limit. It
has been observed in practice that in most practical applications, m0/m may even be larger
than 0.9. The FDR of the BH-FDR procedures is controlled at level α = 0.05, and the
AFD of the AFD procedure is controlled at level δ = 0.005, which can be chosen to control
k-FWER, γFWER or even FDR assuming independence of Ti’s. In terms of powers, the
AFD procedure has higher power, and lower AFD than the BH-FDR procedure for large
values of m0/m. Thus, we may conclude that the AFD procedure, which has a constant
critical region, is a well suited procedure in practical applications such as in microarrays.
The two examples also support this conclusion.
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Appendix: Proofs

In this section, we will give the proofs of Lemma 2.1 and 2.2 and of Corollary 2.1 and 2.2.
For simplicity, we shall denote I(Pj ≤ δ|Hj ∈ Λ0) by IΛ0(Pj ≤ δ) and P(Pj ≤ δ|Hj ∈ Λ0)
by PΛ0(Pj ≤ δ).

Proof of Lemma 2.1. We have

Var(V/m0) = E[V/m0]2 − (E[V/m0])2 =
1
m2

0

EΛ0 [
∑
j∈Λ0

I(Pj ≤ δ)]2 − δ2

=
1
m2

0

EΛ0 [
∑
j∈Λ0

I(Pj ≤ δ) +
∑

j,l∈Λ0,j 6=l

I(Pj ≤ δ)I(Pl ≤ δ)]− δ2

=
δ

m0
+

1
m2

0

∑
j,l∈Λ0,j 6=l

EΛ0 [I(Pj ≤ δ)I(Pl ≤ δ)]− δ2. (A.1)

Proof of Lemma 2.2. For large N , G may be considered as normal distribution Φ. Then
for large N ,

ψ(δ, ρjl) = EΛ0 [I(Pj ≤ δ, Pl ≤ δ)] = P[|Tj | ≥ t0, |Tl| ≥ t0]

' P[|Zj | ≥ t0, |Zl| ≥ t0] = P[|Zj | ≥ t0, Zl ≥ t0, or Zl ≤ −t0], (A.2)

where Zj , Zl ∼ N(0, 1) and Cov(Zj , Zl) = ρjl. Hence,

ψ(δ, ρjl) = P

|Zj | ≥ t0, Zl − ρjlZj√
1− ρ2

jl

≥ t0 − ρjlZj√
1− ρ2

jl

, or ,
Zl − ρjlZj√

1− ρ2
jl

≤ −t0 − ρjlZj√
1− ρ2

jl


=

1√
2π

∫
|x|≥t0

Φ

−t0 + ρjlx√
1− ρ2

jl

+ Φ

−t0 − ρjlx√
1− ρ2

jl

 exp(−x2/2)dx. (A.3)

Proof of Corollary 2.1. Since Pj ’s are independently distributed, we get from (A.1) that

EΛ0 [I(Pj < δ)I(Pl < δ)] = PΛ0(Pj < δ)PΛ0(Pl < δ) = δ2. (A.4)

Hence,

Var(V/m0) =
δ

m0
+
m0(m0 − 1)

m2
0

δ2 − δ2 = δ(1− δ)/m0. (A.5)
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