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summary

In a recent paper (4), Efron pointed out that an important issue in large-scale
multiple hypothesis testing is that the null distribution may be unknown and need
to be estimated. Consider a Gaussian mixture model, where the null distribution
is known to be normal but both null parameters-the mean and the variance-are
unknown. We address the problem with a method based on Fourier transforma-
tion. The Fourier approach was first studied by Jin and Cai (9), which focuses
on the scenario where any non-null effect has either the same or a larger variance
than that of the null effects. In this paper, we review the main ideas in (9), and
propose a generalized Fourier approach to tackle the problem under another sce-
nario: any non-null effect has a larger mean than that of the null effects, but no
constraint is imposed on the variance. This approach and that in (9) complement
with each other: each approach is successful in a wide class of situations where
the other fails. Also, we extend the Fourier approach to estimate the proportion
of non-null effects. The proposed procedures perform well both in theory and on
simulated data.
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1 Introduction

Large-scale multiple testing is a recent area of active research in statistics, where one tests

thousands or even millions of null hypotheses simultaneously:

Hj , j = 1, . . . , n.

Associated with each null hypothesis is a test statistics Xj , which, depending on the situa-

tion, can be a summary statistic, a p-value, a regression coefficient, or a transform coefficient,

etc. We say that Xj contains a null effect if Hj is true, and contains a non-null effect if

otherwise.

A convenient model is the Bayesian hierarchical model (4; 6) which we now describe.

Fix 0 < ǫ < 1. For each 1 ≤ j ≤ n, we flip a coin with probability ǫ of landing tail.

If the coin lands head, we draw Xj from a common density function f0(x) which we call

the null density. If the coin lands tail, we draw Xj from an individual density function

ξj(x), where ξj itself is randomly generated according to a fixed probability measure Ξ. In

effect, Xj can be viewed as samples from the density f1(x) ≡
∫

ξ(x)dΞ(ξ), which we call the

alternative density; see (6; 8). Marginally, Xj can be deemed as samples from the following

two-component mixture density:

Xj
iid∼ (1 − ǫ)f0(x) + ǫf1(x) ≡ f(x). (1.1)

The parameter ǫ is closely related to the proportion of non-null effects (i.e., the fraction

of null hypotheses that are untrue). In fact, under the Gaussian mixture model, the number

of untrue hypothesis is distributed as Binomial with parameters n and ǫ. So when n is large,

the difference between ǫ and the actual fraction is no greater than Op(
√

ǫ/n) and is usually

negligible. For this reason, we call ǫ the proportion of the non-null effects in this paper.

The null density is the starting point for any testing procedures. In many scenarios, the

null density is assumed as known. However, somewhat surprisingly, this assumption may be

incorrect in some multiple testing situations as pointed out by Efron (4). Efron illustrated

his point with a breast cancer microarray data, which is based on 15 patients with 7 having

BRCA1 mutation and 8 having BRCA2 mutation. For each patient, the same set of 3226

genes were measured and it is of interest to find which genes are differentially expressed.

For each gene, a studentized-t score was calculated and then transformed to a z-score (see

(4) for the details). Efron argued that, although the theoretical null should be the standard

normal N(0, 1), another null density, N(0.02, 2.50) seems to be more appropriate. Efron

called the later the empirical null and demonstrated convincingly that it is better to use the

empirical null instead of the theoretical null in many situations.

There are many possible reasons why the empirical null may be different from the theo-

retical null. Take the breast cancer microarray data for example, the studentized-t statistics

may not be truly t-distributed due to failed distributional assumptions. There may be co-

variates (such as age of the patients) that has not been observed in the data. The correlation

across different genes (also that across different arrays) has been neglected. All these factors

may drive the empirical null far from the theoretical null.
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Unfortunately, unlike the theoretical null, the empirical null is usually unknown. Thus

how to estimate the empirical null is a problem of major interest.

1.1 Identifiability Issue and Constrained Gaussian Mixture Models

Note that in Model (1.1), some may call f0 the null density, and some may call f1 the null

density. To resolve this issue, we fix a constant ǫ0 ∈ (0, 1/2) and assume

0 < ǫ ≤ ǫ0,

so that the null density is tied to the majority of the hypotheses.

We adopt the Gaussian mixture model as suggested in Efron (4). In detail, let φ(·) be

the density of N(0, 1). We assume that the null density f0 is Gaussian with an unknown

mean u0 and an unknown variance σ2
0 :

f0(x) =
1

σ0
φ
(x− u0

σ0

)

.

At the same time, we assume that the alternative density f1 is a Gaussian mixture (both a

location mixture and a scale mixture) with a bivariate mixing distribution H(u, σ):

f1(x) =

∫

1

σ
φ
(x− u

σ

)

dH(u, σ).

The marginal density of Xj is then

f(x) = f(x;u0, σ0, ǫ,H) = (1 − ǫ)
1

σ0
φ
(x− u0

σ0

)

+ ǫ

∫

1

σ
φ
(x− u

σ

)

dH(u, σ). (1.2)

With the Gaussian mixture model, the problem of estimating the null density reduces to

the problem of estimating the null parameters (u0, σ
2
0).

However, the null density in the above Gaussian mixture model is not always identifiable.

This is because, without constraint on H(·, ·), f1 can be very close or even identical to f0.

Fortunately, there are many natural constraints that we can put on H(·, ·) to resolve this

problem. Below are some examples.

Definition 1.1. Fix ǫ0 ∈ (0, 1/2), u0, and σ0 > 0. We say that f(x) = f(x;u0, σ0, ǫ,H) is

a Gaussian mixture density constrained with Elevated Variances with respect to parameters

(u0, σ0, ǫ0) if it has the form as in (1.2), and that the proportion ǫ and the mixing distribution

H satisfy

0 < ǫ ≤ ǫ0, PH(σ ≥ σ0) = 1, PH

(

(u, σ) 6= (u0, σ0)
)

= 1. (1.3)

We refer to the Gaussian model (1.2) with constraints in (1.3) as GEV (u0, σ0, ǫ0).

For short, we write GEV (u0, σ0, ǫ0) as GEV whenever there is no confusion. In the

definition above, u and σ denote the location and scale parameters from the mixing distri-

bution, and PH denotes the probability under the mixing distribution H(·, ·). This models
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a situation where the variance associated with an individual non-null effect is no less than

that of a null effect. The following lemma shows that, given (1.3), the triplets (u0, σ0, ǫ) are

uniquely determined by f(x) and the identifiability issue is therefore resolved.

Lemma 1.1. Given a density f(x) = f(x;u0, σ0, ǫ,H) satisfying (1.2) and (1.3), the pa-

rameters u0, σ0, and ǫ are uniquely determined by f(x).

This lemma is proved in Section 5. Note that if we replace the constraint PH(σ ≥ σ0) =

1 by P (σ ≤ σ0) = 1, then the identifiability issue persists (the construction of counter

examples is elementary and we skip it).

Alternatively, we define GEM as follows.

Definition 1.2. Fix ǫ0 ∈ (0, 1/2), u0, and σ0 > 0. We say that f(x) = f(x; ǫ, u0, σ0,H)

is a Gaussian mixture density constrained with Elevated Means with respect to parameters

(u0, σ0, ǫ0) if it has the form as in (1.2), and that the proportion ǫ and the mixing distribution

H satisfy

0 < ǫ ≤ ǫ0, PH(u > u0) = 1. (1.4)

We refer to the Gaussian model (1.2) with constraints in (1.4) as GEM(u0, σ0, ǫ0).

GEM models a situation where the mean associated with an individual non-null effect

is larger than that of a null effect. The following lemma is proved in Section 5.

Lemma 1.2. Given a density f(x) = f(x;u0, σ0, ǫ,H) satisfying (1.2) and (1.4), the pa-

rameters u0, σ0, and ǫ are uniquely determined by f(x).

For the case where we replace the constraint PH(u > u0) = 1 in (1.4) with PH(u <

u0) = 1, the result is similar. Also, we can relax the constraint to PH(u ≥ u0) = 1. But by

doing so we need some conditions on σ. For reasons of space, we skip the discussion along

these two lines.

GEV and GEM are the two main models we study in this paper. Despite the additional

constraints, both models are broad enough to accommodate many interesting cases that

arise in real applications. In sections below, we discuss possible approaches to consistently

estimating the null parameters in GEV and GEM.

1.2 A Fourier Approach to Estimating the Null Parameters in GEV

Conventionally, one estimates the null parameters with either empirical moments or extreme

observations. However, in these quantities, the information containing the null parameters is

highly distorted by the non-null effects. A non-orthodox approach is therefore necessary. In

a recent work (9), Jin and Cai proposed a Fourier approach to estimating the null parameters

in GEV. We now briefly explain the idea.

When it comes to a density function, one usually pictures it as a smooth curve that

spreads over the real line. Joseph Fourier taught us a different view point: a normal density

N(u, σ2) is not only a bell shaped curve centered at u, but also a wave oscillates at the

frequency u. In fact, the Fourier transformation of the density N(u, σ2) can be decomposed
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into two components: the amplitude function determined by σ2, and the phase function

determined by u:

e−σ2t2/2 · eitu ≡ Amplitude · Phase function, i =
√
−1. (1.5)

Consequently, we can view a Gaussian mixture as a superposition of waves with different

frequencies and different amplitudes. See (11) for a much more detailed discussion on using

Fourier analysis in the decomposition of finite mixture of distributions.

We now invoke GEV. The above investigation gives rise to an interesting approach to

estimating the null parameters. Denote the empirical characteristic function by

ψn(t) = ψn(t;X1, . . . ,Xn) =
1

n

n
∑

j=1

eitXj .

For an appropriately large frequency t, the stochastic fluctuation is negligible and ψn reduces

to its non-stochastic counterpart—the underlying characteristic function ψ(t) = E[ψn(t)].

By direct calculations,

ψ(t) = ψ(t;u0, σ0, ǫ,H) ≡ ψ0(t)[1 + s(t)],

where

ψ0(t) = ψ0(t;u0, σ0, ǫ) = (1 − ǫ)eiu0t−σ2
0t2/2,

and

s(t) = s(t;u0, σ0, ǫ,H) =
ǫ

1 − ǫ

∫

ei(u−u0)t−(σ2−σ2
0)t2/2dH(u, σ). (1.6)

Now, with GEV and a little bit extra condition, s(t) ≈ 0. For example, if we assume

that PH(σ > σ0) = 1, then at a high frequency t,

|s(t)| ≤ ǫ

1 − ǫ

∫

e−(σ2−σ2
0)t2/2dH(u, σ) ≈ 0. (1.7)

This says that in GEV, as the frequency t tends to ∞, the waves corresponding to the

alternative density damps faster than that associated with the null density. Therefore, the

information containing the null parameters is asymptotically preserved in high frequency

Fourier transform, where the distortion of non-null effects is negligible. In other words, for

an appropriately large frequency t,

ψn(t) ≈ ψ(t) ≈ ψ0(t).

Now, since ψ0(t) has a very simple form, we can solve (u0, σ0) (and also ǫ) from it.

The elaboration of the idea gives rise to the estimators in (9), which are proved to

be uniformly consistent to the null parameters across a wide range of mixing distributions

H(·, ·). It was also shown in (9) that these estimators attain the optimal rate of convergence.

See the details therein. These works reveal that, somewhat surprisingly, the right place to

estimate the null parameters is in the frequency domain, rather than in the spatial domain

as one may have expected.
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1.3 A Generalized-Fourier Approach to Estimating the Null Pa-

rameters in GEM

Despite its encouraging performance in GEV, the above approach does not yield a satisfac-

tory estimation in GEM. To see the point, we note that the key for the success of the above

approach is (1.7), which critically depends on the assumption of PH(σ > σ0) = 1. Note

that such an assumption does not hold in GEM. As a result, the above approach ceases to

perform well.

Fortunately, there is an easy fix. The key is to replace the Fourier transformation by

the generalized Fourier transformation (to be introduced below), so that in the frequency

domain, the roles of the mean and the variance are “swapped”. In detail, let

ω = −(1 + i)/
√

2, ( note ω2 = i).

For any density function h(x), the generalized Fourier transformation is

∫

h(x) exp(ωx)dx,

provided that the function h(x)exp(ωx) is absolutely integrable. In particular, the general-

ized Fourier transformation of the Gaussian density N(u, σ2) is

exp
(

− ut√
2

)

· exp
(

i[− ut√
2

+
σ2t2

2
]
)

≡ Amplitude function · Phase function. (1.8)

Now, the amplitude is uniquely determined by the mean (compared with (1.5)).

The remaining part of the idea is similar to that in the preceding section. Denote the

generalized-empirical characteristic function by

ϕn(t) = ϕn(t;X1, . . . ,Xn) =
1

n

n
∑

j=1

exp(ωtXj).

For large n and an appropriately chosen t, one expects that the stochastic fluctuation is

negligible, and that ϕn(t) reduces approximately to the generalized characteristic function,

ϕ(t) = ϕ(t;u0, σ0, ǫ,H) ≡ E[ϕn(t)].

Direct calculations show that

ϕ(t) = ϕ0(t)[1 + r(t)],

where

ϕ0(t) = ϕ0(t;u0, σ0, ǫ) = (1 − ǫ) exp(ωu0t+ iσ2
0t

2/2),

and

r(t) = r(t;u0, σ0, ǫ,H) =
ǫ

1 − ǫ

∫

exp(ω(u− u0)t+ i(σ2 − σ2
0)t

2/2)dH(u, σ). (1.9)
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Recalling that ω = −(1 + i)/
√

2, it is seen that

|r(t)| ≤ ǫ

1 − ǫ

∫

exp(−(u− u0)t/
√

2)dH(u, σ).

We now invoke GEM. Since that PH(u > u0) = 1, r(t) ≈ 0 for large t. We expect that

ϕn(t) ≈ ϕ(t) ≈ ϕ0(t).

Again, ϕ0(t) has a very simple form and we can solve (u0, σ0) (and also ǫ) from it. In fact,

introduce two functionals u0(·; t) and σ2
0(·; t) by

u0(g; t) = −
√

2

|g(t)|
d

dt
|g(t)|, σ2

0(g; t) =

√
2Re(ωḡg′)

t|g(t)|2 , (1.10)

where g is any complex-valued differentiable function, and |z|, Re(z) and z̄ denote the

module, the real part, and the complex conjugate of a complex number z, correspondingly.

The following lemma says that plugging g = ϕ0 into two functionals gives the desired

parameters u0 and σ2
0 , respectively.

Lemma 1.3. For all t 6= 0, u0(ϕ0; t) = u0 and σ2
0(ϕ; t) = σ2

0.

Lemma 1.3 can be proved using elementary algebra, so we skip it. Taking g = ϕn in

(1.10), we expect to have

u0(ϕn, t) ≈ u0(ϕ, t) ≈ u0, σ2
0(ϕn, t) ≈ σ2

0(ϕ, t) ≈ σ2
0 .

In this paper, we shall carefully study the bias and variance of u0(ϕn; t) and σ2
0(ϕn; t),

and investigate which choices of t give a good tradeoff between the bias and the variance.

We find out that as n tends to ∞, if we set t in an appropriate range, then both estimators

are consistent with their estimands, uniformly so across a wide class of situations.

1.4 Estimating the Proportion of Non-null Effects

Seemingly, the approach can be readily generalized to estimate the proportion of non-null

effects ǫ. How to estimate the proportion has been the topic of many recent works in the area

of large-scale multiple hypothesis testing. See for example (3; 5; 6; 8; 9; 10; 12; 13; 15). There

are two reasons for the enthusiasm. In some applications, the proportion is the quantity

of direct interest (12); while more often, knowing the proportion helps to improve many

multiple testing procedures, such as the FDR procedure by Benjamini and Hochberg’s (2),

the local FDR procedure by Efron et al. (5) and the optimal discovery function by Storey

(14). See (8) for more discussions.

In Section 3, we extend the generalized Fourier approach to estimating the proportion in

GEM. We discuss two different cases: (1) the null parameters are known; and (2) the null

parameters are unknown. In both cases, we find that the estimators are uniformly consistent

with the proportion across a wide class of situations.
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We remark that the success of the Fourier approach for estimating the null parameters

and the proportion is not coincidental. It roots from the key fact that the null density can

be isolated from the alternative density in the high frequency Fourier coefficients. Naturally,

we shall continue to find the Fourier approach to be successful in estimating many other

quantities.

The remaining part of the paper is organized as follows. Section 2 studies the problem

of estimating the null parameters in GEM. We show that by choosing an appropriate t, the

estimators u0(ϕn; t) and σ2
0(ϕn; t) are consistent to the true parameters, uniformly across a

wide class of situations. Section 3 studies the problem of estimating the proportion. While

the studies in Sections 2–3 are asymptotic, we carry out a few simulation studies in Section 4,

and investigate the performance of the proposed estimators for moderately large n. Section

5 contains the proofs for the theorems and lemmas, in the order they appear.

2 Main Results

In this section, we limit our attention to GEM and study the estimation errors of u0(ϕn; t)

and σ2
0(ϕn; t). Since the discussions are similar, we focus on that of u0(ϕn; t). For the

asymptotic analysis, we adopt a framework where both ǫ and H may depend on n as n

ranges from 1 to ∞ (denoted by ǫn and Hn). This covers a much broader situations than

that when (ǫ,H) are fixed.

2.1 Asymptotic Framework

Recall that the test statistics Xj are iid samples from

f(x) = f(x;u0, σ0, ǫn,Hn, n) = (1 − ǫn)
1

σ0
φ(
x− u0

σ0
) + ǫn

∫

1

σ
φ(
x− u

σ
)dHn(u, σ). (2.1)

As before, fix ǫ0 ∈ (0, 1/2). We suppose that for any n ≥ 1,

0 < ǫn ≤ ǫ0. (2.2)

Of course, the condition can be relaxed so that it only holds for sufficiently large n.

Also, fixing A > 0, assume that

u0 ≥ −A, σ2
0 ≤ A. (2.3)

In addition, we assume that for any n ≥ 1,

PHn
(u > u0) = 1, PHn

(σ2 ≤ A) = 1. (2.4)

These conditions are relatively relaxed, except for the second one in (2.4). We need this

condition to control the variance of the estimators (whether this condition can be signifi-

cantly relaxed is an open question, which we leave to the future study). In short, we focus

the study on the class of marginal densities as follows,

Λn(ǫ0, A) = {f(x) = f(x;u0, σ0, ǫn,Hn, n) has the form as in (2.1) that satisfies (2.2)-(2.4)}.
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For any t > 0, it follows from the triangle inequality that

|u0(ϕn, t) − u0| ≤ |u0(ϕn, t) − u0(ϕ, t)| + |u0(ϕ, t) − u0|.

On the right hand side, the first term is the stochastic term, and the second term is the

bias term. Seemingly, the performance of the estimator depends on the choice of t. Larger

t tends to give a larger stochastic fluctuation but a smaller bias. It turns out that the

interesting range of t is O(
√

log n). In light of this, we calibrate t through a parameter γ by

t = tn(γ) =
√

γ log n, γ > 0.

We now study the stochastic term and the bias term separately.

2.2 The Stochastic Term

We need the following definition.

Definition 2.1. Fixing a constant r, we say that a sequence {bn}∞n=1 is ō(n−r) if nr−δ|bn| →
0 as n→ ∞, for all δ > 0. Especially, when r = 0, we write ō(1).

First, we study the stochastic fluctuation of ϕn(t) and ϕ′
n(t). The following lemmas are

proved in Section 5.

Lemma 2.1. Fix ǫ0 ∈ (0, 1/2), A > 0, and γ ∈ (0, 1/A). As n tends to ∞,

sup
{f∈Λn(ǫ0,A)}

{Var(ϕn(tn(γ)))} ≤ nAγ−1, (2.5)

and

sup
{f∈Λn(ǫ0,A)}

{Var(ϕ′
n(tn(γ)))} . 4A2γ log(n) · nAγ−1. (2.6)

The upper bounds in (2.5)-(2.6) may be conservative, especially when ǫn is small. See

the proof for the details (we say two positive sequences an . bn if an/bn ≤ 1 + o(1) for

sufficiently large n).

We now relate the stochastic fluctuations of u0(ϕn; t) and σ2
0(ϕn; t) to that of ϕn(t) and

ϕ′
n(t). This is achieved by the following lemma.

Lemma 2.2. Let u0(·; ·) and σ2
0(·; ·) be defined as in (1.10). Fix t > 0. For any differentiable

complex-valued functions f and g satisfying |f(t)| 6= 0 and |g(t)| 6= 0,

|u0(g, t) − u0(f, t)| ≤
1

|f(t)|2
[

(|u0(g, t)| · (|f(t) + |g(t)|) +
√

2|g′(t)|)|f(t) − g(t)|

+
√

2|f(t)| · |(f(t) − g(t))′|,

and

|σ2
0(g, t) − σ2

0(f, t)| ≤ 1

t|f(t)|2 ·
[

(|σ2
0(g, t)| · t · (|f(t) + g(t)|) +

√
2|g′(t)|) · |f(t) − g(t)|

+
√

2|f(t)| · |(f(t) − g(t))′|
]

.
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Apply Lemma 2.2 with f = ϕn, g = ϕ. Intuitively,

ϕn(t) ≈ ϕ(t), ϕ′
n(t) ≈ ϕ′(t).

Also, when t = tn(γ),

ϕn(tn(γ)) = ō(1).

We therefore expect to have

|u0(ϕn, tn(γ)) − u0(ϕ; tn(γ))| ≤ C
1

|ϕ(tn(γ))| |ϕn(tn(γ)) − ϕ(tn(γ))|

+
|ϕ′(tn(γ))|
|ϕ(tn(γ))|2 |ϕ

′
n(tn(γ)) − ϕ′(tn(γ))|

≤ ō(n(Aγ−1)/2).

As a result, we have the following lemma.

Lemma 2.3. Fix ǫ0 ∈ (0, 1/2), A > 0, and γ ∈ (0, 1/A). As n tends to ∞, except for a

probability that tends to 0,

sup
{f∈Λn(ǫ0,A)}

{|u0(ϕn; tn(γ)) − u0(ϕ; tn(γ))|} ≤ ō(n(Aγ−1)/2),

and

sup
{f∈Λn(ǫ0,A)}

{|σ2
0(ϕn; tn(γ)) − σ2

0(ϕ; tn(γ))|} ≤ ō(n(Aγ−1)/2).

In conclusion, except for a probability that tends to 0, the stochastic fluctuation of either

estimator is of the order of n(Aγ−1)/2. Note that the exponent (Aγ − 1)/2 < 0.

2.3 The Bias Term

We now discuss the bias term. The following lemma is proved in Section 5.

Lemma 2.4. Fix ǫ0 ∈ (1/2) and A > 0. Let r(t) = r(t;u0, σ0, ǫn,Hn) be as in (1.9). For

any t > 0 and f ∈ Λn(ǫ0, A), there exists a universal constant C > 0 such that

|u0(ϕ; t) − u0| ≤ C|r′(t)|, |σ2
0(ϕ; t) − σ2

0 | ≤ C|r′(t)|/t.

Write for short tn = tn(γ). Under mild conditions, r′(tn) → 0. We now show some

examples where this is the case.

Example 2.1. (Sparse non-null effects). In this case, we suppose that the parameter ǫn
tends to 0 as n tends to ∞ at a rate faster than that of 1/tn. By the proof of Lemma 2.3,

|r′(tn)| ≤ ǫn
1 − ǫn

[

√
2

etn
+Atn].

So as long as ǫntn → 0, |r′(tn)| → 0, regardless of the distribution of Hn(·, ·) (of course, the

condition of PHn
(u > u0) = 1 is still needed).
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Example 2.2. (Elevated means). In this case, we suppose that the mean corresponding to

the null density is elevated by at least a small amount δn > 0:

PHn
(u ≥ u0 + δn) = 1.

Recall that u0 ≥ −A and that for any Hn ∈ Λn(ǫ0, A), PHn
(|σ2 − σ2

0 | ≤ A) = 1. Similar to

the proof of Lemma 2.3,

|r′(tn)| ≤ ǫn
1 − ǫn

(δn +

√
2

etn
+Atn)e−δntn/

√
2.

As a result, we have the following lemma, whose proof is elementary so we omit it.

Lemma 2.5. If there is some constant c0 > 0 such that

lim inf
n→∞

{ δntn√
2 log(tn)

}

≥ (c0 + 1), (2.7)

then |r′(tn)| . Aǫnt
−c0
n .

As a result, as n→ ∞, the bias → 0 if (2.7) holds for some constant c0 > 0, whether ǫn
tends to 0 or not.

Example 2.3. (When the mixing distribution H(·, ·) has a smooth density). We re-center

u and σ2 by letting δ = u − u0 and κ = (σ2 − σ2
0)/2. Denote the joint density of (δ, κ) by

hn(·, ·). We show that the r′(tn) = o(1) under mild smoothness conditions on hn(·, ·). In

detail, for each fixed δ > 0, let hFT
n (·|δ) be the Fourier transform of the conditional density

hn(κ|δ). Fix α > 0. Suppose that there is a generic constant C > 0 such that for all δ in

the range,

|hFT
n (tn|δ)| ≤ C(1 + |tn|)−α, | d

dt
hFT

n (tn|δ)| ≤ C(1 + |tn|)−(α+1). (2.8)

We have the following lemma, whose proof is elementary so we omit it.

Lemma 2.6. Suppose (2.8) holds for some constant C > 0 and α > 0. Then there is a

generic constant C > 0 such that

|r′(tn)| ≤ Cǫn|tn|−2(α+1),

Note that r′(tn) → 0 in a much broader setting than that is in this example.

Combining Lemma 2.3-2.4 and the above examples, we have the following theorem.

Theorem 1. Fix ǫ0 ∈ (0, 1/2), A > 0, and γ ∈ (0, 1/A). Suppose that when n tends to ∞,

at least one of the three conditions below holds:

a. limn→∞(ǫn · tn(γ)) = 0,

b. PHn
(u > u0 + δn) = 1, where δn satisfies (2.7) for some constant c0 > 0.
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c. (2.8) holds for some parameter α > 0.

Then the estimators u0(ϕn; tn(γ)) and σ2
0(ϕn; tn(γ)) are consistent with respect to the null

parameters u0 and σ2
0 , respectively, uniformly across all densities in Λn(ǫ0, A) that satisfy

one or more of the conditions (a), (b), and (c).

We remark that while choosing γ ∈ (0, 1/A) ensures consistency, different choices of γ

affect the convergence rate of the estimators. The optimal choice of γ depends on unknown

parameters and is hard to set. In Section 4, we investigate how to choose γ with simulated

data. In our experience, when A is not very large, it is usually appropriate to choose γ ≈ 0.2.

We also remark that in Theorem 1 (as well as Theorems 2, 3 below), we have assumed

independence of the test statistics Xj . When the test statistics Xj are correlated, the bias of

the estimators remain the same, but the variance of the estimators may inflate by a factor.

On the other hand, if the correlation is relatively weak, the estimators continue to perform

well. In Section 4, we investigate an simulation example with block-wise dependence among

Xj . The simulation results suggest that the estimators continue to perform well when the

block size is small (e.g. ≤ 100). See Section 4 and Figure 3 for the details.

3 Estimating the Proportion of Non-Null Effects

The proportion has an identifiability issue that is very similar to that of the null parameters.

The issue can also be resolved similarly in GEV and GEM. In (9; 8; 3), we have carefully

investigated the problem of estimating the proportion in GEV. Similarly to estimating the

null parameters, a Fourier approach was introduced (e.g. (8; 9)). Compared to existing

approaches in the literature (e.g. (5; 10; 12; 13; 15; 6)), the Fourier approach was proven to

be successful in a much broader setting. Especially, it was shown to be successful without

the so-called purity condition, a notion introduced in (6). Later in (3), the approach was

shown to also attain the optimal rate of convergence over a wide class of situations.

We now shift our attention to GEM. Despite the encouraging development, the Fourier

approach in (8; 9) ceases to perform well in this case. In fact, in this case, it can be shown

that none of the aforementioned approaches is uniformly consistent with the proportion.

Therefore, it is necessary to develop a new approach.

In this section, we propose a new approach to estimating the proportion by using the

generalized Fourier transformation, as a natural extension of the ideas in preceding sections.

We discuss two cases separately: the case where the null parameters are known, and the case

where the null parameters are unknown. In both cases, we show that under mild conditions,

the proposed approach is uniformly consistent with the proportion.

3.1 Known Null Parameters

Recall that

ϕ0(t) = (1 − ǫn)eωu0t+iσ2
0t2/2.
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The key observation is that, when the null parameters (u0, σ
2
0) are known, ǫn can be easily

solved from ϕ0(t) by

ǫn ≡ 1 − e−ωu0t−iσ2
0t2/2ϕ0(t).

Inspired by this, we introduce the functional

ǫn(g; t, u0, σ
2
0) = 1 − e−ωu0t−iσ2

0t2/2g(t). (3.1)

where g(t) is any complex-valued function. Recall that

ϕn(t) ≈ ϕ(t) ≈ ϕ0(t).

By the continuity of the functional, we hope that for an appropriately chosen t,

ǫn(ϕn; t, u0, σ
2
0) ≈ ǫn(ϕ0; t, u0, σ

2
0) ≡ ǫn.

We now analyze the variance and the bias of this estimator. As before, let tn(γ) =√
γ log n. For any Hn(·, ·) satisfying PHn

(σ2 ≤ A) = 1, direct calculations show that

Var(ǫn(ϕn; tn(γ), u0, σ
2
0) ≤ 1

n
E[e−

√
2tn(γ)(X1−u0)] ≤ 1

n
[(1 − ǫn)nσ2

0γ + ǫnn
Aγ ],

so the standard deviation of the estimator is of the order of o(ǫn) when

nAγ−1 = o(ǫ2n).

At the same time, by elementary calculus, the bias of the estimator equals to

∣

∣E[ǫn(ϕn; tn, u0, σ
2
0)] − ǫn

∣

∣ = ǫn ·
∣

∣

∫

eω(u−u0)tn+i(σ2−σ2
0)t2n/2dHn(u, σ)

∣

∣,

which is of the order of o(ǫn) if either of the aforementioned conditions (b) or (c) holds.

Combining these gives the following theorem.

Theorem 2. Fix u0, A > 0, σ2
0 ∈ (0, A), γ ∈ (0, 1/A), and a sequence of positive numbers bn

satisfying limn→∞ bn = 0. Consider a sequence of parameters ǫn ∈ (0, 1) and a sequence of

bivariate distribution Hn(u, σ) such that for sufficiently large n, PHn
(u > u0, σ

2 ≤ A) = 1

and ǫ−2
n nAγ−1 ≤ bn. Also, suppose that when n tends to ∞, at least one of the two

conditions below holds:

b. PHn
(u > u0 + δn) = 1, where δn satisfies (2.7) for some constant c0 > 1.

c. (2.8) holds for some parameter α > 0.

Then as n→ ∞, except for a probability that tends to zero,

∣

∣

ǫn(ϕn; tn(γ), u0, σ
2
0)

ǫn
− 1

∣

∣ → 0,

uniformly for all ǫn and Hn(·, ·) satisfying the conditions above.

In other words, ǫn(ϕn; tn(γ)) is uniformly consistent with ǫn provided that either (b) or

(c) holds, and that the variance of the estimator is of a smaller order than that of ǫ2n. The

latter is satisfied when ǫn tends to 0 slowly enough.
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3.2 Unknown Null Parameters

When the null parameters are unknown, a natural approach is to estimate the null parame-

ters using the approach in Section 2 first, then plug in the estimated values to estimate the

proportion. In other words, we first estimate the null parameters by

û0(γ) = u0(ϕn; tn(γ)), σ̂2
0(γ) = σ2

0(ϕn; tn(γ)). (3.2)

We then estimate the proportion by the plugging estimator,

ǫn(ϕn; tn(γ), û0(γ), σ̂
2
0(γ)) = 1 − e−ωû0(γ)tn(γ)−iσ̂2

0(γ)t2n(γ)/2ϕn(tn(γ)).

Note that the bias of both û0(γ) and σ̂2
0(γ) are typically of the order of o(ǫn), and their

variance are of the same order as that of ǫn(ϕn; γ). Therefore, replacing (u0, σ
2
0) by

(û0(γ), σ̂
2
0(γ)) does not increase the order of either the bias or variability of the estima-

tor. The following theorem is proved in Section 5.

Theorem 3. Under the same conditions of Theorem 2, as n → ∞, except for a probability

that tends to zero,
∣

∣

ǫn(ϕn; tn(γ), û0(γ), σ̂
2
0(γ))

ǫn
− 1

∣

∣ → 0,

uniformly for all ǫn and Hn(·, ·) satisfying the conditions above.

4 Simulations

In this section, we conduct simulation studies for investigating the performance of the pro-

posed estimators of (u0, σ
2
0 , ǫ) with a finite n. We write for short

û0(γ) = u0(ϕn; tn(γ)), σ̂2
0(γ) = σ2

0(ϕn; tn(γ)), ǫ̂n(γ) = ǫn(ϕn; tn(γ), û0(γ), σ̂
2
0(γ)).

Specifically, we are interested in four aspects: (1) how different choices of γ affect the

estimation errors of û0(γ), σ̂
2
0(γ) and ǫ̂n(γ); and what γ values we should recommend in

practice; (2) the effect of different choices of the proportion ǫ and the mixing distribution

Hn(·, ·); (3) the effect of n; and (4) the effect of dependent structures.

Example 4.1. (Different choices of the tuning parameter γ). In this example, we let

n = 50, 000, (u0, σ
2
0) = (−1, 1), and ǫ = 0.025 × (1, 2, 3, 4, 8). We choose 20 different γ

ranging from 0.01 to 0.5 with equal inter-distances. For each combination of (ǫ, γ), we

conduct an experiment with the following four steps.

• Step 1. For each 1 ≤ j ≤ n(1 − ǫ), draw Xj ∼ N(u0, σ
2
0) to represent a null effect.

• Step 2. For each n(1− ǫ)+1 ≤ j ≤ n, draw independently a sample u ∼ Uniform(1, 2)

and a sample σ ∼ Uniform(0.5, 1.5). Then, drawXj ∼ N(u, σ2) to represent a non-null

effect.
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• Step 3. Calculate û0(γ), σ̂
2
0(γ), and ǫ̂n(γ).

• Step 4. Repeat Steps 1–3 for 100 times.

The results are reported in Figure 1, from which we can see that the MSE are smallest

when γ ∈ (0.15, 0.25). Also, the MSE are not very sensitive to different choices of γ in this

range. All of the three estimators û0(γ), σ̂
2
0(γ), and ǫ̂n(γ) have satisfactory performances:

when γ = 0.2, the MSE are in the order of 10−4. Somewhat surprisingly, in this example,

different ǫ do not have a prominent effect on the MSE.
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Figure 1: MSE for û0(γ) (left), σ̂2
0(γ) (middle) and ǫ̂n(γ) (right) for 100 repetitions. The

x-axis displays γ, and the y-axis displays the MSE. The null parameters (u0, σ
2
0) = (−1, 1).

Different colors of the curves represent different values of ǫ.

Example 4.2. (The effect of different mixing distribution Hn(·, ·)). In this example, we

set n = 50, 000, (u0, σ
2
0 , ǫ) = (−1, 1, 0.05), and choose 20 different γ ranging from 0.01 to

0.5 with equal inter-distances. Compared to Example 4.1, we conduct experiments with

different choices of the mixing distribution Hn(·, ·). We consider two scenarios. In the

first scenario, independently, (u − u0) ∼ Gamma(10, 0.25) (Gamma(k, θ) is the Gamma

distribution with shape parameter k and scale parameter θ), and σ ∼ Uniform(0.5, 1.5).

The parameters (10, 0.25) are chosen such that the mean value of the random variable u

is 1.5, the same as that in the preceding example. In the second scenario, independently,

u ∼ Uniform(1, 2) and σ ∼ Gamma(10, 0.1).

For each scenario and each γ, we run experiments following Steps 1–4 as in Example 4.1,

but with the current choice of Hn(·, ·). The MSE for û0(γ), σ̂
2
0(γ) and ǫ̂n(γ) are reported in

Figure 2. From this figure, a similar conclusion can be drawn: the estimators perform well

in both scenarios, with the MSE as small as 10−4–10−3. The best range of γ is (0.15, 0.2).

In this range, the MSE is again relatively insensitive to different choices of γ.
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It is noteworthy that in the first scenario, the support of random variable u is not

bounded away from the null parameter u0. It is also noteworthy that in the second scenario,

σ is unbounded such that the assumption (2.4) is violated. Despite the seeming challenges

in these two scenarios, the proposed approach continues to perform well. This suggests

that the proposed approaches are successful in a broader situations than that considered in

Sections 2 and 3.
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Figure 2: MSE for û0(γ) (red), σ̂2
0(γ) (green) and ǫ̂n(γ) (blue) for Scenario 1 (left) and

Scenario 2 (right) considered in Example 4.2. The x-axis displays γ and the y-axis displays
the MSE. n = 50, 000 and (u0, σ

2
0 , ǫ) = (−1, 1, 0.05).

Example 4.3. (The effect of n). In this example, we fix (u0, σ
2
0 , ǫ) = (−1, 1, 0.05). Since

the MSE is relatively insensitive to different choices of γ, we fix γ = 0.2. For the mixing

distribution Hn(·, ·), we let u ∼ Uniform(1, 2) and σ ∼ Uniform(0.5, 1.5), independently of

each other. According to the asymptotic analysis in preceding sections, we understand that

the performance of the proposed estimators improves when n increases. In this example,

we validate this point by choosing n = 104 × (1, 3, 5, 8, 10). For each n, we run experiments

following Steps 1–4 as in Example 4.1. The results are summarized in Table 1. The MSE

of û0(γ), σ̂
2
0(γ) and ǫ̂n(γ) all decreases as n increases. This fits well with the asymptotic

analysis in Sections 2 and 3.

Example 4.4. (The effect of dependence). In this example, we fix n = 50, 000, (u0, σ
2
0 , ǫ) =

(−1, 1, 0.05). We investigate how the dependent structure ofXj ’s may affect the performance

of the proposed procedures. For each L ranging from 1 to 250 with an increments of 10, we

generate samples as follows.

1. For each 1 ≤ j ≤ n(1 − ǫ), set (µj , σj) = (u0, σ0).
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Table 1: MSE for û0(γ), σ̂
2
0(γ), and ǫ̂n(γ) for different n, where we take γ = 0.2. The pa-

rameters (u0, σ
2
0 , ǫ) = (−1, 1, 0.05). For the mixing distribution Hn(u, σ), u ∼ Uniform(1, 2)

and σ ∼ Uniform(0.5, 1.5) independently. In each cell, the MSE equals the cell value times
10−4.

n 104 3 × 104 5 × 104 8 × 104 105

MSE for û0(γ) 41.28 10.46 5.66 4.01 2.73

MSE for σ̂2
0(γ) 16.47 6.93 2.36 1.81 1.48

MSE for ǫ̂n(γ) 20.13 5.28 4.17 2.87 2.01

2. For each n(1 − ǫ) + 1 ≤ j ≤ n, draw µj ∼ Uniform(1, 2) and σj ∼ Uniform(0.5, 1.5).

3. Draw w1, · · · , wn+L independently fromN(0, 1). For 1 ≤ j ≤ n, let zj =
∑k=j+L

k=j
wk√
L+1

.

Note that marginally zj ∼ N(0, 1).

4. For 1 ≤ j ≤ n, let Xj = µj + σj · zj .

The data generated in this way is block-wise dependent, with the block size being controlled

by L. Fix γ = 0.2. We calculate û0(γ), σ̂
2
0(γ), and ǫ̂n(γ), and repeat the experiment 100

times. We then calculate the MSE. The results are summarize in Figure 3. While the MSE

increases with the block size L, we also note that the MSE remains small when, say, L ≤ 50

(all three curves fall below 0.02). This suggests that the proposed methods are relatively

robust for short-range dependence.

5 Proofs

5.1 Proof of Lemmas 1.1 and 1.2

We prove Lemma 1.1 first. Consider two density functions fk(x) = fk(x;u
(k)
0 , (σ2

0)(k), ǫ(k),H(k))

that satisfy (1.2)-(1.3), k = 1, 2. For short, denote (uk, σ
2
k, ǫk,Hk) = (u

(k)
0 , (σ2

0)(k), ǫ(k),H(k)).

Suppose f1 = f2. We want to show that (u1, σ1, ǫ1) = (u2, σ2, ǫ2). Note that the Fourier

transformation of f1 and f2 must be identical. By direct calculations, with si(t) as defined

in (1.6),

(1 − ǫ1)e
itu1−

σ2
1t2

2 (1 + s1(t)) = (1 − ǫ2)e
itu2−

σ2
2t2

2 (1 + s2(t)). (5.1)

We first show σ1 = σ2. By (5.1),

e−
(σ2

2−σ2
1)t2

2 =

∣

∣

∣

∣

eit(u1−u2)
(1 − ǫ1)(1 + s1(t))

(1 − ǫ2)(1 + s2(t))

∣

∣

∣

∣

. (5.2)

Note that |sk(t)| ≤ ǫk/(1− ǫk) < 1, where |ǫk| ≤ ǫ0 < 1/2. Therefore, the right hand side of

(5.2) is bounded away from both 0 and ∞ by a constant. Letting t tend to ∞ implies that

σ1 = σ2.
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Figure 3: MSE for û0(γ) (red), σ̂2
0(γ) (green) and ǫ̂n(γ) (blue) when the data Xj are

block-wise dependent with a block size L (displayed in the x-axis; see Example 4.4 for the
details). The parameters (u0, σ

2
0 , ǫ) = (−1, 1, 0.05). For the mixing distribution Hn(u, σ),

u ∼ Uniform(1, 2) and σ ∼ Uniform(0.5, 1.5) independently.

Next, we show (u1, ǫ1) = (u2, ǫ2). By (5.1) and σ1 = σ2,

(1 − ǫ1)(1 + s1(t)) = (1 − ǫ2)e
it(u2−u1)(1 + s2(t)). (5.3)

Fix a small positive number a > 0, let φa(t) be the density of N(0, 1/a). Times φa(t) to

both sides of (5.3) and integrate in terms of t. By direct calculations and Fubini’s theorem,

the left hand side of (5.3) is

(1 − ǫ1) + ǫ1

∫

a
√

σ2 − σ2
1 + a2

exp
(

− (u− u1)
2

2(σ2 − σ2
1 + a2)

)

dH1(u, σ), (5.4)

and the right hand side of (5.3) is

(1 − ǫ2)e
− (u2−u1)2

2a2 + ǫ2

∫

a
√

σ2 − σ2
2 + a2

exp
(

− (u− u1)
2

2(σ2 − σ2
2 + a2)

)

dH2(u, σ). (5.5)

Note that by Dominant Convergence Theorem (DCT), any fixed H(·, ·) satisfying PH(σ ≥
σ0) = 1 and PH

(

(u, σ) = (u0, σ0)
)

= 1,

lim
a→0

∫

a
√

σ2 − σ2
0 + a2

exp(− (u− u0)
2

2(σ2 − σ2
0 + a2)

)dH(u, σ) = 0. (5.6)

Combining (5.4)–(5.6) gives (1− ǫ1) = lima→∞[(1− ǫ2)exp(− (u2−u1)
2

2a2 )], which immediately

implies (u1, ǫ1) = (u2, ǫ2). This proves Lemma 1.1.
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Consider Lemma 1.2. The difference is now that both fi satisfy (1.2)-(1.4). Similarly,

suppose f1 ≡ f2. We want to show that (u1, σ1, ǫ1) = (u2, σ2, ǫ2). By direct calculations,

the generalized Fourier transform of fk are (1− ǫk)eωukt+iσ2
kt2 [1+ rk(t)], k = 1, 2. It follows

that

eωt(u1−u2) · ei(σ2
1−σ2

2)t2 =

(

1 − ǫ2
1 − ǫ1

)(

1 + r2(t)

1 + r1(t)

)

. (5.7)

Let t→ ∞ on both sides. By the condition of PHk
(u > uk) = 1, rk(t) → 0. Comparing the

modules of both sides gives u1 = u2 and ǫ1 = ǫ2. Combining this with (5.7), ei(σ2
1−σ2

2)t2 =
1+r2(t)
1+r1(t)

. Letting t→ ∞, the right hand side tends to 1. Therefore, σ1 = σ2.

5.2 Proof of Lemma 2.1

It is sufficient to show that for any t > 0 and f ∈ Λn(ǫ0, A),

Var(ϕn(t)) ≤ 1

n
e−

√
2u0t+σ2

0t2 [(1 − ǫn) + ǫne
(A−σ2

0)t2 ], (5.8)

and

Var(ϕ′
n(t)) .

1

n
e−

√
2u0t+σ2

0t2 [(1−ǫn)(σ2
0+2u2

0+4σ4
0t

2)+ǫn(A+2u2
0+4A2t2)e(A−σ2

0)t2 ]. (5.9)

In fact, once these are proved, the claim follows from (2.12)-(2.14) by taking t = tn(γ).

Consider (5.8). Direct calculations show that

Var(ϕn(t)) ≤ 1

n
E[|eωtXj |2] ≤ 1

n
E[e−

√
2tXj ].

Direct calculations show that

E[e−
√

2tXj ] = e−
√

2tu0+σ2
0t2 [(1 − ǫn) + ǫn

∫

e−
√

2(u−u0)t+(σ2−σ2
0)t2dHn(u, σ)].

The claim follows by u0 > −A, σ2
0 ≤ A, and PHn

(u > u0, σ
2
0 ≤ A) = 1.

Consider (5.9). Similarly,

Var(ϕ′
n(t)) ≤ 1

n
E[|ωXje

ωtXj |2] ≤ 1

n
E[X2

j e
−
√

2tXj ].

By direct calculations,

E[X2
j e

−
√

2tXj ] = I + II, (5.10)

where

I = (1 − ǫn)[σ2
0 + (−u0 +

√
2σ2

0t)
2]e−

√
2u0t+σ2

0t2 ,

and

II = ǫn

∫

[σ2 + (−u+
√

2σ2t)2]e−
√

2ut+σ2t2dHn(u, σ).

By Schwartz inequality,

(−u0 +
√

2σ2
0t)

2 ≤ 2(u2
0 + 2σ4

0t
2),
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(−u+
√

2σ2t2)2 = (−u0 − (u− u0) +
√

2σ2t2)2 ≤ 2(u2
0 + 2σ2t2 + (u− u0)

2).

So

I ≤ (1 − ǫn)[σ2
0 + 2u2

0 + 4σ4
0t

2]e−
√

2u0t+σ2
0t2 , (5.11)

and

II ≤ ǫn[

∫

(σ2 + 2u2
0 + 4σ4t2)e−

√
2ut+σ2t2dHn(u, σ)

+ 2e−
√

2u0t

∫

(u− u0)
2e−

√
2(u−u0)t+σ2t2dHn(u, σ)].

Note that supx>0 2x2e−
√

2tx = 2/(et2). It follows

∫

(u− u0)
2e−

√
2(u−u0)t+σ2t2dHn(u, σ)] ≤ [2/(et2)]

∫

eσ2t2dHn(u, σ). (5.12)

Inserting (5.12) into (??) and recalling that PHn
(u > u0, σ

2 ≤ A) = 1,

II ≤ ǫn[A+ 2u2
0 + 4A2t2 +

2

et2
]e−

√
2u0t+At2 . (5.13)

Inserting (5.11) and (5.13) into (5.10) gives the claim.

5.3 Proof of Lemma 2.2

For short, we drop t from the functions whenever there is no confusion. For the first claim,

by direct calculations, we have:

u0(g, t) − u0(f, t) =
d
dt |f |
|f | −

d
dt |g|
|g| = I + II,

where I = (1 − |g|2
|f |2 ) · u0(g, t), II = 1

|f |2 · [Re(g′) · Re(f − g) + Im(g′) · Im(f − g) + Re(f) ·
Re((f − g)′) + Im(f) · Im((f − g)′)]. Now, firstly, using triangle inequality,

|I| ≤ |u0(g, t)|
|f |2 ·

∣

∣|f |2 − |g|2
∣

∣ ≤ |u0(g, t)|
|f |2

(

(|f | + |g|)|f − g|
)

;

secondly, using Cauchy-Schwartz inequality, |Re(z)Re(w) + Im(z)Im(w)| ≤ |z| · |w| for any

complex numbers z and w, so it follows that

|II| ≤
√

2

|f |2 · [|g′| · |f − g| + |f | · |(f − g)′|].

Combining these gives

|u0(g, t) − u0(f, t)| ≤
1

|f |2
[

(|u0(g, t)|(|f | + |g|) +
√

2|g′|) · |f − g| +
√

2|g| · |(f − g)′|
]

.



A Generalized Fourier Approach . . . 123

Consider the second claim. By direct calculations,

σ2
0(g, t) − σ2

0(f, t) = I + II,

where I = (1 − |g|2
|f |2 ) · u0(g, t), II =

√
2

t|f |2 · [(Re(ωḡg′) − Re(ωf̄f ′)]. Similarly,

|I| ≤ |σ2
0(g, t)|
|f |2 (|f | + |g|)|f − g|,

|II| ≤
√

2

t|f |2 · [|g′| · |f − g| + |f | · |(f − g)′|].

Combining these gives

|σ2
0(g, t) − σ2

0(f, t)| ≤ 1

t|f |2 ·
[

(|σ2
0(g, t)| · t · (|f | + |g|) +

√
2|g′|) · |f − g| +

√
2|f | · |(f − g)′|

]

.

5.4 Proof of Lemma 2.3

Write tn = tn(γ) for short. Introduce the event

An = {max{|ϕn(tn) − ϕ(tn)|, |ϕ′
n(tn) − ϕ′(tn)|} ≤ log3/2(n)}.

Applying Lemma 2.1, P (Ac
n) → 0, uniformly for all f ∈ Λn(ǫ0, A). To show the claim, it is

sufficient to show that the inequalities hold over the event An. Since the proofs are similar,

we only prove the first one.

We claim that (a). 1/ϕ(tn)| ≤ ō(1) over event An, (b). |ϕn(tn)| ∼ |ϕ(tn)| over event

An, and (c). |u0(ϕ; tn)| ≤ ō(1). Consider (a) and (b). By ǫn ≤ ǫ0 < 1/2 and elementary

calculus, |r(t)| ≤ ǫn/(1 − ǫn) ≤ ǫ0/(1 − ǫ0). The claim follows from

|ϕ(t)| ≥ (1 − |r(t)|)|ϕ0(t)| ≥
1 − 2ǫ0
1 − ǫ0

e−u0tn/
√

2.

By the definition of An,

|ϕn(tn) − ϕ(tn)| ≤ ō(n(Aγ−1)/2),

and the claims follow. Consider (c). By Lemma 2.4, |u0(ϕn; t)| ≤ |u0| + |r′(tn)|. Write

r′(t) =
ǫn

1 − ǫn

∫

[ω(u− u0) + i(σ2 − σ2
0)t]e

ω(u−u0)t+i(σ2−σ2
0)t2/2dHn(u, σ).

Since that supx>0{xe−x} = 1/e and PHn
(u > u0, σ

2 ≤ A) = 1, the claim follows from

|r′(tn)| ≤
∫

[|u− u0|e−(u−u0)tn/
√

2 + |σ2 − σ2
0 |tn]dHn(u, σ) ≤ (

√
2/(etn)) +Atn.

Finally, combine (a)-(c) with Lemma 2.2,

|u0(ϕn; tn) − u0(ϕ; tn)| ≤ ō(1) · [|ϕn(tn) − ϕ(tn)| + |ϕ′
n(tn) − ϕ′(tn)|],

and the claim follows.
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5.5 Proof of Lemma 2.4

For simplicity, drop t from ϕ(t), ϕ0(t), and r(t) whenever there is no confusion. Consider

the first claim. Recalling that |ϕ| = |ϕ0| × |1 + r|,

d

dt
|ϕ(t)| = (

d

dt
|ϕ0|) · |1 + r| + |ϕ0| ·

d

dt
|1 + r|.

Using the definition of u0(ϕ; t) and Lemma 1.3, it follows from direct calculations that

|u0(ϕ; t) − u0| =

√
2

|1 + r(t)|
d

dt
|1 + r(t)|. (5.14)

Moreover,
d

dt
|1 + r(t)| =

r′(t)(1 + r̄(t)) + (1 + r(t))r̄′(t)

2|1 + r(t)| . (5.15)

By that PHn
(u > u0) = 1,

|r(t)| ≤ ǫn
1 − ǫn

∣

∣

∫

e−(u−u0)t/
√

2+i(−(u−u0)t/
√

2+(σ2−σ2
0)t2/2dHn(u, σ)

∣

∣ ≤ ǫn
1 − ǫn

. (5.16)

Combining(5.14)–(5.16) gives the claim.

Consider the second claim. Write

ϕ′ = ϕ′
0(1 + r) + ϕ0r

′.

We have ϕ̄ϕ′ = |1 + r|2ϕ̄0ϕ
′
0 + |ϕ0|2(1 + r̄)r′, and so

Re(ωϕ̄ϕ) = |1 + r|2Re(ωϕ̄0ϕ0) + |ϕ0|2Re(ω(1 + r̄)r′).

Therefore,

|σ2
0(φ; t) − σ2

0 | ≤
|Re(ω(1 + r̄(t))r′)|

t|1 + r(t)|2 ≤ C(ǫ0)|r′(t)|/t,

and the claim follows directly.

5.6 Proof of Theorem 2

Write for short tn = tn(γ) and ǫn(·; tn) = ǫn(·; tn, u0, σ
2
0). By triangle inequality,

|ǫn(ϕn; tn) − ǫn| ≤ |ǫn(ϕn; tn) − ǫn(ϕ; tn)| + |ǫn(ϕ; tn) − ǫn|.

Compare this with the desired claim. It is sufficient to show that E[|ǫn(ϕn; tn)−ǫn(ϕ; tn)|2] ≤
nAγ−1 and |ǫn(ϕ; tn)/ǫn − 1| tends to 0 in a speed that does not depends on ǫn and An.

Consider the first term first. By the definition of the functional ǫn(·; tn) (i.e. (3.1)),

|ǫn(ϕn; tn) − ǫn(ϕ; tn)| ≤ |e−ωu0tn−iσ2
0t2n/2(ϕn(tn) − ϕ(tn))| ≤ e

u0tn
√

2 |ϕn(tn) − ϕ(tn)|.
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At the same time, by the definitions of ϕn(·) and ϕ(·) and elementary calculus,

E|ϕn(tn) − ϕ(tn)|2 =
1

n
Var(eωtnX1) ≤ 1

n
E[e−

√
2tnX1 ].

Combining these gives,

E(|ǫn(ϕn; tn) − ǫn(ϕ; tn)|2) ≤ 1

n
e
√

2tnu0E[e−
√

2tnX1 ],

where by direct calculations and the assumptions of PHn
(u > u0, σ

2 ≤ A) = 1 and σ2
0 ≤ A,

the last term is no greater than

1

n

{

(1 − ǫn)et2nσ2
0 + ǫn

∫

e−
√

2tn(u−u0)+t2nσ2

dHn(u, σ)

}

≤ nAγ−1.

Combining these gives the first claim.

Consider the second claim. Recall that ǫn = ǫn(ϕ0; tn), that ϕ(t) = ϕ0(t)(1 + r(t)) (see

(1.9)), and that ϕ0(t) = (1−ǫn)e−ωu0tn−iσ2
0t2n/2. By the definition of the functional ǫn(·, tn),

ǫn(ϕ; tn) − ǫn = e−ωu0tn−iσ2
0t2n/2(ϕ(tn) − ϕ0(tn)) = (1 − ǫn)r(tn).

It then follows from the definition of r(·) that

|ǫn(ϕ; tn) − ǫn| ≤ |(1 − ǫn)r(tn)| = ǫn

∣

∣

∣

∣

∫

eω(u−u0)tn+i(σ2−σ2
0)t2n/2dHn(u, σ)

∣

∣

∣

∣

. (5.17)

Suppose condition (b) holds. Then PHn
(u > u0 + δn) = 1, where δn satisfies (2.7) with

some constant c0 > 0. It follows from (5.17) and elementary calculus that as n→ ∞,

|ǫn(ϕ; tn)/ǫn − 1| ≤
∫

e
− (u−u0)t

√

2 dHn(u, σ) → 0. (5.18)

Suppose condition (c) holds. Let δ = u − u0, κ = σ2 − σ2
0 . By the definitions of g(κ|δ)

and g(δ) and elementary Fourier analysis,

∫

eω(u−u0)tn+i(σ2−σ2
0)t2n/2dHn(u, σ) =

∫

eωδtn+iκt2n/2g(κ|δ)h(δ)dκdδ

=

∫

eωδtngFT (t2n/2; δ)h(δ)dδ.

By the assumptions, PHn
(δ > 0) = 1 and gFT (t) ≤ C(1 + |t|)−α, so

∣

∣

∫

eωδtngFT (t2n/2; δ)h(δ)dδ
∣

∣ ≤
∫

e
− δtn

√

2 |gFT (t2n/2; δ)|h(δ)dδ ≤ C(1 + t2n/2)−k −→ 0,

Combining these with (5.17) gives the claim.
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5.7 Proof of Theorem 3

Write for short tn = tn(γ), û0 = u0(ϕn; tn), and σ̂2
0 = σ2

0(ϕn; tn). By the definitions of

ǫn(·; t, u, σ),

|ǫn(ϕn; tn, û0, σ̂
2
0)−ǫn(ϕn; tn, u0, σ

2
0)| ≤ |e−ω(û0−u0)tn−i(σ̂2

0−σ2
0)t2n −1| · |e−ωu0tn−iσ2

0t2nϕn(tn)|,

where we note that by the definition of the functional ǫn(·; t, u, σ), the last term ≤ 1 +

|ǫn(ϕn; tn, u0, σ
2
0)|. By Lemmas 2.3–2.4, except for a small probability that tends to 0 as n

tends to ∞,

|û0 − u0|tn ≤ tn|r′(tn)| + ō(n(Aγ−1)/2), |σ̂2
0 − σ2

0 |t2n ≤ tn|r′(tn)| + ō(nAγ−1)/2).

At the same time, by Theorem 2, except for a small probability that tends to 0 as n tends

to ∞,

ǫn(ϕn; tn, u0, σ
2
0) ∼ ǫn.

Combine these, as n tends to ∞, except for a small probability that tends to 0.

|ǫn(ϕn; tn, û0, σ̂
2
0) − ǫn(ϕn; tn, u0, σ

2
0)| ≤ tn|r′(tn)|,

which, by Lemmas 2.5–2.6, tends to 0. This concludes the proof.
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