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summary

Parameter curvature was introduced by Efron (1975) for classifying curved ex-
ponential models. We develop an alternative definition that describes curvature
relative to location models. This modified curvature calibrates how Bayes poste-
rior probability differs from familiar frequency based probability. And it provides
a basis for then correcting Bayes probabilities to agree with the reproducibil-
ity traditional to mainstream statistics. The two curvatures are compared and
examples are given.
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1 Introduction

Consider a statistical model f(y1, y2;µ1, µ2) centered at (µ1, µ2) with standard Normal

errors (z1, z2). An interest parameter say ψ1(µ1, µ2) = µ1 has contours or level curves that

are straight lines on the space {(µ1, µ2)}. And an interest parameter ψ2(µ1, µ2) = µ1+γµ2
2/2

has contours that are curves: the standard curvature of such a contour at a point with

µ2 = 0 is the second derivative (∂2/∂µ2
2)ψ|µ2=0 = γ. This is the reciprocal of the radius of

curvature ρ = 1/γ of the best fitting circle to that contour at the point with µ2 = 0; see

the Appendix for some further details. The example also displays the first-order asymptotic

form of a two-parameter statistical model relative to some antecedent sample size n. For
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such models, Efron (1975) introduced a measure of curvature to describe how the ψ-fixed

model differs from pure exponential model form, where Efron notes “nice properties for

estimation, testing, and other inference” methods are available. For this simple example

the preceding measures of curvature are equal. And for extensive details on the slightly

more complicated Normal (µ, σ) case see Fraser & Sun (2010), which provided the stimulus

for the developments in this paper.

We develop an alternative curvature measure that assesses how the ψ-fixed model differs

from pure location model form; and in doing this, the new measure determines how posterior

probability departs from the reproducibility traditional in main stream statistics. For the

simple normal example just mentioned, the two definitions of curvature are in agreement,

but they typically differ when the standardized error is not Normal. For purposes here we

also include a sign with the curvature, a sign that is positive if the contour is blunt in the

direction of increasing ψ and is negative in the reverse case; the sign indicates whether the

standard Bayes computation overshoots or undershoots the usual frequentist reproducibility.

The exponential model form considered by Efron, where “good statistical properties” for

estimation and inference are available, is not now a limitation on the availability of good

inference procedures: indeed recent saddlepoint-type analysis has widely extended inference

theory to the general likelihood setting and has provided highly accurate p-values for general

interest parameters; for recent discussion and extension to the general discrete contingency

table context, see Reid & Fraser (2010), Fraser, Wong & Sun (2009), Davison, Fraser &

Reid (2006).

An overt challenge in inference theory arises, however, when Bayes calculations of prob-

ability are in direct conflict with routine confidence reproducibility, and yet the power of the

word probability, here deemed inappropriate in the Bayes setting, eclipses the less aggres-

sive term confidence; indeed other arguments are even introduced citing Lindley’s (1958)

view that confidence distributions are wrong if they do not correspond to just likelihood

combination as with Bayes.

Consider a parameter ρ for a variable r with distribution function F (r; ρ). The confidence

p-value from data r0 is p(ρ) = F (r0; ρ), and it records just the %-age position of the data

with respect to the parameter value ρ; and when the p-value is then used to form confidence

quantiles they have the usual Neyman (1937) interpretation under repetitions. Meanwhile

for the Bayes case, the posterior survivor value s(ρ) is the right tail distribution function for

the posterior of ρ using a suitable default prior. We would of course hope that the Bayes

alleged probability bears some sensible connection with frequentist reproducibility.

Now consider the initial example involving a Normal on the plane. For the obviously

linear parameter µ1 the p-value is obtained immediately from the corresponding variable y1
and is given as p(ψ) = Φ(y01 − µ1) where Φ is the standard Normal distribution function.

For a Bayes calculation we would need of course an appropriate default prior; the obvious

prior fully in accord with Bayes (1763) is the flat prior on the plane. This immediately says

that the posterior for (µ1, µ2) is the standard Normal located at the data point (y01 , y
0
2) and

then that the posterior for µ1 is the standard Normal located at y01 , which leads routinely
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to the survivor probability s(µ1) = Φ(y01 −µ1). This Bayes survivor value is of course equal

to the frequentist p-value.

But now for a curved parameter say ρ = (µ2
1+µ2

2)1/2 with curvature γ = 1/ρ we have the

obvious r = (y21 +y22)1/2 which measures ρ. The p-value for assessing ρ is then H2{(r0)2; ρ2}
where H2(r2; ρ2) is the non-central chi square distribution function with degrees of freedom

2 and non-centrality ρ2. By contrast the Bayes survivor value is 1 − H2{ρ2; (r0)2}: The

p-value p(ρ) and the Bayes value s(ρ) are not equal. Indeed the second is uniformly larger

than the first (Fraser & Reid, 2002; Fraser, 2010); this is easily verified by starting with

the linear case where they are equal and then, with ρ − r fixed, morphing into the second

case with changing γ and noting that the sample space sets on the 2-dimensional space are

decreasing for the p-value calculation and increasing for the s-value calculation.

A location model f{y − β(θ)} has linearity for the parameter on the sample space,

and an exponential model exp{ϕ′(θ)s(y)− k(θ)}h(y) has linearity in the exponent over the

sample space, where the p-dimensional vectors ϕ, s are combined linearly. The mapping

between the two spaces is not linear and accordingly linearity of parameters is different in

the two spaces. We develop the curvature measure for the sample space somewhat following

the Efron route for parameters in the exponent. In either case a local standardization is

needed: Efron uses expected information but we follow current likelihood directions and

use observed information calculated in the locally defined canonical parameterization. In

exponential models these informations are in agreement; and in non exponential models the

use of the special observed information function provides the critical ingredient for third-

order inference accuracy.

For a model with data, let `(θ) be the observed log-likelihood and let ϕ(θ) be the log-

likelihood gradient in directions tangent to an exact or approximate ancillary having surface

dimension equal to the dimension say p of the parameter (for example, Fraser, Fraser &

Staicu, 2010). And then let {`(θ);ϕ(θ)} designate the exponential model:

g(s; θ) = exp{`(θ) + ϕ′(θ)s}h(s) =
exp{k/n}
(2π)p/2

exp{`(ϕ)− `(ϕ̂)}|ϕϕ(ϕ̂)|−1/2,

where θ̂ and ϕ̂ = ϕ(θ̂) depend on s and are calculated from the tilted likelihood in the

middle expression and where the right hand expression is the saddlepoint approximation

for the middle expression involving a constant k and the observed information ϕϕ(ϕ̂) =

(∂/∂ϕ)(∂/∂ϕ′)`(θ)|ϕ̂(s) where the derivatives are of `(θ) with respect to ϕ(θ); the related

observed s0 = 0 derives from having the score variable s centered at the observed data

point. This exponential model is a first derivative approximation to the original model and

yet provides full third order inference for arbitrary scalar interest parameters; for recent

discussion see, for example, Reid & Fraser (2010). We work entirely within this exponential

model; it agrees with the original model if the original is exponential and more generally

it is a first derivative approximation to that model but retains full third order inference

reliability.

The data-dependent canonical parameterization ϕ(θ) is the essential ingredient for ex-

tending saddlepoint technology from cumulant generating function contexts to the general
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asymptotic context (Fraser & Reid, 1995; Reid & Fraser, 2010; and an overview in Fraser,

Wong & Sun, 2009). The tangents to an approximate ancillary are given by the n× p array

V = (v1, . . . , vp) =
dy(θ, u)

dθ

∣∣∣∣
y0,θ̂0

,

where y is written in quantile form y(θ, u) as a function of the parameter θ and the vector

u of p-values; the vector u = F (y; θ) of coordinate distribution functions gives the vector of

p-values and its inverse is the vector of quantiles y(θ, u). See for example Fraser, Fraser &

Staicu, (2010). This gives the formal definition of the approximating canonical parameter

as ϕ(θ) = (d/dV `(θ; y))|y0 , as the gradient in essential directions V of the log-model at the

observed data; this can be calculated easily and accurately by differencing if not by the

more obvious differentiation.

In our initial Normal error example we considered two scalar parameters, one linear and

one curved, and allowed that, with a change in the parameterization, the curvature of a

parameter could change. For the more general asymptotic model we then have a similar

result and will be interested in curvature at the observed maximum likelihood value, say θ̂0

in the initial parameterization. For this we will use the standardized metric provided by the

observed information 0θθ = θθ(θ̂
0), that is,

ds2 = (θ − θ̂0)′0θθ(θ − θ̂0) = dθ′0θθdθ,

which records local departure standardized to observed information and presented here in the

given parameterization. For other parmeterizations this transforms by change of variable,

that is, from the θ parameterization to the new parameterization. It then follows that the

connection between two standardizations is given locally by an orthogonal transformation.

And in the p = 2 case if the standardizations are aligned with a scalar interest parameter, as

will be discussed, then the orthogonal parameterization is either an identity transformation

or a reflection for the second coordinate. As a consequence any change in the curvature

of a scalar parameter is attributable entirely to the second derivative array between the

standardized parameterizations.

In Section 3 we show that the aligned and standardized second derivative arrays, say W ij

from parameterization say θi to θj , satisfy the convenient property W ik = W ij + W jk =

−W ki. And in addition if W is the array from parameterization θ1 to θ2 and is aligned

with the interest parameter ψ then the change in curvature from γ1 to γ2 for the interest

parameter ψ is given as γ2 = γ1 − w1
22, where w1

22 in W is the second partial of the first

new coordinate with respect to the second old coordinate; this agrees directly with our

calculations for the two interest parameters in the initial example. For some background on

the Bayes-frequentist divergence and the feasibility of the present curvature implementation,

see Fraser & Sun (2010).



Parameter Curvature Revisited . . . 339

2 Change of Parameterization

Consider a statistical model f(y; θ) having an alternative parameterization ϕ(θ), and sup-

pose we are interested in the curvature of the scalar interest parameter ψ(θ). Curvature

gets more complicated quickly with larger parameter dimension p (Fraser, Fraser & Staicu,

2010), so we give details for just the primary case p = 2. In an application, curvature at the

observed maximum likelihood value can be of central concern; accordingly, we investigate the

change of parameterization from θ to ϕ(θ) in the neighborhood of the maximum likelihood

value θ0 = θ̂(y0), and we do this in standardized units relative to observed information; this

observed information is properly calculated from the tangent exponential model g(s; θ) and

thus from the log-likelihood {`(θ) + ϕ′(θ)s} and not from the original model; but at s = 0

corresponding to the maximum for `(θ) the results are the same. Our objective is to find

out how the directly calculated curvature in the initial parameterization gets modified by

the change to the new parameterization; this is of substantial importance in the calibration

of Bayes procedures relative to repetition validity.

For some given parameterization say θ, we first center at the data-indicated maximum

likelihood value θ0 = θ̂0 and thus address the departure

θ̄ =

 θ1 − θ01
θ2 − θ02

 .

We then align this with the scalar interest parameter ψ so that the first new coordinate

changes locally like the scalar ψ; this gives us a linear transformation say

~θ = Aθ̄ =

 ψ0
1 ψ0

2

−ψ0
2 ψ0

1

 θ̄,

where ψ0
1 = ∂ψ/∂θ1|θ0 , ψ0

2 = ∂ψ/∂θ2|θ0 are the partial derivatives of ψ at the value θ0. And

then for standardization let

T =

 t11 0

t21 t22

 =

 T1

T2


be the positive lower triangular right root of the observed information ~θ~θ = T ′T in the

parameterization ~θ, and define the standardized parameter departure

θ̃ = T~θ = TAθ̄ = Bθ̄,

where B = TA; this retains the centering and alignment but in addition gives an identity

observed information for the modified θ̃. Also we let B1 be the first row vector of B.

Now for the scalar parameter ψ(θ) we obtain in a similar way the centered and stan-

dardized version ψ̃(θ) = t11(ψ(θ) − ψ̂0). Then for the scalar parameter ψ2(θ) in the initial
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example of Section 1 we obtain the curvature of ψ2 with respect to θ as γ = (∂2ψ̃/∂θ̃2). Also

for some alternative parameterization say ϕ(θ) we can similarly center, align and standardize

to go from ϕ̄(θ) to ϕ̃(θ) by replacing θ̄ in the preceding steps by

ϕ−1θ

 ϕ1 − ϕ0
1

ϕ2 − ϕ0
2

 ,

where ϕθ is the Jacobian ∂ϕ/∂θ|θ0 , and then using the consequent θ̃ as the centered, aligned

and standardized ϕ̃. These transformation A, T , B, and ϕ−1θ are constant and linear and

thus semi-transparent for second derivative computations; further details are given in Section

6.

3 Taylor Expansion between Parameterizations

Consider an initial parameterization θ and some alternative parameterization ϕ(θ); we ex-

amine how these relate to each other in the neighborhood of the maximum likelihood value

θ0. We of course center, align and standardize as just described; accordingly we then work

with the modified versions developed in the preceding section; and for convenience of nota-

tion we also omit the tildes and thus use the notation θ as a simple substitute for θ̃. We

Taylor expand ϕ in terms of θ and obtain ϕ1

ϕ2

 =
[
v1 v2

] θ1

θ2

+
1

2n1/2

 θ1

θ2

′  w11 w12

w21 w22

 θ1

θ2

+ · · · ,

where the vi and wij in the [vi] and [wij ] arrays are vectors in R2 and are combined linearly

by the indicated matrix multiplication. In particular the v array designated say V takes

the form of a 2 × 2 identity matrix due to the standardization. And the w array say W

records second derivatives wij of the new vector parameter ϕ with respect to coordinates

θi and θj of the the initial parameter θ; thus wij = (∂2ϕ(θ)/∂θi∂θj)|θ̂0 , but all are in the

aligned and standardized version of the coordinates; in particular W could be presented as

a 2× 2× 2 array; the observed information used in the standardization is of order n as part

of dependence on a deemed antecedent sample size n and when used to standardize the first

derivatives leads to an effect n−1/2 in each of the second derivatives; we occasionally make

this explicit in the equations. And we do emphasize that these calculations are in terms of

the standardized coordinates.

Consider a first parameterization say θ1 and a second parameterization say θ2; the

corresponding Taylor expansion as above would have a second derivative array say W 12

for the change of parameterization. And suppose we have a third parameterization say

θ3 with an array W 23 for the standardized quadratic array relative to θ2. The simple

substitution and retention of terms of order O(n−1/2) gives W 13 = W 12+W 23 and similarly

W 12 = −W 21.
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We return to the initial example in the Introduction and the curved interest parameter

ψ(θ1, θ2) = θ1 + γθ22/2. We can picture ψ increasing as we move positively along the axis

for θ1; and then with positive γ we would have contours that are blunt nosed to the right,

and with negative γ we would have blunt nosed to the left. Now suppose we make a change

of parameterization involving a curvature change array W . The initial curve through the

origin can be written in explicit form as θ1

θ2

 =

 −γt2/2n1/2
t


using a mathematical parameter t. If we substitute this in the Taylor series above we obtain ϕ1

ϕ2

 =

 −γt2/2n1/2
t

+ w22
t2

2n1/2
=

 −γt2/2n1/2 + w1
22t

2/2n1/2

t+ w2
22t

2/2n1/2

 , (3.1)

where w1
22 and w2

22 are the first and second coordinates of the second derivative vector w22,

and again t is a free parameter that generates the contour. The calculations omit terms of

order O(n−1) that arise in expanding the matrix array; and the quadratic addition to t of

course alters the free parameter but does not alter the curvature to the order O(n−1). It

follows that the new curvature is just γ2 = γ −w1
22; this does include the usual orthogonal-

ization adjustment applied in the calculation of acceleration vectors. Thus we see that the

first coordinate w1
22 of the aligned and standardized vector w22 provides the correction to

the curvature calculated in the initial parameterization, but for this the parameters need to

be in the aligned and standardized form.

In other words we can calculate the curvature in any convenient parameterization and

afterwards correct to that in the particular standardized parameterization of interest; and

this just needs the second derivative array to the new parameterization. In the next two

sections we consider the two parameterizations of particular interest here, the exponen-

tial parameterization discussed by Efron (1975) and the linear parameterization needed for

understanding the positive and negative aspects of Bayes methodology.

4 The Exponential Parameterization

Consider an exponential model exp{ϕ′(θ)s(y)− k(θ)}h(y) as discussed in the Introduction;

this can be the actual model in an application or it can be an approximate exponential

model as also described there. With a canonical parameter ϕ(θ) of dimension 2 and a

primary parameter θ of dimension 1 we have a (2, 1)-exponential model; Efron (1975) ex-

amined curvature for such models. For these models the canonical parameterization ϕ(θ)

extends naturally to give a full 2 dimensional parameter called the natural parameter of the

model, and the extended model is a (2, 2)-exponential model. There may also be a conve-

nient extension of the initial parameter θ; in such a case we might calculate curvature in
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the extended initial parameterization and then correct it using the second derivative array

between parameterizations; this would give us the Efron curvature but would also give a

sign for the curvature, a sign that may not be of immediate use for the “estimation, testing,

and other inference” methods addressed by Efron.

A crucial step for determining the exponential parameterization ϕ outside a pure ex-

ponential model involves the sample space directions V that establish approximate condi-

tioning. These directions V are essential for going beyond second order inference unless

the model has the symmetry of the Normal or closely related special models. The sample

space directions are also crucial for determining location parameterization which in turn

allows the determination of the bias typical in familiar Bayesian calculations: the sign of

the curvature indicates whether the Bayes calculation will give values that exceed or fall

short of the reproducibility implied by the term probability. We next develop the location

parameterization.

5 The Location Parameterization

For a location model f(y1 − θ1, y2 − θ2) we consider how a change δ in the first variable at

its observed value y01 relates to the form of the model: a parallel increase δ in θ1 at any

value whatsoever leaves the model unchanged,

f{y01 + δ − (θ1 + δ), y2 − θ2} = f(y01 − θ1, y2 − θ2);

and the same also holds to first derivative at any arbitrary value y1 = y′1. This presents θ1
as a location parameter for the first variable. We extend this in approximate form to regular

models as considered in the Introduction. For this we use the quantile form y(θ, u) of the

model; this presents the response y in terms of the parameter and p-value and provides an

mathematical equivalent to the use of coordinate distribution functions.

To find out how θ affects the data at the observed value y0 we differentiate y = y(θ, u)

with respect to θ and at the observed data y0 obtain

V (θ) =
d

dθ
y(θ, u)|y0 .

and thus dy = V (θ)dθ. And then in turn to find out how y affects θ̂(y) we differentiate the

score equation `θ(θ; y) = 0 obtaining

`θθ′(θ̂
0; y0)∂θ̂ + `θ;y′(θ̂

0; y0)∂y = 0,

where the differentials dθ̂ and dy are respectively p × 1 and n × 1 and `θ;y′(θ̂
0; y0) =

(∂/∂θ)(∂/∂y′)`(θ; y) = H ′ is the gradient of the score function at the data point. Then

solving for dθ̂ we obtain

dθ̂ = ̂−1H ′dy,
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where ̂ = j(θ̂0; y0) = −∂2`(θ̂0; y0)/∂θ∂θ′ is the observed Fisher information. Combining

these gives

dθ̂ = ̂−1H ′V (θ)dθ = M(θ)dθ = {m1(θ),m2(θ)}dθ, (5.1)

where in the final expression we are restricting consideration to the p = 2 dimensional case.

This records how change dθ in the parameter θ at various θ values influences the maximum

likelihood value θ̂ at the observed data. These results build on analysis in Fraser & Reid

(1995) and Fraser, Fraser & Staicu (2010).

We now examine the equation (5.1) to determine how a change in θ̂ at its observed

value relates to change in the parameter at various θ values. More specifically we seek to

integrate the right side from the observed θ̂0 to a point θ in moderate deviations about

the observed and do this to second order. And for this we follow related analysis (Fraser,

Fraser & Staicu, 2010) where parameter change generates a Taylor series approximation to

an intrinsic second order ancillary contour on the sample space. Accordingly we first express

the right side M(θ)dθ of (5.1) in a first order Taylor series in the departure δ = θ− θ̂0 from

the observed δ0 = 0, and then formally substitute in (5.1) to obtain the following expression

for a location parameterization β(θ):

β(θ) =
[
m1(θ̂0) m2(θ̂0)

]
(θ − θ̂0) +

1

2n1/2
(θ − θ̂0)′

 m11 m12

m21 m22

 (θ − θ̂0) + · · · ,

where mij = (∂mi(θ)/∂θj)|θ̂0 , and the mi-vectors are given by (5.1).

A direct integration of (5.1) from θ = θ̂0 to θ in moderate deviations depends on the

integration path chosen, and the expression just recorded corresponds to radial integration

from δ = 0 to a general δ in moderate deviations, thus from (0, 0) to t(θ1 − θ̂01, (θ2 − θ̂02)

using t going from 0 to 1. This involves a parameter curvature array M = {mij} which

can be symmetrized and this array for the location parameterization here will usually be

different from the curvature array say W = {wij} for exponential properties developed in

Section 4. The present array is then a second derivative matrix of the change from the θ

parameterization to the location parameterization β(θ). And this will give the curvature

correction for adjusting an initial curvature of a scalar parameter ψ to the curvature relative

to β parameterization. There is the possibility of path dependency but this does not affect

the curvature obtained here using the radial integration path. We thus obtain the curvature

characteristic m1
22 for adjusting the curvature γ in the initial parameterization θ to the

curvature γ −m1
22 in the developed location parameterization as discussed after (3.1). An

example is discussed in full detail in Fraser & Sun (2010).

6 Calculating Curvature

Consider a scalar interest parameter ψ(θ) together with a regular statistical model f(y; θ)

having observed data y0 and 2-dimensional parameter θ. We need of course the observed

maximum likelihood value θ̂0 and then the centered, aligned and standardized version θ̃ =
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B(θ− θ̂0) of the parameter where B is the aligning and standardizing matrix for θ recorded

in Section 2. We can then express ψ(θ) in terms of the modified θ̃ as ψ(θ̂0 + B−1θ̃) and

then standardize it obtaining ψ̃(θ̃) = B1ψ(θ̂0 + B−1θ̃) . The curvature γ of ψ in the given

θ parameterization is then the second derivative of ψ̃ with respect to θ̃2 at θ̃ = 0.

For the Efron curvature but based on observed rather than expected information we

need first the canonical parameterization ϕ(θ). This is available as the gradient ϕ(θ) =

{d/dV }`(θ; y)|y0 of log-likelihood at the observed data y0, calculated in the quantile move-

ment directions V = dy(θ, u)/dθ|(y0,θ̂0). This can be centered, aligned and standardized

as ϕ̃(θ) = Bϕ−1θ {ϕ(θ) − ϕ̂0} where ϕθ is the Jacobian ∂ϕ/∂θ|θ0 evaluated at the observed

θ̂0. We then determine the second derivative array say W̃12 of ϕ̃(θ) with respect θ̃. As the

connection is linear, we can calculate this from the second derivatives wij for the initial

parameters :

W̃12 =
∂2ϕ̃(θ)

∂θ̃2

∣∣
θ̂0

= (B−1)′

 Bϕ−1θ w11 Bϕ−1θ w12

Bϕ−1θ w21 Bϕ−1θ w22

B−1.
The exponential curvature γexp is then the curvature γ obtained in Section 3 and adjusted

γexp2 = γ − w1
22 using the first coordinate w1

22of the aligned and standardized vector w22.

For our proposed location curvature we have derived a location parameter contour in

Section 5; it uses two vectors m1(θ),m2(θ) given in (5.1). The basic location curvature array

(mij) is the gradient with respect to θ of these two vectors evaluated at θ̂0 and recorded after

(5.1). The array is typically different from that for the the exponential parameterization

array just considered. We then need the second derivative array say M̃12 of β̃(θ) with

respect θ̃. As the connection is linear, we can calculate this from the second derivatives mij

obtained after (5.1):

M̃12 =
∂2β̃(θ)

∂θ̃2

∣∣
θ̂0

= (B−1)′

 Bϕ−1θ m11 Bϕ−1θ m12

Bϕ−1θ m21 Bϕ−1θ m22

B−1.
The location curvature γloc is then the curvature γ obtained in Section 5 and adjusted

γloc2 = γ − m1
22 using the first coordinate m1

22of the aligned and standardized vector m22

derived in Section 5.

7 Examples

The feasibility of the present material was explored in Fraser & Sun (2010) and was exhibited

for the familiar reference example, the Normal (µ, σ2) sampling model. In that reference the

parameters µ and σ are shown to be linear and thus have γ = 0; also any linear combination

of them is also shown to be linear. To encounter a curved parameter we only need to look

to the familiar first exponential canonical parameter µ/σ2, which we now designate ψ.

For illustration consider a data point y0, with µ̂ = ȳ0 = 0.975442, σ̂ =
√

(n− 1)/nsoy =

1.226137 and with n = 3. The maximum likelihood value of µ̂/σ̂2 = ψ̂ is 0.6488188. For
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present purposes, it would be helpful to be able to write the model in term of a location

parameterization, say as (β1, β2), but what would be the basis for such a parameterization?

Large sample analysis (Cakmak, Fraser & Reid 1994) indicates that there is a location model

as in Section 1 but such does not address the regression type structure with our present

Normal (µ, σ2) example; even with this change there are consequences that do not follow the

direct location model pattern; for some differential consequences indicated by the sample to

parameter space mapping function M(θ); see Fraser & Reid (1995).

For the present data the observed curvature γ̂0 = 0.1346722 and the radius of curvature

ρ̂0 = 7.425437. For some further discussion including iterative computation for the present

curvature see Fraser & Sun (2010). Continuing research will explore the use of this curvature

measure as a device to correct routine Bayes calculations to give them repetition validity.
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A Radius of curvature example

Consider the circle with center (−ρ, 0) and radius ρ; it corresponds to the following function

taking the value ρ

R = {(ρ+ y1)2 + y22}1/2 = ρ{1 +
y1
ρ

+
y22
2ρ2

+ · · · } = ρ+ y1 +
y22
2ρ

+ · · · ,

where y1, y2 are viewed as O(n−1/2), and this agrees locally with the interest parameter ψ2

at the beginning of Section 1.


