
Journal of Statistical Research ISSN 0256 - 422 X
2011, Vol. 45, No. 1, pp. 77-86

ON TESTING ORDER RESTRICTED MEAN RESIDUAL LIFE
FUNCTIONS UNDER CENSORING

GANESH MALLA

Department of Mathematics and Computer Science, Xavier University
3800 Victory Parkway, Cincinnati, OH 45207 USA

Email: mallag@xavier.edu

HARI MUKERJEE

Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260, USA
Email: mukerjee@math.wichita.edu

SUMMARY

In this paper we consider the problems of testing H0 : a mean residual life (MRL) is expo-
nential versus H1 : it is new better than used in expectation (NBUE), but not exponential
first and then H0 versus H2 : it is decreasing MRL (DMRL), but not exponential. The
paper gives a nice chronological summary of the tests developed for these two classes both
for the complete data and incomplete data cases. We have developed a new test for each
class under censoring. Both tests are shown to be consistent in their classes. We have
derived the asymptotic distributions of our test statistics.
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1 Introduction

LetX be a non-negative random variable denoting the time of occurrence of an event of the subjects
with the distribution function (DF) F, F (t) = P (X ≤ t). Let S(t) = 1−F (t) be the corresponding
survival function (SF). The mean residual life is an important biometric function, which is a condi-
tional concept. The mean residual life function (MRLF) at time t, M(t), is the average remaining
life among those population members who have survived until time t. Throughout we assume that
the mean of X , µ =

∫∞
0
S(u)du <∞. Then M(t) is defined by

M(t) = E[X − t|X > t] =
1

S(t)

∫ ∞
t

S(u) du I[S(t) > 0], (1.1)

where the indicator function of the set A, I(A)(t) = 1 if t ∈ A and 0 if /∈ A.
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The importance of the MRLF is due to its wide range of applications. Actuaries apply MRL
to setting rates and benefits for life insurance companies. In the social sciences we can use the
MRLF for modeling the life-length of wars and strikes. The MRLF occurs naturally in areas such as
biomedical sciences, optimal disposal of an asset, renewal theory, and reliability. More information
on applications of the MRL function can be found in Gross and Clark (1975) and Kuo (1984).

It has been found in various studies that if M is known to be monotone then improved estimate
of M may be obtained for that particular class so that it has the monotonic property of the class.
This is why there are many tests developed for a monotone M in the literature. A brief description
of the tests in the chronological order of their occurrence is given below.

Let X(0)
1 , . . . , X

(0)
n be independent random variables with a common continuous DF, F and

let U1, . . . , Un be independent positive random variables with possibly discontinuous and defective
common DF, G that are independent of the X(0)

i ’s. The estimator of the MRLF M considered here
is based on the censored date (Xi, δi) for 1 ≤ i ≤ n, defined by

Xi = min(X
(0)
i , Ui), and δi = I(X

(0)
i ≤ Ui).

Let X(i)s be the order statistics of Xis. Then, for t ∈ [X(k), X(k+1)), k = 0, 1, . . . , n−1, with the
usual convention that X(n) is uncensored whether it is censored or not, the Kaplan-Meier estimate,
by Kaplan and Meier (1958), of the survival function is given by

Sn(t) =
∏

X(i)≤t

[
1− 1

n− i+ 1

]δ(i)
, t ≥ 0. (1.2)

Yang (1977) derived an estimator of M simply by plugging in the Kaplan-Meier estimate of S, Sn,
in the definition of M in the equation (1.1):

Mn(t) =
1

Sn(t)

∫ ∞
t

Sn(s) ds.

Yang has also shown that Mn is a strongly uniformly consistent estimator of M on [0, b] for all
b < τF , where τF = inf{t : F (t) = 1} ≤ ∞. Kumazawa (1987) has also considered the estimation
of the MRL under censoring, and proved that Mn is a strongly uniformly consistent estimator of
M on [0, T ], where T = max(X1, . . . , Xn), and also proved the following theorem for the order
unrestricted MRL process.

Theorem 1. Suppose the distributions F and G satisfy the conditions (i)
√
n h(T ) → 0 in proba-

bility as n → ∞, (ii)
∫ τH

0
h2(t) dC(t) < ∞, where H = 1 − S(1 − G) denotes the distribution

of X1, τH = sup{t : H(t) < 1} and so on, h(t) =
∫ τF
t

S(s) ds, and C(t) =
∫ t

0
[S2(s){1 −

G(s−)}]−1 dF (s), then the unrestricted MRL process {Bn(t) ≡
√
n [Mn(t)−M(t)] : 0 ≤ t ≤ T}

converges weakly in D[0, τH ] as n → ∞ to a Gaussian process {B(t) : 0 ≤ t ≤ T} with zero
mean and covariance function cov{B(s), B(t)} = {S(s)S(t)}−1

∫ τH
t

h2(u) dC(u) (s ≤ t). The
Gaussian process {B(t) : 0 ≤ t ≤ T} is given by B(t) = Z(t) M(t) +

∫ τH
t

Z(s) dh(s)/S(t),

where {Z(t) : 0 ≤ t ≤ T} is a Gaussian process with zero mean and covariance function
cov{Z(s), Z(t)} = C{min(s, t)}.
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For the incomplete data, Koul and Susarla (1980) have derived a test for H0 versus H1, where
H0 : S(x) = exp

(
−xλ
)
, x ≥ 0, λ > 0 (unknown), and H1 : F is NBUE, not an exponential. In

the case of complete data, tests for the preceding problem have been considered by Hollander and
Proschan (1975) and Koul (1978). Koul and Susarla (1980) have considered the parameter

J(F ) ≡ µ−1

∫ ∞
0

∫ y

0

S(x)dx dF (y) =

∫∞
0
S2(x)dx∫∞

0
S(x)dx

.

Clearly F ∈ H0 implies J(F ) = 1
2 . On the other hand J(F ) = 1

2 and F continuous and NBUE
implies that F is in H0. The more J(F ) differs from 1

2 the more there is evidence in favor of an
F ∈ H1. This test statistic is a nontrivial analog of the test statistic developed by Hollander and
Proschan (1975), which is suitable for the uncensored data. With their estimator Ŝn (modified form
of the Kaplan-Meier estimator, Sn, of S), their test statistic is

Tn ≡
∫ Ln

0
Ŝ2
n(x)dx∫ Ln

0
Ŝn(x)dx

,

whereLn is a deterministic constant depending on the null d.f. F , and censoring d.f. GwithLn ↑ ∞
as n→∞. They have also given the null asymptotic distribution of Tn under certain condition. This
test is to reject H0 if Tn is large. The alternative form of the test statistic Tn and its computational
formulas can be seen in Koul and Susarla (1980). Kumazawa (1986) has presented a class of test
statistic for the same test which includes the test statistics proposed in Koul and Susarla (1980) as a
special case. Kumazawa (1986a) has proposed a class of test statistics

Jn(κ) ≡
∫ T

0
K(t)Sn(t)dt

µn
∫ T

0
κ(t)Sn(s)ds

,

where the weight function κ is nonnegative, and right continuous, µn =
∫ T

0
Ŝn(t)dt, and K(t) =∫ t

0
κ(s)ds. Kumazawa (1986a ) and (1986b) have obtained asymptotic normality of Jn under some

regularity conditions and discussed the asymptotic efficiencies under proportional censoring model.
Hollander and Proschan (1975) have derived tests of the null hypothesis that the underlying MRL

is exponential, versus the alternative that it has a DMRL, not exponential for the complete data.
Yuan, Hollander, and Langberg (1983) have generalized the same test for the randomly censored
data and presented the efficiency loss due to the presence of censoring. They have considered the
parameter

4(F ) =

∫ ∫
s<t

S(s)S(t){M(s)−M(t)}dF (s) dF (t),

which is the same as the parameter used by Hollander and Proschan (1975) in the uncensored case.
To form the test statistic, they have replaced F with Fn = 1 − Sn, where Sn is the Kaplan-Meier
estimate of S as in (2). Since 4(Fn) is not scale-invariant, in order to make it scale-invariant they
have used the test statistic

V cn =
4(Fn)

µn
,
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where µn =
∫∞

0
Sn(u) du, which is a consistent estimator of µ, under the assumption that the mean

is finite and under suitable regularity on the amount of censoring. The computational form and other
details of the test statistic V cn can be seen on Chen, Hollander, and Langberg (1983). Some other
tests for DMRL using censored data can be found in Lim and Koh (1996) and Lim and Park (1993).

In Section 2 we derive the test statistic Θn for the NBUE test, prove the consistency of the
test and derive the limiting distribution of Θn. In Section 3 we derive the test statistic

√
n Θ∗n for

the DMRL test, prove the consistency of the test, and derive the limiting distribution of
√
n Θ∗n.

Conclusions are given in the section 4.

2 Testing the exponential distribution versus the NBUE distri-
bution

In this section we consider the problem of testing H0 : F (t) = 1 − e−λt for t ≥ 0, λ > 0

unspecified versus H1 : F is in NBUE, not exponential. This is equivalent to H0 : M(t) = 1
λ for

all t ≥ 0, λ > 0 unspecified, but fixed versus H1 : M(0) ≥M(t) and M(t) 6= 1
λ for all t ≥ 0.

2.1 The test statistic and its properties

We consider the following parameter as a measure of the deviation from H0 to H1 :

Θ = sup
0≤s≤t

M(0)−M(s)

σ(t)
.

From theorem 1 we have

E[B(t)]2 ≡ σ2(t) = {S(t)}−2

∫ ∞
t

h2(u) dC(u).

Gill (1980) has shown that the empirical estimate, σ2
n(t) of σ2(t) is uniformly consistent on [0, b]

for any b with S(b) > 0. Kumazawa (1987) also noted that when S is exponential, σ(t) is nonde-
creasing. The assumption that σ(t) is nondecreasing is satisfied because for S = e−t,

d

dt
σ2(t) = e2t

[
2

∫ ∞
t

e−udu

Ḡ(u)
− e−t

Ḡ(t)

]
≥ e2t

[
2

∫ ∞
t

e−udu

Ḡ(t)
− e−t

Ḡ(t)

]
= 2e2t e

−t

Ḡ(t)
,

when S is exponential, irrespective of G. Using this and the uniform consistency of σ2
n(t), he

showed that, for any fixed t <∞,{√
n
Mn(s)−M(s)

σn(t)
: 0 ≤ s ≤ t

}
⇒w W

[
σ(s)

σ(t)

]
on [0, t],

where W is a standard Brownian motion. We use this result to define the test statistic

Θn =
√
n sup

0≤s≤t

Mn(0)−Mn(s)

σn(t)
for some t < Xn.

Note that sup
0≤s≤t

[M(0) −M(s)] = 0 under H0 while it is positive under the alternative. Thus, we

reject H0 for large values of Θn.
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2.2 Consistency

We have

Θn(t) =
√
n sup

0≤s≤t

Mn(0)−Mn(s)

σn(t)
for some t < Xn.

=
√
n sup

0≤s≤t

1

σn(t)
[(Mn(0)−M(0))− (Mn(s)−M(s)) + (M(0)−M(s))]

= sup
0≤s≤t

1

σn(t)
[Bn(0)−Bn(s) +

√
n (M(0)−M(s))]. (2.1)

If F is under H0, the last term in (2.1) is zero for all s ≤ t, but if F is in the NBUE class,
there exists s0 in [0, b] for some b such that F (b) < 1, with M(0) − M(s0) > 0. Hence,

sup
0≤s≤t

1

σn(t)

√
n [M(0) − M(s0)] → ∞, and Θn(t) → ∞, provided that F is NBUE. Thus,

our test is consistent.

2.3 Limiting distribution of Θn

Theorem 2. Under H0,

Θn →d Θ = sup
0≤s≤t

{
W

[
σ(0)

σ(t)

]
−W

[
σ(s)

σ(t)

]}
= W

[
σ(0)

σ(t)

]
− inf

0≤s≤t
W

[
σ(s)

σ(t)

]
≡ U−V. (2.2)

Proof. This is obvious from Kumazawa’s result above and the continuous mapping theorem.
With the change of variable u = σ(s)

σ(t) , we can write

V = inf
σ(0)/σ(t)<u≤1

W (u).

Note that U and V are independent from the independent increments of W and

U ∼ N(0, σ(0)/σ(t)).

Now, for any c > 0,

P (U − V > c) =

∫
P (U − V > c|U = u)dΦ(u/[σ(0)/σ(t)])

=

∫
P (u− V > c)dΦ(u/[σ(0)/σ(t)])

=

∫
P ( inf

σ(0)/σ(t)<u≤1
W (u) ≤ u− c)dΦ(u/[σ(0)/σ(t)])

≤
∫
P ( inf

0<u≤1
W (u) ≤ u− c)dΦ(u/[σ(0)/σ(t)])

=

∫
u>c

2Φ̄(c− u)dΦ(u/[σ(0)/σ(t)]) (2.3)
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where Φ = 1 − Φ̄ is the standard normal DF and φ is its density; the last equality follows from the
fact that

P ( inf
0≤u≤1

W (u) < r) = 2Φ̄(−r) for r ≤ 0 and 0 if r > 0.

The integral can be approximated numerically using the estimate of σ(0)/σ(t) to find the p-value if
c is the value of the test statistic.

3 Testing the exponential distribution versus the DMRL distri-
bution

Let X be a lifetime random variable with continuous distribution function (DF) F where F (0) = 0.
In this section we consider the problem of testing H0 : F (t) = 1 − e−λt for t ≥ 0, λ > 0

unspecified, versus H1 : F is in DMRL, not exponential. This is equivalent to H0 : M(t) = 1
λ for

all t ≥ 0, λ > 0 unspecified, but fixed, versus H1 : M(s) ≥M(t) for all s ≤ t.

3.1 The test statistic and its properties

We consider the following parameter Θ as a weighted measure of the deviation from H0 to H1 :

Θ = sup
t≥0

sup
s≤t

S(s)S(t) [M(s)−M(t)].

Clearly, Θ = 0 under H0. If H1 is true, M is non increasing and not constant on [0, ∞). Thus M
has at least one point of decrease, and hence Θ > 0 if H1 is true. Employing the same sampling
plan, our test statistic is the sample analogue of Θ given by

√
n Θn ≡ sup

t≥0
sup
s≤t

√
n Sn(s)Sn(t) [Mn(s)−Mn(t)].

In order to make our test statistic scale invariant we set Θ∗n ≡ Θn

Mn(0) . Therefore, we can assume that
H0 corresponds to F, Exp(λ = 1).

3.2 Consistency

We note that
√
n Θ∗n(t) =

√
n sup

t≥0
sup
s≤t

Sn(s)Sn(t)[Mn(s)−Mn(t)]/Mn(0)

=
√
n sup

t≥0
sup
s≤t

Sn(s)Sn(t)[(Mn(s)−M(s))− (Mn(t)−M(t))

+(M(s)−M(t))]/Mn(0).

If F is distributed as Exp(1), the last term in the previous expression is zero for all t > 0. How-
ever, if F is in the DMRL class there exists t0 ∈ [0, b] for some b such that F (b) < 1, with
sup
s≤t

S(s) S(t0)[M(s)−M(t0) > 0. Hence
√
nΘ∗n(t)→∞ as n→∞, provided that F is DMRL.
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3.3 Weak convergence

Under H0, (i) M(t)) = 1, (ii) h(t) = M(t) S(t) = e−t, (iii) F (s) = 1 − e−s, and dF (s) =

e−sds, (iv) C(t) =
∫ t

0
eu

1−G(u) du, and(v) C ′(t) = et

1−G(t) . Recall that the MRL process, {Zn(t) =
√
n [Mn(t) − M(t)] : t ∈ [0, b]} ⇒w {B(t) : t ∈ [0, b], F (b) < 1}, where {B(t) : t ∈

[0, b], F (b) < 1} is a mean zero Gaussian process. Under H0,

B(t) = Z(t)−
∫ τH
t
Z(s)e−s ds

e−t
,

where {Z(t) : t ∈ [0, b], F (b) < 1} is a Gaussian process with zero mean and covariance function:

cov{Z(s), Z(t)} = C{min(s, t)}.

Now,

cov{B(s), B(t)} = et+s
∫ τH

t

e−u

1−G(u)
du for 0 ≤ s ≤ t ≤ τt.

Let 0 ≤ t ≤ τH be fixed and s ≤ t. Note that

Zn(t) =
√
n [Mn(s)−Mn(t)]

=
√
n [(Mn(s)−M(s))− (Mn(t)−M(t)) + (M(s)−M(t))]

⇒w Z(s)− Z(t)− es
∫ τH

s

Z(u)e−u du+ et
∫ τH

t

Z(u)e−u du.

For fixed t, using Slutsky’s theorem, Sn(s) Sn(t)
√
n [Mn(s)−Mn(t)]⇒w Z

∗
t (s), where

Z∗t (s) = e−(s+t) (Z(s)− Z(t))− e−t
∫ τH

s

Z(u)e−u du+ e−s
∫ τH

t

Z(u)e−u du.

By the continuous mapping theorem,
√
n Θ∗n(t)⇒w sup

t≥0
sup
s≤t

Z∗t (s).

Although the limiting distribution is intractable we propose a resampling scheme as given in Lin
(1997) assuming that τH =∞, which is reasonable since τF =∞ under H0.

We first note that, from the integration by parts formula, the limiting distribution can be written
as

Z∗t (s) = e−t
[
e−sZ(s)−

∫ ∞
s

Z(u)e−udu

]
− e−s

[
e−tZ(t)−

∫ ∞
t

Z(u)e−udu

]
= −e−t

∫ ∞
s

e−udZ(u) + e−s
∫ ∞
t

e−udZ(u).

From Kumazawa (1987),

Zn(t) =
√
n
Fn(t)− F (t)

Sn(t)
=
√
n

∫ t

0

Sn(u−)

Sn(u)Yn(u)
dMn(u)→w Z(t) on [0,∞),
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where

Yn(u) =

n∑
i=1

Yin(u) =

n∑
i=1

I(Xi ≥ u)

and

Mn(u) =

n∑
i=1

Min(u) = Nn(u)−
∫ u

0

Yn(v)

Sn(v)
dFn(v) =

n∑
i=1

[
Nin(u)−

∫ u

0

Yin(v)

Sn(v)
dFn(v)

]
,

where Nin(u) = I(Xi ≤ u, δi = 1). By replacing Mn(u) by
∑n
i=1[GinNin(u)], where the Gin’s

are independent standard normals, the arguments in Lin (1997) show that the distribution of Z∗t (·)
could be approximated for large n by replacing dZ(u) by

dẐn(u) =
√
n

n∑
i=1

Sn(u−)

Sn(u)
GinNin(u)

from a large number of realizations from dẐn(·) by repeatedly generating {Gin : 1 ≤ i ≤ n}
while fixing the data {Sn(·), Yin, Nin(u)}. Since we reject H0 for large values of the test statistic,
the p-value could be estimated from the fraction of the generated values under H0 that exceed the
observed value of the test statistic.

3.4 An example

Table 1: Survival times and withdrawal times in months for 211 patients (with number of ties given
in parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3), 17(2), 18, 19(2), 20, 21,
22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2), 30, 31, 32(3), 33(2), 34, 35, 36, 37(2), 38, 40,
41(2), 42(2), 43, 45(3), 46, 47(2), 48(2), 51, 53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2),
100, 145, 158. Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5), 7(5), 8, 9(2), 10, 11, 12(3), 13(3),
14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 23, 25, 27, 28, 31, 32, 34, 35, 37, 38(4), 39(2), 44(3), 46,
47, 48, 49, 50, 53(2), 55, 56, 59, 61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2),
106, 109, 119(2), 125, 127, 129, 131, 133(2), 135, 136(2), 138, 141, 142, 143, 144, 148, 160, 164(3).

The data in Table 1 were analyzed by Hollander and Proschan (1979) and are an updated version of
data considered by Koziol and Green(1976). The data correspond to 211 State IV prostate cancer
patients treated with estrogen in a study by the Veterans Administration Cooperative Urological
Research Group (1967). By the March 1977 closing date, 90 patients had died of prostate cancer, 105
had died of other diseases, and 16 were still alive. The later 121 observations are treated as censored
observations(withdrawals). The same date were also used by Chen, Hollander, and Langberg (1983)
to test against monotone MRL.

We calculate the estimates of σ(0)/σ(t) for some t < 158, obtaining the value of our test statis-
tic Θn = 1.893. The numerical approximation of the integral in (2.3) for c = 1.893 gives the value
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of 0.035, which is one-sided p value. Thus, with this objective analysis, we find that the test suggests
wear-out in the NBUE direction with p value smaller than the p value (= 0.064) obtained by the test
statistic of Chen, Hollander, and Langberg (1983).

For the DMRL alternative, the test statistic Θ∗n = 1.772. Employing resampling scheme sug-
gested by Lin(1997), the estimate of the p value = 0.072, which just replicates the conclusion derived
by the test statistic of Chen, Hollander, and Langberg (1983).

4 Conclusion

The test statistic we have proposed for the NBUE class has shown all the properties of a good test
statistic. It’s consistent and its asymptotic distribution is normal. The test statistic proposed for
the DMRL class is also consistent, but its asymptotic distribution is intractable. However, we have
proposed a resampling scheme as given in Lin (1997).
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