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SUMMARY

In this paper, we solve the problem of finding interval estimate for system reliability via
the CHA algorithm (Chaudhuri et al., 2001) following the Easterling (1972) approach. We
consider a coherent system composed of independent components. No distributional as-
sumption is made for the component life times. A closed form expression for the standard
error of the system reliability, for a given mission of duration, is obtained. The method of
calculating the 100(1−α) % lower confidence limit for the system reliability is illustrated
for a simple low-pressure coolant injection system (LPCI) with two pumps (Blischke and
Murthy, 2000). Both the CHA algorithm and the usual variance method are used for calcu-
lations. Some simulation results are also reported. This paper basically extends the results
of Easterling to any coherent system.
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1 Introduction
In this paper, we consider a coherent structure composed of independent components. The problem
is to find a lower confidence limit for the system reliability. We confine our attention to the lower
confidence limit of system reliability, since it is of most interest to the reliability practitioners in the
context of interval estimation of system reliability.

We consider the problem of predicting system reliability from the knowledge of component re-
liabilities. This situation arises when one has to estimate the reliability of a large complex system.
Component reliabilities are not known in practice, particularly, in early stage of system design.
Therefore, assumption of a particular parametric distribution for component life does not make
sense. Thus, no functional form of distribution is assumed for the component life times. The com-
ponent reliabilities can be estimated from (accelerated) life tests data.

An excellent account on the topic of interval estimation of system reliability is available in
Crowder et al. (1991). The first step in obtaining the lower confidence limit of a coherent system
is to get a point estimate of the system reliability R(t). The basis of estimation of system reliability
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is the following model (under the assumption of independence of components, see Chaudhuri et al.
2001):

R(t) =

2m−1∑
j=1

1(j).

n∏
i=1

, ri(t)
D(i,j) (1.1)

which connects the system reliability R(t) with the component reliabilities ri(t) , i = 1, . . . , n, for
a mission of duration t. With n being the number of components of the system under consideration,
let m denote number of minimal path sets for the system which is assumed to be coherent. If r̂i(t)
is an estimate of ith component reliability, then an obvious estimate of R(t) is given by:

R̂(t) =

2m−1∑
j=1

1(j).

n∏
i=1

.r̂i(t)
D(i,j) (1.2)

In principle, one can obtain Var(R̂) from (1.2), and thus, the lower 100(1−α)% confidence limit is
calculated as

R̂(t)− zα

√
Var(R̂), (1.3)

where zα is the α-fractile of the standard normal distribution. Unfortunately, this does not work
well, because this is basically an asymptotic normal approximation used to construct the lower con-
fidence limit. Dissatisfaction with this approximation led Easterling (1972) to consider the use of a
binomial distribution with parameters n̂ and R̂ where n̂ = R̂(1− R̂)/Var(R̂) . From this consider-
ation one can now easily obtain a lower confidence limit for R(t). See Section 3 for details. In this
paper we address the problem of finding the lower confidence interval for the reliability of a com-
plex system in the light of the CHA algorithm presented in Chaudhuri et al. (2001). We consider the
coherent system composed of independent components. No distributional assumption is made for
the component life times. A closed form expression for the standard error of the system reliability,
for a given mission of duration, is obtained in Section 2. The method of calculating the 100(1−α)%
lower confidence limit for the system reliability is given in Section 3 and is illustrated for a simple
low-pressure coolant injection system (LPCI) with two pumps (Blischke and Murthy, 2000) in Sec-
tion 4. Both the CHA algorithm and the usual variance method are used for calculations. Some
simulation results are also reported in Section 4. This paper basically extends the results of East-
erling to any coherent system without distributional assumption for component life-lengths.Section
5 contains some discussions.The problem of finding a lower confidence limit of a coherent system
with independent exponential components is treated in Chaudhuri (2004).

2 Variance of R̂
We have from equation (1.2),

E(R̂(t)2) =

2m−1∑
j=1

1(j).

n∏
i=1

E(r̂i(t)
2D(i,j)) +

2m−1∑
j 6=k

1(j).1(k)

n∏
i=1

E(r̂i(t)
D(i,j)+D(i,k)) (2.1)
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and

E(R̂(t)) =

2m−1∑
j=1

1(j).

n∏
i=1

E(r̂i(t)
D(i,j)). (2.2)

Since

Var(R̂(t) = E(R̂(t)2)− (ER̂(t))2, (2.3)

Var(R̂) can be computed from (2.1) and (2.2). The computations involved in (2.3) are straightfor-
ward in the light of the CHA algorithm described in Chaudhuri et al. (2001).

Suppose we have a binomial test data where ni number of items of component i tested for t
hours. Let fi denote the number of failures of component i during the test. If we record the status
(failed/ not failed) of an item during test, then we have a sequence of ni Bernoulli trials with success
probability pi = ri(t),i = 1, . . . , n . Thus,

r̂i(t) = 1− q̂i(t), q̂i(t) =
fi
ni
, Var(r̂i(t) =

r̂i(t)(1− r̂i(t))

ni
(2.4)

3 A lower confidence limit
Consider a hypothetical single binomial experiment (see Crowder et al. 1991) where Y denotes
the number of system survivals for mission time t such that Y follows a binomial distribution with
parameters n̂ and R̂ where

n̂ =
R̂(1− R̂)

Var(R̂)
. (3.1)

Thus, we can determine a 100(1− α)% lower confidence interval limit for R that satisfies

x∑
i=0

(
n̂

i

)
Ri(1−R)n̂−i = 1− α, (3.2)

where x = n̂R̂. Using a relationship between the binomial CDF and the incomplete beta function
one can solve the equation (3.2). Hence, the required lower confidence limit is obtained from:

RL = B (1− α;x, n̂− x+ 1) , (3.3)

where B (γ; a, b) is the γ -fractile of the beta distribution with parameters a and b not being neces-
sarily integers.

4 Illustrative examples
Example 1: Consider a low-pressure coolant injection system (LPCI) described by Martz and
Waller (1990). This type of system acts as a coolant to the nuclear reactor when an accident breaks
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out resulting in low pressure in the reactor vessel. In the study by Martz et al. (1990), it was used in
1150 -megawatt U.S. nuclear-powered boiling-water electric power plants.

The system is composed of pumps, check valves and motor-operated valves (see Blischke and
Murthy, 2000). For the functioning of the LPCI a minimal number of components must work. For
the sake of illustration, let the system consist of two pumps A and C such that the PUMP C is a
backup to PUMP A. With this configuration, the LPCI becomes a parallel system so that the system
fails if and only if both pumps A and C fail.

A 240 success-fail type tests for each component provides the following data (see Blischke and
Murthy, 2000):

Table 1: LPCL system component data

Component Number of tests Number of non-failures

1 (PUMP A) 240 236

2 (PUMP C) 240 238

Thus, we have

r̂1 = 0.983333 Var(r̂1) = 0.00006842 (4.1)

r̂2 = 0.9917 Var(r̂2) = 0.000034433 (4.2)

Since
R̂ = 1− (1− r̂1) (1− r̂2) . (4.3)

Blischke and Murthy (2000) compute Var(R̂) = 1.6634× 10−08 using the relation:

Var(R̂) = (Er̂1)
2Var(r̂2) + (Er̂2)

2Var(r̂1) + Var(r̂1)Var(r̂2). (4.4)

Now we shall employ the CHA algorithm to find Var(R̂) :
For a parallel system:

D =

1 0 1

0 1 1

 , 1 =

 1

1

−1

 ,m = n = 2 (4.5)

Thus, the equation (2.1) yields:

E(R̂2) = E(r̂21) + E(r̂22) + E(r̂21)E(r̂22) + 2
[
E(r̂1)E(r̂2)− E(r̂21)E(r̂2)− E(r̂1)E(r̂22)

]
(4.6)

and
E(R̂) = E(r̂1) + E(r̂2)− E(r̂1)E(r̂2). (4.7)
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Hence, using the CHA algorithm, we obtain, Var(R̂) = 1.6634 × 10−08, which, as expected, is in
agreement with Blischke and Murthy (2000)’s method. Thus, the CHA algorithm gives the same
result.

Note that the 95% lower confidence limit RL is obtained by using the Excel function

BETAINV (0.05;x, n̂− x+ 1),

where x and n̂ − x + 1 are as in Section 3. The RL can be shown to be 0.9994 which is (as well
as one obtained by Easterling approach)less than the calculated lower bound (=0.9997) using the
equation (1.3).

Example 2 (Simulation): Consider a parallel system composed of two independent exponential
components with reliability function ri(t) = e−λit, i = 1, 2 with λ1 = 1 and λ2 = 2. We generate
respectively 3000 and 5000 Bernoulli sequences for component 1 and 2 for various values of time
parameter shown in the Table 2.

Table 2: Simulation results

t Proposed RL RL(equation(1.3))

0.3 0.8762 0.8765

0.4 0.8096 0.8098

0.5 0.7407 0.7410

0.6 0.6744 0.6745

0.7 0.6081 0.6083

0.8 0.5474 0.5475

0.9 0.4913 0.4914

We can draw the same conclusion (as in Example 1 ) in this simulation study also.

5 Discussion

The CHA algorithm is simple and easy-to-use. As expected, our approach here does fairly well
in this simple study of parallel systems with two components. These examples are considered for
illustrative purpose only. The CHA algorithm can handle any coherent structure of any complexity.
The advantages of the Easterling approach (1972) over the Likelihood Ratio approach (Madansky,
1965) was established by Easterling in 1972 paper where he demonstrated that his approach appears
to be as accurate as the LR method and is considerably easier to implement to obtain the confidence
limits.
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