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summary

In this article we present new criteria for the asymptotic normality of sums of row-
wise independent random variables. Besides providing an alternate approach for
demonstrating a sum of independent random variables is asymptotically normal,
our criteria provide new insight into the nature of asymptotic normality and the
Lindeberg condition.
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1 Introduction

Classic criteria ensuring the asymptotic normality of sums of row-wise independent random

variables (RV’s) were determined early in the 20th century; see Le Cam (1986) for historical

details. More recently, alternative criteria have been developed in terms of the first four

moments, Kruglov (2004), and Lyapunov’s condition, Kruglov (2008). Here we present new

criteria for asymptotic normality based on Lévy’s splitting of a RV X according to the size

of its absolute value, Le Cam (1986): for any ε > 0,

X = XI(|X| < ε) +XI(|X| ≥ ε) (1.1)

where I(·) is the indicator function I(A) = 1, A true; 0 otherwise. In addition to providing a

new means of establishing the asymptotic normality of a sum of row-wise independent RV’s,

our criteria provide an alternate interpretation of asymptotic normality and, in particular,

the Lindeberg condition.
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2 Normal Convergence Criteria

Let Xnj , j = 1, . . . , kn, limn kn = ∞, be an array of row-wise independent RV’s which is

infinitesimal, i.e., for any ε > 0 limn max1≤j≤kn P (|Xnj | ≥ ε) = 0. (Here and in the sequel

all limits are for n→∞.) Classic normal convergence criteria for Yn =
∑kn

j=1Xnj are

provided by Loève (1977):

Theorem 1 (Classic Normal Convergence Criteria). Let Xnj be an infinitesimal array of

row-wise independent RV’s. Yn =
∑kn

j=1Xnj converges in distribution to a normal RV with

finite mean α and variance σ2 (Yn →d N(α, σ2)) if and only if for every ε > 0 and a τ > 0,

I. limn

∑kn

j=1 P (|Xnj | ≥ ε) = 0,

II. limn αn(τ) = α where αn(τ) =
∑kn

j=1 αnj(τ) and αnj(τ) = E[XnjI(|Xnj | < τ)],

III. limn σ
2
n(τ) = σ2 where σ2

n(τ) =
∑kn

j=1 σ
2
nj(τ) and σ2

nj(τ) = E[X2
njI(|Xnj | < τ)]− α2

nj(τ).

Further, under I, II and III hold for any τ ′ in (0, τ ].

The following theorem provides our new criteria based on 1.1.

Theorem 2 (Alternate Normal Convergence Criteria). Let Xnj be an infinitesimal array

of row-wise independent RV’s. Yn =
∑kn

j=1Xnj →d N(α, σ2) if and only if there is a τ > 0

such that for all ε ∈ (0, τ ],

A. Wn(ε) =
∑kn

j=1XnjI(|Xnj| ≥ ε) converges in probability to zero (Wn →p 0),

B. limn αn(ε) = α, and

C. limn σ
2
n(ε) = σ2.

Proof. Suppose Yn →d N(α, σ2). By Theorem 1, there is a τ > 0 such that B and C hold

for all ε ∈ (0, τ ]. To show that A holds, we note that for any δ > 0

P (|Wn(ε)| ≤ δ) ≥ P (Wn(ε) = 0)

≥ P

( kn⋂
j=1

{|Xnj | < ε}
)

= 1− P
( kn⋃

j=1

{|Xnj | ≥ ε}
)

≥ 1−
kn∑
j=1

P (|Xnj | ≥ ε).

Thus by I of Theorem 1, limn P (|Wn(ε)| ≤ δ) ≥ 1− limn

∑kn

j=1 P (|Xnj | ≥ ε) = 1 for any

ε > 0.
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Conversely, suppose that for some τ > 0, A, B, and C hold for ε ∈ (0, τ ]. By 1.1

Xnj = Vnj(ε) +Wnj(ε), where Vnj(ε) = XnjI(|Xnj | < ε) and Wnj(ε) = XnjI(|Xnj | ≥ ε), so

that Yn = Vn(ε) +Wn(ε) where Vn(ε) =
∑kn

j=1 Vnj(ε) and Wn(ε) =
∑kn

j=1Wnj(ε). Hence-

forth we suppress ε in our notation. By A, Wn →p 0 for ε ∈ (0, τ ]. Thus, by Slutsky’s

Theorem, Yn →d N(α, σ2) if Vn →d N(α, σ2). Let Unj = (Vnj − E[Vnj ])/σn so that Unj is a

row-wise independent array, E[Unj ] = 0, and
∑kn

j=1 Var(Unj) = 1. By Lyapunov’s Theorem,∑kn

j=1 Unj = Un →d N(0, 1) if limn

∑kn

j=1 E[|Unj |3] = 0. Since |Vnj | < ε, |Vnj − E[Vnj ]| ≤ 2ε

so that

|Vnj − E[Vnj ]|3 = |Vnj − E[Vnj ]||Vnj − E[Vnj ]|2

≤ 2ε|Vnj − E[Vnj ]|2.

Thus

kn∑
j=1

E[|Unj |3] =
1

σ3
n

kn∑
j=1

E[|Vnj − E[Vnj ]|3]

≤ 2ε

σ3
n

kn∑
j=1

E[(Vnj − E[Vnj ])
2]

=
2ε

σ3
n

kn∑
j=1

σ2
nj .

Therefore limn

∑kn

j=1 E[|Unj |3] ≤ 2ε/σ by C. Since this inequality holds for all ε in (0, τ ],

limn

∑kn

j=1 E[|Unj |3] = 0.

3 Remarks

If we interpret XnjI(|Xnj | < ε) and XnjI(|Xnj | ≥ ε) as constituting the central and tail

contributions, respectively, of Xnj then our normality criteria admit the following intuitive

interpretation: A sum of asymptotically negligible, independent RV’s Yn =
∑
Xnj is asymp-

totically normal if and only if the Xnj are such that the sum of their tail contributions, Wn,

is asymptotically negligible and the mean and variance of the sum of their central contribu-

tions, Vn, converge. Further, our criteria provide new insight into the Lindeberg condition, a

construct admitting various characterizations; see, for example, Goldstein (2009). Suppose

that X1, . . . , Xn is a sequence of RV’s with finite variances σ2
j . Let s2n =

∑n
j=1 σ

2
j . If the Xj

satisfy the uniformly asymptotically negligible (UAN) condition limn maxj σ
2
j /s

2
n = 0 then

the normalized sum Yn =
∑n

j=1Xj/sn is asymptotically normal if and only if the Lindeberg

condition is satisfied: for any ε > 0

lim
n

(1/s2n)

n∑
j=1

E[X2
j I(|Xj | ≥ εsn)] = lim

n

n∑
j=1

E[(Xj/sn)2I(|Xj/sn| ≥ ε)]

= 0.
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Since the Xj are UAN, the normalized summands X̃nj = Xj/sn are infinitesimal. Thus,

by Theorem 2 the Lindeberg condition is equivalent to the requirement that for every ε > 0

Wn =
∑n

j=1 X̃njI(|X̃nj | ≥ ε)→p 0.
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