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SÁNDOR BARAN , ISTVÁN FAZEKAS
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SUMMARY

We consider Cox proportional hazards model under covariate measurement error and inves-
tigate a simultaneous estimation method for the baseline hazard and covariateparameter.
We show the strong consistency of the estimators and we also estimate their rate of conver-
gence. Simulation results are also presented to illustrate the theoretical ones.

Keywords and phrases:Cox proportional hazards model, measurement error, strong con-
sistency, Kullback-Leibler distance.

AMS Classification:Primary 62N01; Secondary 62N02.

1 Introduction

Cox semiparametric proportional hazards model is very popular in biometrics and medical statis-
tics. Often the variables of interest cannot be observed directly and actually the so called surrogate
data are observed instead. This is modeled by the presence ofmeasurement errors. Ignoring the
difference between the variables of interest and surrogatedata leads to “naive” estimators of regres-
sion parameters that are usually severely biased. Recently, the discussion on measurement error in
the Cox model has become vivid, see e.g. the corresponding paper of Augustin [3] and references
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therein. However, still there are only few results on the consistency of reasonable estimators in the
Cox model under measurement errors.

In the present paper we deal with censored observations under measurement error and propose
to estimate the baseline hazard function and regression parameters simultaneously. The baseline
hazard function is not parameterized and belongs to a compact set of continuous positive functions.
We use the partial log-likelihood function and correct it for censoring and measurement error fol-
lowing the ideas of Augustin [3]. Our simultaneous estimator maximizes the corrected objective
function on the compact parameter set. Under mild assumptions we prove the strong consistency
of the estimators and give the rate of convergence in terms ofKullback-Leibler distance between
the true and estimated density of(Y,∆, X), where Y is the censored lifetime,∆ is the censor-
ship indicator, andX is the variable of interest. A computer simulation is presented to illustrate
theoretical findings.

The paper is organized as follows. Section 2 gives the model of observations and constructs the
estimators. Our main consistency result is presented in Section 3. The rate of convergence is derived
in Section 4, simulation results are reported in Section 5, and Section 6 concludes.

2 Model and Estimator

Consider the Cox proportional hazards model [5], where the intensity of failure for the survival time
T at time pointt of an individual given a covariate vectorX is specified as

Λ(t |X;λ, β) := λ(t) exp(β⊤X), (2.1)

where β is a k-dimensional parameter belonging to a parameter setΘβ ⊂ R
k, while λ(t) ∈

Θλ ⊂ C[0, τ ], τ > 0, is the baseline hazard function, i.e. the hazard function for X = 0, and Θλ

consists of positive functions. This means that the conditional pdf of T given X equals

fT (t |X;λ, β) = Λ(t |X;λ, β) exp


−

t∫

0

Λ(s |X;λ, β) ds


 (2.2)

and
∞∫

0

Λ(t |X;λ, β) dt = ∞.

Hence,

Λ(t |X;λ, β) = − d

dt
logGT (t |X;λ, β) =

fT (t |X;λ, β)

GT (t |X;λ, β)
, (2.3)

where GT (t |X;λ, β) := 1− FT (t |X;λ, β) is the conditional survival function ofT given X.
However, instead of the lifetimesT one can usually observe a censored lifetimeY := min{T,C},
where C is the censor distributed on[0, τ ], together with the censorship indicator∆ := 1{T≤C}.
Obviously, Y is also distributed on the interval[0, τ ]. Further, the censorC is independent ofX
and T .
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The statistical problem is to estimate parameterβ and baseline hazardλ on the basis of
triples (Yi,∆i, Xi), i = 1, 2, . . . n, of observations of censored lifetimes, corresponding cen-
sorship indicators and covariates, respectively. We assume that observed lifetimesT1, T2, . . . , Tn,
censorsC1, C2, . . . , Cn and covariatesX1, X2, . . . , Xn are independent copies ofT, C and X,
respectively.

In the classical case, that is if the covariates can directlybe observed,λ(t) and β can be
estimated by maximization of the partial (or Breslow’s) log-likelihood function [4, 7]

Qn(λ, β) :=
1

n

n∑

i=1

q(Yi,∆i, Xi;λ, β), (2.4)

where

q(Y,∆, X;λ, β) := ∆
(
log λ(Y ) + β⊤X

)
− eβ

⊤X

Y∫

0

λ(u)du.

In the present paper we assume the existence of measurement errors in the covariates, that is
instead ofXi we observe

Wi = Xi + Ui, i = 1, 2, . . . , n, (2.5)

where the errors{Ui} are independent copies of ak-dimensional random vectorU with known
moment generating functionMU (β) := Eeβ

⊤U , and independent of{Xi, Ti, Ci}. In this case,
according to the ideas of Augustin [3], objective functionQn(t) has to be corrected for measure-
ment errors with the help of deconvolution method [10]. The corrected objective function is defined
as

Qcor
n (λ, β) :=

1

n

n∑

i=1

qcor(Yi,∆i,Wi;λ, β), (2.6)

where

qcor(Y,∆,W ;λ, β) := ∆
(
log λ(Y ) + β⊤W

)
− eβ

⊤W

MU (β)

Y∫

0

λ(u)du.

Naturally, we have

E
(
qcor(Y,∆,W ;λ, β)

∣∣Y,∆, X
)
= q(Y,∆, X;λ, β),

almost surely, implying

Eqcor(Y,∆,W ;λ, β) = Eq(Y,∆, X;λ, β) =: q∞(λ, β). (2.7)

The corrected estimators(λ̂n, β̂n) of (λ, β) are defined as

(λ̂n, β̂n) := arg max
(λ,β)∈Θ

Qcor
n (λ, β), (2.8)

where Θ := Θλ × Θβ . If the parameter sets are compact, thenΘ will also be a compact set in
C[0, τ ]× R

k. SinceQcor
n is continuous, the maximum in (2.8) will obviously be attained.
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3 Strong Consistency

We prove the strong consistency of the estimators defined by (2.6) under the assumptions below

(i) Θλ ⊂ C[0, τ ] is the following compact convex set of positive functions

Θλ :=
{
f : [0, τ ] → R

∣∣ f(t) ≥ a, ∀t ∈ [0, τ ] and|f(t)− f(s)| ≤ L|t− s|, ∀t, s ∈ [0, τ ]
}
,

where a > 0 and L > 0 are fixed constants.

(ii) Θβ ⊂ R
k is compact and convex.

(iii) Measurement errorU has zero mean and for a fixedε > 0,

EeD‖U‖ < ∞ where D := max
β∈Θβ

‖β‖+ ε.

(iv) EeD‖X‖ < ∞, whereD > 0 is the constant defined in (iii).

(v) τ is the right endpoint of the distribution ofC, i.e. P(C > τ) = 0 and for all ε > 0 we
have P(C > τ − ε) > 0.

(vi) The covariance matrixSX of the random vectorX is positive definite.

Theorem 1. Consider the Cox proportional hazards model with measurement error defined by(2.1)
and (2.5) with true parametersλ0(t) and β0, and assume that conditions (i)–(vi) are satisfied.
Then (λ̂n, β̂n) are strongly consistent estimators of the true parameters(λ0, β0), that is

sup
t∈[0,τ ]

|λ̂n(t)− λ0(t)| → 0 and β̂n → β0

almost surely asn → ∞.

Proof. In order to prove the strong consistency of the estimators(λ̂n, β̂n) one has to prove

(a) sup
(λ,β)∈Θ

∣∣Qcor
n (λ, β)− q∞(λ, β)

∣∣ → 0 almost surely asn → ∞;

(b) q∞(λ, β) ≤ q∞(λ0, β0), and equality holds if and only ifλ ≡ λ0 and β = β0.

Let ∂qcor

∂λ denote the Fŕechet derivative ofqcor with respect to the functionλ which is a linear

functional on C[0, τ ]. Hence,
∥∥∂qcor

∂λ

∥∥ is the norm of this linear functional corresponding to the

supremum norm onC[0, τ ], while for h ∈ C[0, τ ] the expression
〈
∂qcor

∂λ , h
〉

means the effect of

the functional ∂q
cor

∂λ on h. E.g. if

qcor(λ) =

τ∫

0

λ2(t)dt, then

〈
∂qcor

∂λ
, h

〉
= 2

τ∫

0

λ(t)h(t)dt.

According to results of [8] to verify (a) it suffices to show
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(a1) Qcor
n (λ, β) → q∞(λ, β) almost surely asn → ∞ for all (λ, β) ∈ Θ;

(a2) Esup
(λ,β)∈Θ

∥∥∥∥
∂qcor

∂λ
(Y,∆,W ;λ, β)

∥∥∥∥ < ∞, Esup
(λ,β)∈Θ

∥∥∥∥
∂qcor

∂β
(Y,∆,W ;λ, β)

∥∥∥∥ < ∞;

(a3) q∞(λ, β) is continuous in(λ, β).

By conditions (i)–(iv) for all fixed (λ, β) ∈ Θ we haveE
∣∣qcor(Y,∆,W ;λ, β)

∣∣ < ∞. As our
observations(Yi,∆i,Wi), i = 1, 2, . . . n, are i.i.d., the strong law of large numbers applies, so
Qcor

n (λ, β) → Eqcor(Y,∆,W ;λ, β) almost surely asn → ∞, that together with (2.7) implies
(a1).

Next, for h ∈ C[0, τ ]

〈
∂qcor

∂λ
(Y,∆,W ;λ, β), h

〉
=

∆h(Y )

λ(Y )
− eβ

⊤W

MU (β)

Y∫

0

h(u)du,

yielding ∥∥∥∥
∂qcor

∂λ
(Y,∆,W ;λ, β)

∥∥∥∥ ≤ sup
λ∈Θλ

∥∥∥∥
1

λ(Y )

∥∥∥∥+
τeD(‖X‖+‖U‖)

minβ∈Θβ
MU (β)

,

so by (i)–(iv) the first condition of (a2) holds.
Further,

∂qcor

∂β
(Y,∆,W ;λ, β) = ∆W −

(
MU (β)W − E

(
Ueβ

⊤U
))

eβ
⊤WM−2

U (β)

Y∫

0

λ(u)du,

which directly implies the second condition of (a2). We remark that the extra termε > 0 in the
definition of the constantD used in conditions (iii) and (iv) is needed to ensure

E sup
β∈Θβ

∥∥Ueβ
⊤U

∥∥ < ∞ and E sup
β∈Θβ

∥∥Xeβ
⊤X

∥∥ < ∞,

respectively.
Finally, by definition (2.7)

q∞(λ, β) = Eq(Y,∆, X;λ, β) = E

(
∆
(
log λ(Y ) + β⊤X

)
− eβ

⊤X

Y∫

0

λ(u)du

)
.

Obviously, q(Y,∆, X;λ, β) is continuous in(β, λ), and by conditions (i) and (ii)

∣∣q(Y,∆, X;λ, β)
∣∣ ≤

∣∣∣∣∆
(
log λ(Y )+β⊤X

)∣∣∣∣+
∣∣∣∣e

β⊤X

τ∫

0

λ(u)du

∣∣∣∣ ≤ C
(
1+‖X‖+eD‖X‖

)
, (3.1)

where C is a positive constant. Conditions (iii) and (iv) imply thatthe right hand side of (3.1) has a
finite mean, that together with the dominated convergence theorem implies (a3).

To verify (b) we are going to use the following general resultthat is quite well known in infor-
mation theory (see e.g. [1, Lemma 8.3.1]).
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Lemma 3.1. Let ̺ and ̺0 be arbitrary densities with respect to aσ-finite measureµ on the
σ-field B(Rk). If

∫

Rk

̺0(x) log ̺(x)dµ(x) is finite, then
∫

Rk

̺0(x) log ̺0(x)dµ(x)

exists and ∫

Rk

̺0(x) log ̺0(x)dµ(x) ≥
∫

Rk

̺0(x) log ̺(x)dµ(x). (3.2)

If ∫

Rk

̺0(x) log ̺0(x)dµ(x) is finite, then
∫

Rk

̺0(x) log ̺(x)dµ(x)

exists and(3.2)holds.
Equality in (3.2) is attained if and only if̺(x) = ̺0(x) for almost all x with respect to the

measureµ.

Consider the couple(Y,∆) that is distributed onX := R
+ ×{0, 1} with R

+ := (0,∞), and
consider onX measureµ = λ1 × λc, where λ1 and λc denote the Lebesgue and the counting
measure, respectively.

To simplify notation, for a moment let us fix the covariate vector X. First we show that the
joint pdf of (Y,∆) with respect toµ equals

f(y, δ|X;λ0, β0) := fδ
T (y|X;λ0, β0)G

1−δ
T (y|X;λ0, β0)f

1−δ
C (y)Gδ

C(y), (y, δ) ∈ X , (3.3)

where fT and fC are the densities, whileGT and GC are the survival functions ofT and C,
respectively. Now, to verify (3.3) it suffices to prove that for all A ∈ B(R+)

∫

A×{0}

f(y, δ|X;λ0, β0) dµ(y, δ) = P(Y ∈ A,∆ = 0), (3.4)

∫

A×{1}

f(y, δ|X;λ0, β0) dµ(y, δ) = P(Y ∈ A,∆ = 1) (3.5)

hold. For the left hand side of (3.4) we have
∫

A×{0}

f(y, δ|X;λ0, β0) dµ(y, δ) =

∫

A

fC(y)GT (y)dy = E1A(C)GT (C),

while for the right hand side

P(Y ∈ A,∆ = 0) =P(C ∈ A, T ≥ C) = E(1A(C)1{T≥C})

=E
(
1A(C)E(1{T≥C} |C)

)
= E1A(C)GT (C),
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which clearly proves (3.4). Equality (3.5) can be proved in the same way.
Further, as the distribution ofC is concentrated on the interval[0, τ ], for y > τ we have

fC(y) = 0 and GC(y) = 0, implying f(y, δ|X;λ, β) = 0 for y > τ, δ ∈ {0, 1}. Hence,
f(y, δ|X;λ, β) and the corresponding log-likelihood function

ℓ(y, δ|X;λ, β) := log f(y, δ|X;λ, β) = ℓT (y, δ|X;λ, β) + ℓC(y, δ), (3.6)

where

ℓT (y, δ|X;λ, β) := δ log fT (y|X;λ, β) + (1− δ) logGT (y|X;λ, β),

ℓC(y, δ) := (1− δ) log fC(y) + δ logGC(y),

depends on the values offT (y|X;λ, β) only on the interval [0, τ ]. Applying Lemma 3.1 for
f(y, δ|X;λ0, β0) and f(y, δ|X;λ, β) we obtain

Eℓ(Y,∆|X;λ, β) ≤ Eℓ(Y,∆|X;λ0, β0), (3.7)

which is equivalent to
EℓT (Y,∆|X;λ, β) ≤ EℓT (Y,∆|X;λ0, β0), (3.8)

and equalities in (3.7) and (3.8) hold if and only if

fδ
T (y|X;λ0, β0)G

1−δ
T (y|X;λ0, β0)f

1−δ
C (y)Gδ

C(y) (3.9)

= fδ
T (y|X;λ, β)G1−δ

T (y|X;λ, β)f1−δ
C (y)Gδ

C(y)

almost everywhere on[0, τ ] with respect to measureµ. For δ = 1 condition (3.9) reduces to

fT (y|X;λ0, β0)GC(y) = fT (y|X;λ, β)GC(y) (3.10)

almost everywhere with respect to the Lebesgue measureλ1, and by condition (v) — since for
y < τ we haveGC(y) > 0 — (3.10) is equivalent to

fT (y|X;λ0, β0) = fT (y|X;λ, β) almost everywhere with respect toλ1. (3.11)

If (3.11) is valid, then (3.9) is true forδ = 0. Hence, we have equality in (3.8) if and only if (3.11)
holds.

Now, using (2.3) one can easily see thatq∞(λ, β) = EℓT (Y,∆|X;λ, β), so from inequality
(3.8) we obtain

q∞(λ, β) = EℓT (Y,∆|X;λ, β) ≤ EℓT (Y,∆|X;λ0, β0) = q∞(λ0, β0), (3.12)

where equality is attained if and only if

fT (t|X;λ0, β0) = fT (t|X;λ, β) almost surely for almost allt ∈ [0, τ ]. (3.13)

Suppose now that (3.13) holds. Representation (2.3) implies that

Λ(t|X;λ0, β0) = Λ(t|X;λ, β) almost surely for almost allt ∈ [0, τ ], (3.14)
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so exp
(
(β − β0)

⊤X
)

is constant, and in this way(β − β0)
⊤X is also constant with probability

one. Hence,Var
(
(β − β0)

⊤X
)
= 0 that together with condition (vi) yieldsβ = β0. Obviously,

using again (3.14) one can see thatβ = β0 implies λ0(t) = λ(t), t ∈ [0, τ ], which together with
(3.12) and (3.13) completes the proof of condition (b).

Remark1. It is not necessary for the censorC to have a pdf. It can have any (e.g. discrete)
distribution µC on [0, τ ] provided the survival functionGC(y) is positive for all y < τ . In this
case the reasoning concerning the joint density (3.3) of(Y,∆) has to be corrected. Couple(Y,∆)

is distributed onX = (0, τ ]×{0, 1} =
(
(0, τ ]×{0}

)
∪
(
(0, τ ]×{1}

)
=: X0∪X1, and measureµ on

X has to be defined separately onX0 andX1 asµ(A×{1}) := λ1(A) andµ(A×{1}) := µC(A),
respectively, whereA ∈ B

(
(0, τ ]

)
. Using symbolic notationµ = λ1 × δ1 + µC × δ0, where δ1

and δ0 are Dirac measures concentrated at1 and0, respectively. In this way the density ofC with
respect toµC is fC(y) ≡ 1, and (3.3) takes the form

f(y, δ|X;λ0, β0) := fδ
T (y|X;λ0, β0)G

1−δ
T (y|X;λ0, β0)G

δ
C(y), (y, δ) ∈ X , (3.15)

specifying a density onX with respect to measureµ. Now, the validity of (3.4) and (3.5) for the
density defined by (3.15) can be checked in the same way as before.

4 Kullback-Leibler Distance of the True and Estimated Density
Functions

To estimate the rate of convergence of the estimators(λ̂n, β̂n) defined by (2.8) to the true parameter
values (λ0, β0), besides conditions (i) – (vi) of the strong consistency we need an additional one,
namely

(vii) Sn(λ, β)/
√
n converges in distribution inC(Θ) to a Gaussian measure, where

Sn(λ, β) :=n
(
Qcor

n (λ, β)−q∞(λ, β)
)
=

n∑

i=1

(
qcor(Yi,∆i,Wi;λ, β)−Eqcor(Y,∆,W ;λ, β)

)
.

(4.1)

However, according to the statement of Lemma 4.1, which is anapplication of Theorem 2 of
[11], the following assumption is sufficient to check the validity of condition (vii).

(vii’) Ee2Dβ‖X‖ < ∞ and Ee2Dβ‖U‖ < ∞, whereDβ := maxβ∈Θβ
‖β‖ > 0.

Lemma 4.1. Consider the Cox proportional hazards model with measurement error defined by(2.1)
and (2.5). Under assumptions (i) – (iv) condition (vii’) is a sufficient condition for (vii).

Proof. Let us considerqcor(Y,∆,W ;λ, β) as a random element onΘ = Θλ×Θβ ⊂ C[0, τ ]×R
k

and let
ρ
(
(λ1, β1), (λ1, β1)

)
:= sup

t∈[0.τ ]

|λ1(t)− λ2(t)|+ ‖β1 − β2‖.
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By conditions (i) and (ii),(Θ, ̺) is a compact metric space, so according to Theorem 2 of [11] ap-
plied to centered random elementsqcor(Yi,∆i,Wi;λ, β)− Eqcor(Y,∆,W ;λ, β) to prove asymp-
totic normality of Sn(λ, β) it suffices to show

(c1) P
(
qcor ∈ Lip(̺)

)
= 1, where Lip(̺) ⊂ C(Θ) is the set of Lipschitz functions onΘ with

respect to metric̺ ;

(c2)
1∫
0

H
1/2
̺ (Θ, v)dv < ∞,

where for a compact metric space(S, ̺), function H̺(S, ε) (or simply H(S, ε)) is the
ε-entropy of S, that is H̺(S, ε) := logN̺(S, ε), and N̺(S, ε) (or simply N(S, ε)) is the
minimum number of balls with diameter not greater than2ε which coverS (see e.g. [6]);

(c3) E
∥∥qcor(Y,∆,W ;λ, β)

∥∥2
̺
< ∞, where ‖ · ‖̺ is the norm induced by the metric̺, that is

for g ∈ Lip(Θ) we have‖g‖̺ := d(g) + |g(λ∗, β∗)|, where

d(g) := sup
(λ1,β1) 6=(λ2,β2)

|g(λ1, β1)− g(λ2, β2)

̺
(
(λ1, β1), (λ2, β2)

) ,

and (λ∗, β∗) is some fixed element inΘ.

Now, as a consequence of condition (a2) of the proof of Theorem 1 we have

sup
(λ,β)∈Θ

∥∥∥∥
∂qcor

∂λ
(Y,∆,W ;λ, β)

∥∥∥∥ < ∞ and sup
(λ,β)∈Θ

∥∥∥∥
∂qcor

∂β
(Y,∆,W ;λ, β)

∥∥∥∥ < ∞

almost surely, that directly implies (c1).
Next, consider the compact metric spacesΘλ and Θβ with the supremum norm and with the

Euclidean norm, respectively, and let0 < ε be an arbitrary constant. Obviously,

N̺(Θ, 2ε) ≤ N(Θλ, ε)N(Θβ , ε),

hence
H1/2

̺ (Θ, 2ε) ≤
√
2
(
H1/2(Θλ, ε) +H1/2(Θβ , ε)

)
.

Now, as for ε ≤ 1 we have N(Θβ , ε) ≤ Cε−k with some positive constantC, implying
H(Θβ , ε) ≤ log C − k log ε, using

∫ 1

0
(− log u)1/2du < ∞, we obtain

1∫

0

H1/2(Θβ , u)du < ∞. (4.2)

Further, according to the results of Potapov [9], ifΘλ is of “uniform type”, that is there exist
b > 1, C > 0 and ν0 > 0, such that for all0 < ν < ν0, inequality

H(Θλ, bν) + C ≤ H(Θλ, ν) (4.3)
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holds, then forε ≤ 1 we haveH(Θλ, ε) ≤ Cε−1 implying

1∫

0

H1/2(Θλ, u)du < ∞. (4.4)

However, asΘλ is compact and since convex, it is also connected, by Lemma 1 of [9] there
exists ν0 > 0 such that for all0 < ν < ν0/4

H(Θλ, 4ν) + 1 ≤ H(Θλ, ν)

is satisfied, which proves (4.3).
In this way, since

1∫

0

H1/2
̺ (Θ, v)dv = 2

1/2∫

0

H1/2
̺ (Θ, 2u)du ≤ 23/2




1/2∫

0

H1/2(Θλ, u)du+

1/2∫

0

H1/2(Θβ , u)du


 ,

(c2) follows from (4.2) and (4.4).
Finally, using conditions (i) and (ii) after short calculations one can see that there exists a positive

constantC such that

∥∥qcor(Y,∆,W ;λ, β)
∥∥2
̺
≤ C

(
1 + ‖W‖+ eDβ‖W‖

)
,

thus (c3) is a direct consequence of (vii’).

Now, we can formulate our result about the rate of convergence of the estimators.

Theorem 2. Consider the Cox proportional hazards model with measurement error defined by(2.1)
and (2.5) with true parametersλ0(t) and β0, and assume that conditions (i), (ii), (iv) – (vi) and
(vii’) hold. Then

D
(
f(Y,∆, X;λ0, β0), f(Y,∆, X; λ̂n, β̂n)

)
=

Op(1)√
n

,

where for densitiesf1 and f2 with respect to a measureµ,

D
(
f1, f2

)
:=

∫
f1(x) log

f1(x)

f2(x)
dµ(x)

denotes the Kullback-Leibler distance off1 and f2.

Proof. By the definition of the estimators(λ̂n, β̂n) we haveQcor
n (λ̂n, β̂n) ≥ Qcor

n (λ0, β0) imply-
ing

0 ≤ q∞(λ0, β0)− q∞(λ̂n, β̂n) ≤ 2 sup
(λ,β)∈Θ

∣∣Qcor
n (λ, β)− q∞(λ, β)

∣∣. (4.5)

According to Lemma 4.1, condition (vii’) implies the asymptotic normality of Sn(λ, β)/
√
n

where Sn(λ, β) is the sum defined by (4.1). Hence, the right hand side of (4.5)is Op(1)/
√
n.
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Let (λ, β) ∈ Θ. Using the same ideas as in the proof (3.12) with the help of (3.3) and (3.6) we
obtain

0 ≤ q∞(λ0, β0)− q∞(λ, β) = E

(
E
(
ℓT (Y,∆|X;λ0, β0)

∣∣X
))

− E

(
E
(
ℓT (Y,∆|X;λ, β)

∣∣X
))

=E
(
E
(
ℓ(Y,∆|X;λ0, β0)− ℓ(Y,∆|X;λ, β)

∣∣X
))

= E

(
E

(
log

f(Y,∆|X;λ0, β0)

f(Y,∆|X;λ, β)

∣∣∣∣X
))

=E

(
log

f(Y,∆|X;λ0, β0)

f(Y,∆|X;λ, β)

)
= E

(
log

f∆
T (Y |X;λ0, β0)G

1−∆
T (Y |X;λ0, β0)

f∆
T (Y |X;λ, β)G1−∆

T (Y |X;λ, β)

)
(4.6)

=E

(
log

fT (Y |X;λ0, β0)

fT (Y |X;λ, β)
P(∆ = 1 |X)

)
+ E

(
log

GT (Y |X;λ0, β0)

GT (Y |X;λ, β)
P(∆ = 0 |X)

)

=E

(
log

fT (T |X;λ0, β0)

fT (T |X;λ, β)
P(T ≤ C |X)

)
+ E

(
log

GT (C|X;λ0, β0)

GT (C|X;λ, β)
P(T > C |X)

)

=E

( C∫

0

fT (t|X;λ0, β0) log
fT (t|X;λ0, β0)

fT (t|X;λ, β)
dt

)
+E

( τ∫

C

fT (t|X;λ0, β0) log
GT (C|X;λ0, β0)

GT (C|X;λ, β)
dt

)

=E

( C∫

0

fT (t|X;λ0, β0) log
fT (t|X;λ0, β0)

fT (t|X;λ, β)
dt

)
+E

(
GT (C|X;λ0, β0) log

GT (C|X;λ0, β0)

GT (C|X;λ, β)

)
.

Further, let f(y, δ, x|λ, β) be the joint density of the triple of censored lifetime, censorship
indicator and covariateX on [0, τ ]× {0, 1} × R

k, which by (3.3) equals

f(y, δ, x|λ, β) = f(y, δ|X;λ0, β0)fX(x)

= fδ
T (y|X;λ0, β0)G

1−δ
T (y|X;λ0, β0)f

1−δ
C (y)Gδ

C(y)fX(x),

wherefX(x) is the density ofX. However, we do not assume thatX has a pdf with respect to the
Lebesgue measure. LetµX be the distribution ofX on R

k and one can considerf(y, δ, x|λ, β)
as a density with respect to the product measureλ1 × λc × µX . Hence, from (4.6) we obtain

q∞(λ0, β0)− q∞(λ, β)=E

(
log

f(Y,∆, X;λ0, β0)

f(Y,∆, X;λ, β)

)
=D

(
f(Y,∆, X;λ0, β0), f(Y,∆, X;λ, β)

)
,

that completes the proof.

5 Simulation Results

To illustrate the behavior of the proposed estimator we performed computer simulations using Mat-
lab (version 2008a). For optimization Matlab functionfmincon was used. Naturally, objective
function Qcor

n (λ, β) can not be maximized numerically with respect to a functionλ(t) ∈ C[0, τ ],
so we applied two approximation methods ofλ based onm points wherem is an increasing
function of the sample size. The first method is spline interpolation on m equidistant points, the
second is Chebyshev interpolation, that is polynomial interpolation, where the nodes are roots of the
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mth Chebyshev polynomial of the first kind. In both cases the objective function is maximized with
respect toβ and to the values ofλ(t) in the node points.

In our example100 independent samples were simulated and using subsamples ofincreasing size
the estimates of the parameters were calculated. For parameter β the mean, the standard deviation
and the mean absolute error (MAE) was calculated for each sample size considered. For the function
λ(t) first the means of the estimated values at node points were calculated and the approximations
were based on these mean values. To check the fit of the approximation we estimated the deviation
in supremum norm from the true function. We remark that lifetimesT were generated with the help
of inversion method.

Example 5.1. Consider the Cox proportional hazards model with measurement error whereβ is
one-dimensional with true valueβ0 = 1, while λ0(t) = 10 + t. CovariateX and measurement
error U are both normal with means−4 and0 and standard deviations0.4 and0.1, respectively.
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Figure 1: Means, standard deviations and MAEs of the estimates of β.
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Figure 2: Estimates ofλ0(t) based on a) spline approximation; b) Chebyshev approximation.
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Figure 3: Detrended estimates ofλ0(t) based on a) spline approximation; b) Chebyshev approxi-
mation.

CensorC is defined on the interval[0, 10], and has a pdf of triangular shape, i.e.

fC(x) :=




x/50, if x ∈ [0, 10];

0, otherwise.

Using this settings approximately 25% of the lifetimes are censored. Sample size varies between
1000 and15000 with steps of1000 and the number of nodesm := ⌊log(n) + 0.5⌋, that is the
logarithm of the sample size rounded to the nearest integer.
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Figures 1a, 1b and 1c show the means, standard deviations andMAEs of the estimated values
of the parameterβ for both approximation methods, plotted versus the sample size. These figures
clearly show the convergence of the estimator to the true parameter value and also show a slight
advantage of the spline interpolation.

Concerning the other parameter, Figures 2a and 2b show the estimates ofλ0(t) based on spline
and Chebyshev approximation, respectively, for four different sample sizes, while on Figures 3a and
3b the detrended estimates, i.e. the deviations from the true parameter function, are given. Observe,
that Chebyshev approximation gives slightly better resultwhich is more clearly observable on Figure
4, where the deviations in supremum norm of the estimates from the trueλ0(t) are plotted versus
the sample size.

Example 5.2. Consider the settings of Example 5.1 but assume thatm := ⌊n1/3 + 0.5⌋, that is the
cube root of the sample size rounded to the nearest integer. In this case numberm of nodes increases
with the increase of the sample size more drastically than inExample 5.1, so e.g. for sample size
n = 15000 the order of the approximating polynomial in Chebyshev approximation is24. However,
the high order (in practice orders higher than20 should be avoided) induces some extra fluctuation
in the Chebyshev approximation and the results became worsethan the results for smaller sample
sizes. In this way large deviations ofλ0(t) from its estimator might be consequences of the error
of the approximation.

Naturally, for spline approximation the higher the number of nodes, the better results we obtain.
For this reason in the present example we consider only the results of the spline approximation.

Figure 5a shows the means, while 5b the standard deviations and the MAEs of estimates ofβ.
On Figures 6a and 6b the estimates ofλ0 and their detrended versions are plotted for four different
sample sizes, while Figure 7 shows deviations in supremum norm of the estimates from the true
baseline hazard. Comparing Figures 6a, 6b and 7 with Figures2a, 3a and 4, respectively, one can
clearly see the advantage of the increase of the nodes of spline approximation.
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Figure 4: Deviations in supremum norm of the estimates ofλ0(t) from the true function.



Simultaneous estimation in Cox hazards model . . . 91

2000 4000 6000 8000 10000 12000 14000
0.998

0.999

1

1.001

Sample size

M
ea

n
β

2000 4000 6000 8000 10000 12000 14000
0

0,01

0,02

0,03

0,04

0,05

Sample size

β

 

 

Standard deviation
MAE

a) b)

Figure 5: Means, standard deviations and MAEs of the estimates of β.

Example 5.3. Let the covariatesX, measurement errorsU and censorsC be the same as in
Example 5.1,β0 = 1 but now we have a Weibull hazard function, that isλ0(t) = 3/2t2. In this
case similarly to the previous examples approximately 25% of the lifetimes are censored. Sample
size varies between1000 and10000 with steps of500 and the number of nodesm := ⌊n1/3+0.5⌋.
We remark that compared to case of the linear baseline hazard, the optimization algorithm used
considerably fewer steps to find the optimal points of the objective function.

Again, on Figure 8a the means, while on Figure 8b the standarddeviations and the MAEs of
estimates ofβ are plotted against the sample size. Here one can clearly observe the convergence
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Figure 6: Estimates and detrended estimates ofλ0(t)
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Figure 7: Deviations in supremum norm of the estimates ofλ0(t) from the true function.

of the estimatorβ̂n. Further, Figures 9a and 9b show the estimates ofλ0(t) and their detrended
versions for four different sample sizes, while on Figure 10one can see the deviations in supremum
norm of the estimates from the true baseline hazard.

6 Conclusion

We dealt with Cox proportional hazards model under censoring and measurement error and proved
the consistency of simultaneous estimators of the baselinehazard function and regression param-
eters. The estimators are constructed via maximization over the infinite-dimensional compact set.
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Figure 8: Means, standard deviations and MAEs of the estimates of β.
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Figure 9: Estimates and detrended estimates ofλ0(t)

The recurrent algorithms for searching the maximum points are contained in [2] and can be applied
in this case.

In future research we intend to elaborate specific numericalmethods to compute the estimates.
Also we intend to give the rate of convergence in terms of deviation of the estimators from the true
values and show the asymptotic normality of some linear functionals of the estimators.

Besides this based on our simulation results we are also going to check the consistency for the
regression spline or polynomial interpolation estimatorsof λ.
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Figure 10: Deviations in supremum norm of the estimates ofλ0(t) from the true function.



94 Kukush, Baran, Fazekas, & Usoltseva

Acknowledgements

Research has been supported by the Hungarian Scientific Research Fund under Grant No. OTKA
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