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SUMMARY

This paper develop a new class of joint modelling of mixed correlated nominal, ordinal
and continuous responses with elliptically contoured errors is presented. A full likelihood-
based approach is used to obtain maximum likelihood estimates of the model parameters.
To illustrate the application of such modelling the data corresponding to the British House-
hold Panel Survey (BHPS) is analyzed.
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1 Introduction
We describe a model for the joint distribution of outcomes related to statistical problems arising
from the analysis of mixed correlated nominal, ordinal and continuous data, a common enough oc-
currence in practice. The data used in this paper is extracted from wave 15 of the British Household
Panel Survey (BHPS), a survey of adult Britons, being carried out annually since 1991 by the ESRC
UK Studies Center with the Institute for Social and Economical Research at the University of Es-
sex. In these data, the current economic activity (nominal response), life satisfaction status (ordinal
response) and Income (continuous response) are the mixed correlated responses and the effect of
explanatory variables on these responses should be investigated simultaneously. Consequently, we
need to consider a method in which these variables can be modelled jointly.

For joint modelling of responses, one method is to use the general location model of Olkin and
Tate (1961), where the joint distribution of the continuous and categorical variables is decomposed
into a marginal multinomial distribution for the categorical variables and a conditional multivariate
normal distribution for the continuous variables, given the categorical variables for a mixed Poisson
and continuous response where Olkin and Tate’s (1961) method is used see Yang et al. (2007). A
second method for joint modelling is to decompose the joint distribution as a multivariate marginal
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distribution for the continuous responses and a conditional distribution for categorical variables
given the continuous variables. Cox and Wermuth (1992) empirically examined the choice between
these two methods. The third method uses simultaneous modelling of categorical and continuous
variables to take into account the association between the responses by the correlation between
errors in the model for responses. For more details of this approach see, for example, Heckman
(1978) in which a general model for simultaneously analyzing two mixed correlated responses is
introduced and Catalano and Ryan (1992) who extended and used the model for a cluster of discrete
and continuous outcomes (see also, Fitzmaurice and Laird, 1997). All the above references consider
correlated nominal and continuous responses. A model for ordinal and continuous responses without
considering any covariate effect is also presented by Poon and Lee (1989). Bahrami Samani et al.
(2008) who extended and used a model for mixed ordinal and continuous responses with considering
any covariate effect is presented. In this model ordinal response can be dependent on the continuous
response. With this model, the dependence between responses can be taken into account by the
correlation between errors in the models for continuous and ordinal responses. We also take into
account the ordinality information available in categorical response by a cumulative latent variable
model for ordinal response.

The aim of this paper is to use and extend an approach similar to that of Bahrami Samani et al.
(2008), which jointly models a ordinal and a continuous variable, for joint modelling of multivariate
nominal, ordinal and continuous outcomes. In this model nominal and ordinal responses can be
dependent on the continuous responses. With this model, the dependence between responses can
be taken into account by the correlation between errors in the models for continuous, ordinal and
nominal responses.

Section 2 develops the general mixed correlated-data model. In this section outlines maximum
likelihood estimation for the model. In Section 3, simulation study. the next section, the proposed
methodology is applied on the BHPS data. Finally, concluding remarks are given.

2 General mixed correlated-data model

Let Sij for j = 1, . . . ,M1, be nominal response with Kj levels, let S∗ij,r for j = 1, . . . ,M1 be the
latent variable associated with category r and assume a latent Gaussian regression model

S∗ij,r = β′j,rXi + εij,r, r = 1, . . . ,Kj − 1,

for the reference category Kj , no linear predictor is assumed, S∗ij,Kj
= εij,Kj

, to ensure identifia-
bility. The principle of random utility postulates

Sij = r ⇔ S∗ij,r = max
l∈{1,...,Kj}

S∗ij,l.

For ordinal response Yij for j = M1+1, . . . ,M2, with cj levels. Let Y ∗ij for j = M1+1, . . . ,M2

denote the underlying latent variable for the jth ordinal response of the ith individual, which leads
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to have Yij as:

Yij =


1 Y ∗ij ≤ θj1,

l + 1 θjl < Y ∗ij ≤ θj, l+1, l = 1, . . . , cj − 2,

cj Y ∗ij > θj,cj−1,

where θj = (θj1, . . . , θj,cj−1) is the vector of cut-point parameters for the jth ordinal response.
V ar(Y ∗ij) = 1 for j = M1 + 1, . . . ,M2 to ensure identifiability.

Zij for j = M2 + 1, . . . ,M , represent continuous responses. All of these responses may be
correlated. The joint model takes the form:

S∗ij,r = β′j,rXi + ε
(1)
ij,r j = 1, . . . ,M1, r = 1, . . . ,Kj − 1

Y ∗ij = β′jXi + ε
(2)
ij j = M1 + 1, . . . ,M2

Zij = β′jXi + ε
(3)
ij j = M2 + 1, . . . ,M

 (2.1)

Let
εi = (ε

(1)
i , ε

(2)
i , ε

(3)
i )′

iid∼ ECM (0,Σ; g)

where ε(1)i = (ε
(1)
i,1 , . . . , ε

(1)
i,KM1

−1)′, ε(1)i,r = (ε
(1)
i1,r, . . . , ε

(1)
iM1,r

)′, ε
(2)
i = (ε

(2)
i(M1+1), . . . , ε

(2)
iM2

)′,

ε
(3)
i = (ε

(3)
i(M2+1), . . . , ε

(3)
iM )′ and θj = (θ1,j , . . . , θcj−1,j)

′, for j = 1, . . . ,M1, is the vector of cut-
point parameters for the jth ordinal response and Xi is the vector of explanatory variables for the ith

individual and Σ is the M ×M covariance matrix which for illustration, has the following structure,

var(ε
(3)
ij ) = σ2, j = M2 + 1, . . . ,M,

cov(ε
(1)
ij,r, ε

(1)
ij′,r) = ρ

(1)
jj′,r, j, j′ = 1, . . . ,M1, r = 1, . . . ,Kj − 1, j 6= j′,

cov(ε
(1)
ij,r, ε

(2)
ij′ ) = ρ

(2)
jj′,r, j = 1, . . . ,M1, r = 1, . . . ,Kj − 1, j′ = M1 + 1, . . . ,M2,

cov(ε
(1)
ij,r, ε

(3)
ij′ ) = σρ

(3)
jj′,r, j = 1, . . . ,M1, r = 1, . . . ,Kj − 1, j′ = M2 + 1, . . . ,M,

cov(ε
(2)
ij , ε

(2)
ij′ ) = ρ

(4)
jj′ , j, j′ = M1 + 1, . . . ,M2, j 6= j′

cov(ε
(3)
ij , ε

(3)
ij′ ) = σ2ρ

(5)
jj′ , j, j′ = M2 + 1, . . . ,M, j 6= j′

cov(ε
(2)
ij , ε

(3)
ij′ ) = σρ

(6)
jj′ , j = M1 + 1, . . . ,M2, j

′ = M2 + 1, . . . ,M.

Because of identifiability problem we have to assume:

var(ε
(1)
ij,r) = 1, j = 1, . . . ,M1, r = 1, . . . , kj ,

var(ε
(2)
ij ) = 1, j = M1 + 1, . . . ,M2.

The vector of coefficients β = (β1,1, . . . , βM1,KM1
−1, βM1+1, . . . , βM )′, cut-points parameters

θj for j = 1, . . . ,M1 and Σ should be estimated. The parameter vector, βj for j = M2 + 1, . . . ,M ,
includes an intercept parameter but βj , for j = M1 + 1, . . . ,M2 and βj,r for j = 1, . . . ,M1, r =
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1, . . . ,Kj−1, due to having cut-points parameters, are assumed not to include any intercept. In this
model any multivariate distribution can be assumed for the errors in the model. Here, a multivariate
normal distribution is used. The likelihood for this model is given:

Let y = (y′1, . . . , y
′
n)′, s = (s′1, . . . , s

′
n)′, z = (z′1, . . . , z

′
n)′ and x = (x′1, . . . , x

′
n)′ where

si = (si1,1, . . . , siM1,KM1
−1)′, yi = (yi(M1+1), . . . , yiM2

)′ zi = (zi(M2+1), . . . , ziM )′ and xi =

(xi1, . . . , xiv)′, and v is the number of explanatory variables for the ith individual.
The joint likelihood function for the parameters and latent variables is:

P (η,Σ |y, s, z , x) =

n∏
i=1

f(zi, yi, si|xi, η,Σ)

=

n∏
i=1

P (Si1 = ri1, . . . , SiM1
= siM1

,

Yi,M1+1 = yi,M1+1, . . . , YiM2 = yiM2 |zi , xi) f(zi|xi)

=

n∏
i=1

P (S∗ij,rij = max
l∈{1,...,Kj}

S∗ij,l, j = 1, . . . ,M1, θj,yij−1 < Y ∗ij ≤ θj,yij
,

j = M1 + 1, . . . ,M2 |zi, xi )f(zi|xi).

This likelihood can be maximized by function “nlminb” in software R.This function may be used
for minimization of a function of parameters.

For maximization of a likelihood function one may minimize minus log likelihood function. The
function “nlminb” uses optimization method of port routine which is given in “ http://netlib.bell-
labs.com/cm/cs/cstr/153.pdf.”. The function “nlminb” uses a sequential quadratic programming
(SQP) method to minimize the requested function. The details of this method can be find in Fletcher
(2000). The observed Hessian matrix may be obtained by “nlminb” function or may be provided by
function “fdHess”.

3 Simulation study
We consider four continuous variables S∗1 , S∗2 , Y ∗3 and Z4. The nominal variable S with three levels
is defined as

S = r ⇔ S∗r = max
l∈{1,2,3}

S∗l , r = 1, 2.

The ordinal variable Y2 with three levels is defined as

Y2 =


1 Y ∗ < θ1,

2 θ1 ≤ Y ∗ < θ2,

3 Y ∗ ≥ θ2.

The variables S∗1 , S∗2 , Y ∗3 and Z are generated by a multivariate normal distribution with zero
mean and correlation matrix Σ whose all off-diagonal elements are 0.5. For this we consider 3 values
for n (50, 100, and 1000). In this analysis we use 1000 sets of simulation.
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3.1 Simulation study without covariates

In this subsection, we analyze the following simple model

S∗r = εr, Y ∗3 = ε3, Z4 = µz + ε4, r = 1, 2.

Table 1 contains the average estimated values of µz , σ2
z , ρ(2)12,1 (the correlation between S∗1 and Y ∗3 ),

ρ
(2)
12,2 (the correlation between S∗2 and Y ∗3 ), ρ(3)13,1 (the correlation between S∗1 and Z4), ρ(3)13,2 (the

correlation between S∗2 and Z4) and ρ(6)23 (the correlation between Y ∗3 and Z4), θ1, θ2 for n = 50,
n = 100, and n = 1000. The parameter estimates by the model (for n = 50, n = 100 and
n = 1000) are close to the true values of the parameters. Of course, the more the value of n the
better the estimates.

Table 1: Results of the simulation study

n = 50 n = 100 n = 1000

Parameter True value Est. S.E. Est. S.E. Est. S.E.

µz 0.000 0.060 0.141 0.022 0.112 0.001 0.016

σ2
z 1.000 1.141 0.124 1.025 0.064 1.002 0.023

ρ
(2)
12,1 0.500 0.450 0.136 0.495 0.070 0.501 0.019

ρ
(2)
12,2 0.500 0.420 0.127 0.494 0.095 0.504 0.021

ρ
(3)
13,1 0.500 0.447 0.124 0.497 0.091 0.508 0.012

ρ
(3)
13,2 0.500 0.480 0.178 0.495 0.071 0.502 0.011

ρ
(6)
23 0.500 0.455 0.139 0.499 0.061 0.501 0.014

θ1 −1.000 −1.161 0.257 −0.995 0.164 −0.998 0.027

θ2 1.000 1.073 0.290 1.020 0.160 0.997 0.012

3.2 Simulation study with covariates

In this subsection, simulation study is used to illustrate the application of our proposed model.

S∗r = β1X + εr, Y ∗3 = β2X + ε3, Z4 = µz + β3X + ε4, r = 1, 2.

In the simulation study, we set the true values of the parameters to be β = (β1, β2, β3) = (0, 0, 0) .
The response X was obtained by generating a uniform (0, 1) variable. Table 2 gives the results.

The parameter estimates by the model (for n = 50, n=100 and n=1000) are close to the true
values of the parameters. Of course, the more the value of n the better the estimates.
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Table 2: Results of the simulation study with Covariates

n = 50 n = 100 n = 1000

Parameter True value Est. S.E. Est. S.E. Est. S.E.

β1 0.000 0.068 0.120 0.032 0.112 0.003 0.023

β2 0.000 0.073 0.142 0.024 0.107 0.005 0.013

β3 0.000 0.050 0.201 0.028 0.133 0.002 0.076

µz 0.000 0.081 0.245 0.034 0.182 0.006 0.057

σ2
z 1.000 1.067 0.213 1.035 0.071 1.008 0.022

ρ
(2)
12,1 0.500 0.487 0.106 0.485 0.069 0.509 0.033

ρ
(2)
12,2 0.500 0.431 0.115 0.490 0.081 0.507 0.040

ρ
(3)
13,1 0.500 0.468 0.157 0.479 0.063 0.503 0.025

ρ
(3)
13,2 0.500 0.454 0.159 0.497 0.068 0.501 0.031

ρ
(6)
23 0.500 0.461 0.143 0.495 0.084 0.504 0.021

θ1 -1.000 −1.134 0.276 −0.983 0.084 −0.999 0.031

θ2 1.000 1.099 0.281 1.073 0.186 0.995 0.044

4 Application

4.1 Data

The data used in this paper is excerpted from the 15th wave (2005) of the British Household Panel
Survey (BHPS); a longitudinal survey of adult Britons, being carried out annually since 1991 by the
ESRC UK Longitudinal Studies Center with the Institute for Social and Economical Research at the
University of Essex. These data are recorded for 11251 individuals. The selected variables which
will be used in this application are explaind in the following.

One of the responses is the life Satisfaction (LS), [where the related question is QA: “How
dissatisfied or satisfied are you with your life overall?”] which is measured by directly asking the
level of an individual’s satisfaction with life overall, resulting in a three categories ordinal variable
[1: Not satisfied at all (10.300%). 2: Not satis/dissat (45.400%) and 3: Completely satisfied (44.300
%)]. The current economic activity (CEA) is also measured by a three-category nominal variable
[where the related question is QB: ”Please look at this card and tell me which best describe your
current situation?”] which is measured by directly asking the level of an individual’s CEA, resulting
in a three categories nominal variable [1: self-employed or employed (63.110%), 2: unemployed
(2.970%) and 3: Other (retired from paid work altogether, on maternity leave, family care, full-time
student/at school, long term sick or disabled, on a government training scheme, other) (33.920%)].
Moreover, the exact amount of an individuals annual income (INC) in the past year in thousand
pounds, considered here in the logarithmic scale, is also excerpted as a continuous response variable
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(mean: 4.068). As some values of annual income in thousand pounds are between 0 and 1, some of
the logarithms of incomes are less than 0.

These three responses, LS, CEA and logarithm of income are endogenous correlated variables
and should be modelled as a multivariate vector of responses.
Socio-demographic characteristics, namely: Gender [male: 44.200% and female: 55.800%], Mar-
ital Status (MS)[married or living as couple: 68.500%, widowed: 8.300%, divorced or separated:
8.400% and never married: 14.800%], Age (mean: 49.180) and number of people in the household
(NPH) [ less than four members: 67.27% and four or more than four members: 32.73%] are also
included in the model as covariates. The vector of explanatory variables is

X = (Gender,Age,MS1,MS2,MS3, NPH)

where MS1, MS2 and MS3 are dummy variables for married or living as couple, widowed and
divorced or separated.

4.2 Models for BHPS data

We apply the model described in section 2 to evaluate the effect of Age, Gender, NPH and MS
simultaneously on LS, CEAr, r = 1, 2 and Income. We shall also try to find answers for some
questions, including (1) do a significant correlations exist between three responses? (2) what would
be the consequence of not considering these correlations?

For comparative purposes, two models are considered. The first model (model I) is a marginal
model which does not consider the correlation between three responses and can be presented as,

CEA∗r = β1,r MS1 + β2,r MS2 + β3,r MS3 + β4,rNPH + β5,rGender + β6,rAGE + ε
(1)
1,r

LS∗ = β1 MS1 + β2 MS2 + β3 MS3 + β4NPH + β5Gender + β6AGE + ε2

ln(INC) = β7 + β8 MS1 + β9 MS2 + β10 MS3 + β11NPH + β12Gender + β13AGE + ε
(3)
3 ,

where r = 1, 2. The second model (model II) uses model I and takes into account the correlations
between three errors. Here, influence of a small perturbation of the asymmetry parameter of the
skew-normal distribution (λ1 and λ2) is also studied.

4.3 Results

This is confirmed by the curvature Cmax = 1.12 computed from (4.2). This curvature does not
indicate extreme local sensitivity. Here, a multivariate normal distribution is assumed for errors.
Results of using two models are presented in Table 1. Deviance for testing model (I) against model
(II) is equal to 294.180 with 5 degrees of freedom (P-value=0.000) which indicates that model (II)
has a better fit to these data. As it can be seen, all correlation parameters are strongly significant.
They show a positive correlation between LS and CEA1 (ρ̂(2)12,1 = 0.140) , a positive correlation

betweenLS andCEA2 (ρ̂(2)12,2 = 0.137) , a positive correlation between log(INC) andCEA1 (ρ(3)13,1

= 0.121) , a positive correlation between log(INC) andCEA2 (ρ(3)13,2 = 0.141) a positive correlation
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between log(INC) and LS (ρ(6)23 = 0.136). Consideration of the responses associations yields more
precise estimates as indicated by the smaller variance estimates and the smaller estimated variance
of log(INC) and LS in model (II). So, we restrict our interpretation to the results of model (II).

Model (II) shows a significant effect of age (the older the individual the more the life satisfac-
tion), MS (married people are more satisfied than never married people and divorced or separated
people are less satisfied than never married people), NPH and gender on the life satisfaction status.
All explanatory variables have significant effect on the nominal response of the current economic
activity.

Also the effect of all explanatory variables are significant on the logarithm of income. Never
married people have less logarithm of income than married people and divorced or separated people.
Females have more logarithm of income than males and the older people earn less money than
younger ones.

5 Discussion

In this paper a multivariate latent variable model is presented for simultaneously modelling of nom-
inal, ordinal and continuous correlated responses. We assume a multivariate normal distribution for
errors in the model. However, any other multivariate distribution such as t or logistic can be also
used. Binary responses are a special case of ordinal responses. So, our model can also be used
for mixed binary and continuous responses. Generalization of our model for nominal, ordinal and
continuous responses with missing responses is an ongoing research on our part.
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Table 3: Results of using two models for BHPS data (LS: Life Satisfac-
tion, CEA: The current economic activity, MS: Marital Statue and NPH:
number of people in the household, parameter estimates highlighted in
bold are significant at 5 % level.)

Model I Model II

Parameter Est. S.E. Est. S.E.

Response: CEA1 (employed)

Marital Status (baseline: Never married)

Married or Living as Couple 1.668 0.035 1.262 0.044

Widowed 1.563 0.053 1.209 0.073

Divorced or Separated 0.431 0.089 0.268 0.037

NHP (baseline: NPH≤ 3)

NPH ≥ 4 -0.339 0.030 -0.211 0.045

Gender(baseline: Male)

Female -0.846 0.028 -0.711 0.037

AGE -0.075 0.001 -0.061 0.001

Response: CEA2 (unemployed)

Marital Status (baseline: Never married)

Married or Living as Couple 0.455 0.086 0.295 0.096

Widowed 1.390 0.122 1.220 0.130

Divorced or Separated 0.431 0.062 0.268 0.049

NHP (baseline: NPH≤ 3)

NPH ≥ 4 -0.398 0.080 -0.336 0.075

Gender(baseline: Male)

Female -1.057 0.065 -0.996 0.070

AGE -0.094 0.001 -0.071 0.001

Response: LS

Marital Status (baseline: Never married)

Married or Living as Couple -0.468 0.035 -0.300 0.006

Widowed 0.667 0.050 0.494 0.053

Divorced or Separated -0.622 0.080 -0.358 0.043

NHP (baseline: NPH≤ 3)
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Table 3: Results of using two models for BHPS data (LS: Life Satisfac-
tion, CEA: The current economic activity, MS: Marital Statue and NPH:
number of people in the household, parameter estimates highlighted in
bold are significant at 5 % level.)

Model I Model II

Parameter Est. S.E. Est. S.E.

NPH≥ 4 0.215 0.029 0.184 0.029

Gender(baseline: Male)

Female 0.069 0.037 0.039 0.021

AGE 0.009 0.001 0.005 0.001

cut-point 1 -1.659 0.370 -0.985 0.100

cut-point 2 0.785 0.377 0.448 0.117

Response: log(INC)

Constant 5.245 0.070 4.255 0.029

Marital Status (baseline: Never married)

Married or Living as Couple 0.114 0.010 0.114 0.009

Widowed 0.215 0.019 0.216 0.019

Divorced or Separated 0.213 0.078 0.213 0.016

NHP (baseline: NPH≤ 3)

NPH≥ 4 - 0.090 0.375 -0.063 0.096

Gender(baseline: Male)

Male -0.227 0.007 -0.227 0.007

AGE -0.002 0.001 -0.002 0.001

σ2 0.181 0.002 0.154 0.002

Correlations

Corr(CEA∗1,LS∗) - - 0.140 0.011

Corr (CEA∗1,INC) - - 0.141 0.002

Corr(CEA∗2,LS∗) - - 0.137 0.014

Corr (CEA∗2,INC) - - 0.121 0.001

Corr(LS∗,INC) - - 0.135 0.012

-Loglike 39367.500 39220.410


