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summary

The James-Stein (1961) estimate of a multivariate normal mean has spawned a
spectrum of related admissibility and inadmissibility results. Nevertheless it has
not had much impact at the grass-roots level of applied statistics and continues to
be almost totally ignored (after almost a half century) in introductory textbooks.
Possible reasons for its low profile are discussed.
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1 Introduction

In a celebrated paper by James and Stein (1961) (see also the earlier paper by Stein (1956)),
the following remarkable fact was brought to the attention of the statistical community. If
X(1), X(2), . . . , X(n) are independent and identically distributed with common k-dimensional
(k > 2) normal distribution with mean vector µ and variance covariance matrix I, then the
vector of sample means, X = 1

n

∑n
j=1X

(j), is inadmissible as an estimate of µ. This unex-
pected observation was greeted initially with a degree of disbelief, but was relatively quickly
given a Bayesian interpretation which made it more palatable, and eventually it became
accepted by many as a natural phenomenon. It became accepted by many theoreticians but
perhaps it was not so readily accepted by practitioners.

Brad Efron once asked “Why isn’t everyone a Bayesian?” A variety of explanations
were proffered (Efron, 1986). Here we might ask, “Why doesn’t everyone use some version
of the James-Stein shrinkage estimate?” It indeed appears to be far from being universally
accepted procedure. And it certainly hasn’t filtered down to be routinely included in statis-
tical “cook-books” which offer statistical advice to scientists in all manner of different areas
of research.

This is the case despite Efron and Morris’(1973a,b) masterful selling of the product
with an example dealing with batting average prediction for major league baseball players.
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Exchangeability, in some form or other, seems to be lurking in the background of many of
the arguments in favor of the James-Stein approach. A small nagging hint of doubt even
applies to the baseball players. If exchangeability is even remotely approximately true, then
how do we justify the enormous salary variability encountered among ballplayers. Alex
Rodriguez’s agent must surely be successful in his arguments against exchangeability and in
favor of a gigantic difference between the salary of his client and those of more exchangeable
utility players.

People seem to continue using X, despite its demonstrated inadmissibility. In general
then, it appears to be reasonable to ask “Why do people persist in using inadmissible
estimates?” This general question will be considered in Section 2. In Section 3, the particular
case of the James-Stein estimate will be considered. Some further comments are included
in Section 4.

2 T (X) is inadmissible, why do you insist on using it?

Before discussing the multivariate normal example, it will be instructive to review another
case in which demonstrably inadmissible estimates continue to be used and recommended.
Perhaps embarrassingly, the example is found near the beginning of most elementary statis-
tics textbooks. And Charles Stein is hovering in the background here also. We will briefly
review this well known scenario.

Suppose that X1, X2, . . . , Xn is a sample of size n from a Normal(µ, σ2) population,
where both µ and σ2 are unknown. Estimation of µ appears to be non-controversial. Pretty
much any estimation strategy in use (unless Tom Bayes enters the discussion) will lead to the
recommendation of X as an estimate of µ. Estimation of σ2 is more problematic. Different
estimation strategies suggest different estimates. Maximum likelihood estimation produces
T1(X) = 1

n

∑n
j=1(Xj − X)2. Unbiasedness aficionados will “correct” this and instead will

use T2(X) = 1
n−1

∑n
j=1(Xj −X)2. Others consider estimates of the form cT1(X) and chose

c to minimize the mean squared error of this as an estimate of σ2. They then decide upon
use of T3(X) = 1

n+1

∑n
j=1(Xj−X)2. Mean squared error considerations indicate that T3(X)

is preferred to T1(X) which is preferred to T2(X). Moreover, none of these three estimates
are admissible under squared error loss since (Charles Stein once more, see Stein (1964))
any estimate of the form

T (a)(X) = min{ 1
n+ 2

n∑
j=1

(Xj − a)2,
1

n+ 1

n∑
j=1

(Xj −X)2}

for a ∈ R will be preferable. And, worse still, none of these T (a)’s is admissible either.
In the face of all this evidence, the unbiased estimate T2(X) continues to be frequently

the estimate of choice. People persist in using this inadmissible estimate. What is going on
here?

There are several possible explanations and perhaps more than one of them is true or
partially true. People may wish to continue using a demonstrably bad estimate because
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that is the way it has always been done. They may use a bad estimate because they are
stupid and/or ill-informed. But, perhaps the estimate doesn’t look bad to them. Put
another way, perhaps their continued use of an estimate that is inadmissible under a certain
loss structure actually indicates not that they are irrational but instead indicates that the
loss structure assumed in proving inadmissibility does not reflect their evaluation of the
“costs” of errors from their viewpoint. As a case in point, an unbiasedness enthusiast can
be viewed as one for whom the cost of using any biased estimate is infinite and, within
the class of unbiased estimates, he/she will seek one with smallest variance if such exists.
Minimum variance unbiased estimates are the only admissible estimates for such a person.
It is not so easy to justify the use of T1(X) (the m.l.e.) instead of T3(X) (the best invariant
estimate). Some loss function distinct from squared error loss is needed to justify this
otherwise seemingly irrational choice. And what about those Stein-type estimates T (a)(X)?
There seem to be just too many estimates that are preferred to T1(X),T2(X) and T3(X),
but are still themselves inadmissible. How should one choose among them? In despair,
perhaps, people return to T1(X),T2(X) or T3(X). Perhaps their loss function involves some
kind of complexity cost. Simple estimates are judged to be, in some sense, preferable to
complex ones. (See Meeden and Arnold (1979) for some discussion of estimation with a loss
function incorporating complexity cost in a regression context).

In the variance estimation example, we have identified two possible justifications for
using an inadmissible estimate. One possibility is that the loss function used to conclude
inadmissibility is not an appropriate one and does not reflect the albeit inchoate feelings
about losses on the part of the user of the estimate. The second possibility is that a
plethora of better estimates are available, but they suffer from two faults. First, they are
often unattractively complicated and second, there is little or no available guidance on which
one to select.

With this background in mind, let us turn to consider the famous multivariate inadmis-
sibility example.

3 On not using the James-Stein estimate or its rela-
tives.

We return to the James-Stein scenario where we haveX(1), X(2), . . . , X(n) i.i.d. k-dimensional
random variables with X(j) ∼ Normal(k)(µ, I), j = 1, 2, . . . , n and we wish to esti-
mate µ. The maximum likelihood estimate of µ is µ̂ = X, the vector of sample means
(i.e.,X = 1

n

∑n
j=1X

(j). James and Stein (1961) argue that this natural estimate is inadmis-
sible when k > 2, being dominated by the estimate

µ̃
JS

=

(
1− k − 2

nX
T
X

)
X. (3.1)

Based on our above observations in the normal variance example, we might expect
that some users might not be impressed by this result and might continue to use µ̂ =
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X as their estimate of µ. Their reasons might be based on an abhorrence of complexity
and/or dissatisfaction (explicitly stated or vaguely sensed) with the loss function used in
the inadmissibility argument. Complexity considerations seem to be of small consequence
here. The estimate µ̃

JS
is a little more complicated but it is also a little more sophisticated

in appearance and that might even be a plus in its favor. But, what about the loss function?
The mathematical result that the estimate (3.1) is to be preferred to µ̂, under the as-

sumed loss structure, is unassailable. It argues in favor of “borrowing strength” in estimating
each coordinate of µ by utilizing information from all the coordinates of the n data points.
This often makes sense, as for example in the baseball setting (superstars notwithstanding).
But it does not always seem reasonable. It might be interpreted as suggesting pooling un-
related experiments to “gain strength”. The prospect of using data coming from a survival
study of tractors in Uzbekistan to “improve” our estimates for a study of scholastic achieve-
ment in Palo Alto would seem strange and unacceptable to most.The most obvious fault
associated with indiscriminate use of the James-Stein estimate is the questionable nature of
the loss function,

∑k
i=1(µ̃i − µi)2, in such situations. It treats all the µi’s equally and in-

herently assumes some kind of exchangeability in the setting. It is indeed a mathematically
tractable loss function. It is the natural extension of unidimensional squared error loss to
accommodate higher dimensional parameter estimation. But, is it the right loss function?
The paucity of adoptions of the James-Stein estimates might well suggest that, for many
people in many situations, it is just not the right loss function. Surely it is not the right
one in settings such as the one alluded to above involving data from Uzbekistan which is
presumably of no interest to us. We would like to have good estimates for the Palo Alto
parameters. We care not about parameters associated with the independent Uzbekistan
data. A strong case can often be made against use of the mathematically attractive loss
function

∑k
i=1(µ̃i − µi)2.

If it is not the right loss function, what would be a better choice? Needless to say, there is
no globally acceptable recommendation possible here. Loss functions, if they are to be truly
reflective of the costs associated with various decisions, are necessarily subjective. They will
vary from individual to individual. Since many, if not most, researchers use the maximum
likelihood estimate µ̂ = X in preference to the James-Stein estimate, it is appealing to
introspect on what kind of a loss function will render µ̂ admissible. There are presumably
many possibilities. Brown (1980) identified a class of loss functions for which µ̂ is admissible.
They include ones of the form

L(µ̃, µ) =
k∑
i=1

(1 + µ2
i )
τ

Σ(1 + µ2
j )τ

(µ̃i − µi)2,

where τ ≥ 1/2. Lehmann and Casella (1998, pp. 353-354) is a convenient source for more
detailed discussion of loss and risk structures for which µ̂ is admissible. It seems reasonable
to state that none of the loss functions discussed in these sources would compel general
acceptance.

At issue here is not whether we can precisely identify the loss function appropriate for
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a particular user in a particular situation. What is relevant is the observation that if the
user persists in using X, this should not be taken as an indication of faulty reasoning on
the part of the user, but instead should be recognized as an indication that he/she “hears
a different drummer” than James and Stein, in that his/her loss function differs perhaps
markedly from that used by James and Stein to justify the claimed inadmissibility of X.

4 Is there a general message here?

Perhaps not. Perhaps the hope of identifying the class of admissible estimates for a given
individual with an imperfectly articulated loss function is hopeless. But when we label
a particular estimate as inadmissible, we must be very careful to explain the loss struc-
ture involved in arriving at the decision and we must be willing to permit users to reject
“admissible” estimates and prefer certain “inadmissible” estimates if they feel that the cor-
responding loss structure is inappropriate for them. I think that even the most doctrinaire
James-Stein enthusiast would admit that there are scenarios in which the

∑k
i=1(µ̃i − µi)2,

loss function is questionable and would, in such situations, not insist on discarding X as an
estimate. Use of X is roughly equivalent to rejection of the James-Stein loss structure and
the frequency with which this occurs and has occurred over the last half-century may be
taken as an indicator that this particular loss structure is often judged to be inappropriate.
It is a beautiful result, but at best, it is of limited applicability.

Acknowledgments

I am grateful to Glen Meeden and Joe Eaton for comments on a first draft of this note.

References

[1] Brown, L. D. (1980) Examples of Berger’s phenomenon in the estimation of independent
normal means. Ann. Statist., 8, 572–585.

[2] Efron, B. (1986) Why isn’t everyone a Bayesian? With discussion and a reply by the
author. Amer. Statist., 40, 1–11.

[3] Efron, B. and C. Morris (1972) Empirical Bayes on vector observations: an extension
of Stein’s method. Biometrika, 59, 335–347.

[4] Efron, B. and C. Morris (1973a) Stein’s estimation rule and its competitors—an em-
pirical Bayes approach. J. Amer. Statist. Assoc. 68, 117–130.

[5] Efron, B. and C. Morris (1973b) Combining possibly related estimation problems. With
discussion by D. V. Lindley, J. B. Copas, James M. Dickey, M. Stone, A. P. Dawid, A.
F. M. Smith, A. Birnbaum, M. S. Bartlett, G. N. Wilkinson, J. A. Nelder, C. Stein, T.
Leonard, G. A. Barnard and R. L. Plackett. J. Roy. Statist. Soc. B.35, 379–421.



134 Arnold

[6] James, W. and C. Stein (1961) Estimation with quadratic loss. Proc. 4th Berkeley
Sympos. Math. Statist. and Prob., Vol. I, Univ. California Press, Berkeley, Calif., 361–
379.

[7] Lehmann, E.L. and G. Casella (1998) Theory of Point Estimation, 2nd Edn. Springer,
New York.

[8] Meeden, G, and B.C. Arnold (1979) The admissibility of a preliminary test estimator
when the loss incorporates a complexity cost. J. Amer. Statist. Assoc, 74, 872–874.

[9] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate
distribution. Proc. Third Berkeley Symp. Math. Statist. Prob. 1, University of California
Press, Berkeley, Calif., 197-206.

[10] Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal
distribution with unknown mean. Ann. Inst. Statist. Math. 16, 155-160.


