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SUMMARY

Present article discusses the problem of simultaneous prediction of actual and average val-
ues of study variable in an ultrastructural measurement error model. Some prior infor-
mation is also available on regression coefficients of the model in terms of exact linear
restrictions. Some predictors are obtained and their properties are analyzed. The effect of
departure from normality of the distributions of measurement errors is also studied.
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1 Introduction

In regression analysis, we usually predict either the actual value of study variable or the average
value of study variable. It depends on the situation what we want to predict - the actual value or the
average value. In some situations, we may like to predict theboth simultaneously. For example, a
long term investor may like to predict the average price of a particular stock in a long run, while a
short term investor may like to predict the actual price of the stock, say, next year. Shalabh (1995)
proposed a target function for the simultaneous predictionof actual and average values of the study
variable. We use this target function for simultaneous prediction of actual and average value of study
variable in our model.

We consider a multiple linear regression model where the covariates are observed with mea-
surement errors. Presence of measurement errors in the observations is very common and obvious.
However, most of the times this fact is ignored and the statistical results which are obtained for
no measurement error situations are used. This leads to somewrong conclusions and may affect
the proceeds of analysts badly. The model, we consider here is called as ultrastructural measure-
ment error model and is a generalized measurement error model first proposed by Dolby (1976).
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In measurement error models, some additional information is required for consistent estimation of
parameters. Cheng and Van Ness (1999) and Fuller (1987) provide a detailed discussion on these ad-
ditional information about unknown parameters. In the present article, we use the common variance
of measurement errors for consistent estimation.

Sometimes, we are provided with some prior information on unknown regression coefficients.
This prior information may be coming from some similar analysis conducted in past or from the
experience of the analyst. We consider here that this prior information is available in the form of
exact linear restrictions on regression coefficients. It isalso common to assume normality of the
random terms in the model. The observed data may or may not have normal distribution. When
the observations are not normally distributed, the conclusions may be incorrect. We do not assume
any specific form of the distributions of the random terms in the model. We only assume the finite
existence of first four moments. Under this setup, Shalabh, Garg, and Misra (2007, 2009) provides
the consistent of regression coefficients. In the present article, we take the topic farther and obtain
the predictors to predict the actual and average values of study variable simultaneously. The effect of
departure from the normal distribution on the efficiency properties of obtained predictors is studied.
We obtain one unrestricted predictor and two restricted predictors and compare their efficiencies
through simulation. Asymptotic mean squared errors of the proposed predictors are obtained and
analyzed. A Monte-Carlo simulation experiment is conducted to study the sample properties of the
estimators and the effect of departure from normality of themeasurement errors on them is also
studied.

In Section 2 of this paper, we present the ultrastructural measurement error model and the re-
quired assumptions along with the target functions and linear restrictions on regression coefficients.
In Section 3, we obtain the predictors of target function andtheir asymptotic properties are discussed
in Section 4. Results of simulation study are presented in Section 5 followed by some concluding
remarks in Section 6.

2 Model and Target Function

We consider that the study variabley and the covariatesξ1, ξ2, . . . , ξp have the following relation-
ship:

y = ξ1β1 + ξ2β2 + · · ·+ ξpβp + ǫ,

whereβ1, β2, . . . , βp, are regression coefficients. For a sample of sizen, we write

y = Ξβ + ǫ, (2.1)

wherey is then× 1 vector ofn observations on study variabley andΞ = (ξij) is then× p matrix
of n observations on true covariatesξ1, ξ2, . . . , ξp andβ is p × 1 vector of regression coefficients,
ǫ = (ǫ1, ǫ2, . . . , ǫn)

′ is the vector of equation error. Due to the presence of measurement errors, we
can not observeΞ. Instead, we observeX as

X = Ξ+∆, (2.2)
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wherey is an× 1 vector of observed values on true study variable,X is an× p matrix of observed
covariates, and∆ = (δij) is a n × p matrix of measurement errors. We further consider that
ξij = µij + φij (i = 1, 2, . . . , n, j = 1, 2, . . . , p.), whereµij are unknown parameters whereφij

are independent and identically distributed (i.i.d.) random variables with mean zero. Thus, we can
express,

Ξ = M +Φ, (2.3)

whereM = (µij) andΦ = (φij) aren×p matrices. Equations (2.1)-(2.3) specify a multivariate ul-
trastructural model, Shalabh, Garg and Misra (2007, 2009).The ultrastructural model is a synthesis
of functional and structural forms of measurement error model. When all the row vectors ofM are
identical, then this implies that rows ofX are i.i.d. random vectors and we get the specification of
structural form of measurement error model. WhenΦ is identically equal to a null matrix implying
that the matrixX is fixed but is measured with error, then we obtain the specification of functional
form of measurement error model. When both∆ andΦ are identically equal to a null matrix, we
get the specification of classical regression model withoutany measurement error.

ǫi, (i = 1, 2, . . . , n) are assumed to be i.i.d. random variables with mean0 and variance
σ2
ǫ . Similarly, δij , (i = 1, 2, . . . , n; j = 1, 2, . . . , p) are assumed to be i.i.d. random variables

with mean0, varianceσ2
δ , third momentγ1δσ3

δ and fourth moment(γ2δ + 3)σ4
δ . Also, φij , (i =

1, 2, . . . , n; j = 1, 2, . . . , p) are assumed to be i.i.d. random variables with mean0, varianceσ2
φ,

third momentγ1φσ3
φ and fourth moment(γ2φ + 3)σ4

φ. Here,γ1 andγ2 represent the coefficients
of skewness and kurtosis, respectively. We also assume thatǫi, δij andφij are independent of each
other for alli andj andnth row of matrixM converges toσ′

µ.
Suppose that we wish to predict the value of study variabley0 for observed values on covariates

given byx0. Clearly,x0 is ap × 1 vector of observed values with measurement errorsδ0 for true
covariates given byξ0, i.e.,x0 = ξ0 + δ0. Elements ofδ0 have the same properties as possessed
by the elements of∆. Also, ξ0 = µ0 + φ0, whereµ0 is unknown constant vector and elements
of φ0 have the same properties as possessed by the elements ofΦ. We have the relationshipy0 =

x′

0β + (ǫ0 − δ′0β). Hereǫ0 is the equation error distributed with mean0 and varianceσ2
ǫ . For

some estimatêβ of unknownβ, the prediction of actual valuey0 is given byŷ0 = x′

0β̂. In some
situations, we like to predict the average value ofy0 in place of actual value. The average value of
y0 is given byE(y0|x0) = E(x′

0β + (ǫ0 − δ′0β)|x0) = x′

0β. Clearly, the average valueE(y0|x0)

is also estimated byx′

0β̂.
For the situations when it is required to predict both the actual value and average value of un-

knowny0 for givenx0, we define the target function:

T ≡ T (y0) = λy0 + (1− λ)E(y0|x0), (2.4)

where0 ≤ λ ≤ 1 is a real number specifying the weight assigned to the prediction of actual and
average values ofy0. For details, see Shalabh (1995) and Toutenburg and Shalabh(1997). Clearly,
for some estimatêβ of unknownβ, the estimate ofT (y0) is given byT̂ = x′

0β̂.
Further, we consider that some prior information about unknown regression coefficientsβ1, β2, . . . , βp,

is provided in terms of exact linear restrictions. This information is represented as

r = Rβ, (2.5)
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wherer is aJ × 1 known vector andR is aJ × p known full row rank matrix.
We aim to obtain predictor of target function under the exactlinear restrictions. In the next

section we see the inadequacy of the available predictors and provide the more suitable predictors.

3 Prediction

The ordinary least squares estimator (OLSE)b of β and the restricted least squares estimator (RLSE)
bR of β under restrictions (2.5) in a classical regression model without measurement errors are given
by

b = (X ′X)−1X ′y (3.1)

and
bR = b− {Ip − fR(X

′X)}(b− β) (3.2)

respectively, where the functionfR : Rp×p → R
p×p is defined as

fR(U) = Ip − U−1R′(RU−1R′)−1R, U ∈ R
p×p. (3.3)

It can be proved that plim
n→∞

b 6= β and plim
n→∞

bR 6= β as well. For proof, see Shalabh, Garg and Misra

(2007, 2009). Thus bothb andbR are inconsistent forβ under the model (2.1)–(2.3). The OLSEb
does not satisfy the restrictions (2.5), i.e.,Rb 6= r while RLSEbR satisfies the given restrictions,
i.e.,RbR = r. Therefore the predictorsx′

0b as well asx′

0bR are not suitable to predictT (y0).
It is well known that measurement error models are unidentifiable and some additional informa-

tion about unknown parameters is required for consistent estimation of regression coefficients. See
Cheng and Van-Ness (1999) and Fuller (1987) for details. Here we assume that common variance
σ2
δ of measurement errorsδij is known. Usingσ2

δ , Shalabh, Garg and Misra (2007) obtained some
consistent estimators ofβ under the exact linear restrictions given by (2.5). In the present article,
we use these estimators to obtain the predictors of target functionT (y0).

A consistent estimator ofβ in the model (2.1) - (2.3) for knownσ2
δ is given by

b
(1)
δ = (Ip − nσ2

δS
−1)−1b; (3.4)

see Shalabh (2003). Although, the estimatorb
(1)
δ is consistent for estimatingβ, it does not satisfy

the given linear restrictions (2.5). Estimate of target function usingb(1)δ is

T̂1 = x′

0b
(1)
δ . (3.5)

We wish to study the effect of linear restrictions on the predictors. Therefore, we wish to compare
the restricted predictor with unrestricted predictors obtained later in this section.

In order to obtain an estimator ofβ, that is consistent as well as satisfies the given linear restric-
tions (2.5), inconsistent estimatorb in bR is replaced by the consistent estimatorb

(1)
δ . This yields

the following estimator

b
(2)
δ = b

(1)
δ + S−1R′(RS−1R′)−1(r −Rb

(1)
δ ); (3.6)
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see Shalabh, Garg and Misra (2007, 2009). Since this estimator is consistent for estimatingβ
and also satisfies the restrictions (2.5), it is suitable forpredicting the target functionT (y0). Such
predictor of target function is

T̂2 = x′

0b
(2)
δ . (3.7)

Another restricted consistent estimator ofβ obtained by Shalbh, Garg and Misra (2007, 2009) is

b
(3)
δ = {Ip − nσ2

δfR(S)S
−1}−1bR. (3.8)

This estimator is obtained by adjusting the inconsistency in bR. We obtain another predictor of the
target function usingb(3)δ , which is

T̂3 = x′

0b
(3)
δ . (3.9)

Thus, we have three predictorŝT1, T̂2 andT̂3 of the target function (2.4). In the next section, we
analyze the efficiencies of these predictors.

4 Asymptotic Properties of Predictors

Following leamma is helpful in studying the asymptotic efficiencies of the predictorŝT1, T̂2 andT̂3.

Lemma 4.1. For l = 1, 2, 3, the asymptotic distributions of
√
n(b

(l)
δ −β) arep-variate normal with

mean vector0 and covariance matricesAlΩAl
′ where

A1 = (σµσ
′

µ − σ2
δIp)

−1

A2 = fR(σµσ
′

µ)(σµσ
′

µ − σ2
δIp)

−1

A3 = fR(σµσ
′

µ − σ2
δIp)(σµσ

′

µ − σ2
δIp)

−1

Ω = (σ2
ǫ + σ2

δ (β
′β))Σ + σ4

δββ
′ + γ1δσ

3
δ{f(σµe

′

p,ββ
′)

+
(

f(σµe
′

p,ββ
′)
)

′}+ γ2δσ
4
δf(Ip,ββ

′),



































, (4.1)

ep is ap× 1 vector of1’s andfR(·) is defined in (3.3).

Proof See Shalabh, Garg and Misra (2007). �

Following theorem gives the asymptotic mean squared errorsof the predictorŝT1, T̂2 andT̂3.

Theorem 1. Conditional asymptotic mean squared errors ofT̂l (l = 1, 2, 3) for knownx0 are

lim
n→∞

MSE(T̂l|x0) = λ2
(

σ2
ǫ + σ2

δβ
′β
)

. (4.2)

Proof We have from (2.4),

T = λy0 + (1− λ)x′

0β

= λ (x′

0β + (ǫ0 − δ′0β)) + (1− λ)x′

0β

= x′

0β + λ (ǫ0 − δ′0β)
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For l = 1, 2, 3, we write

T̂l − T = x′

0(b
(l)
δ − β) + λ (ǫ0 − δ′0β)

So,

(T̂l − T )2 = [x′

0(b
(l)
δ − β)]2 + λ2 (ǫ0 − δ′0β)

2

= x′

0(b
(l)
δ − β)(b

(l)
δ − β)′x0 + λ2 (ǫ0 − δ′0β)

2

= trace[x′

0(b
(l)
δ − β)(b

(l)
δ − β)′x0] + λ2 (ǫ0 − δ′0β)

2

= trace[(x0x
′

0)(b
(l)
δ − β)(b

(l)
δ − β)′] + λ2 (ǫ0 − δ′0β)

2

Taking conditional expectation for knownx0, we have

E[(T̂l − T )2|x0] = trace[E{(x0x
′

0)(b
(l)
δ − β)(b

(l)
δ − β)′|x0}] + λ2

(

σ2
ǫ + σ2

δβ
′β
)

= trace[(x0x
′

0)E{(b(l)δ − β)(b
(l)
δ − β)′}] + λ2

(

σ2
ǫ + σ2

δβ
′β
)

= trace[
1

n
(x0x

′

0)E{n(b(l)δ − β)(b
(l)
δ − β)′}] + λ2

(

σ2
ǫ + σ2

δβ
′β
)

,

for l = 1, 2, 3. Conditional asymptotic mean squared errors ofT̂1, T̂2 andT̂3 for knownx0 are given
by

lim
n→∞

MSE(T̂l|x0) = lim
n→∞

E[(T̂l − T )2|x0]

= lim
n→∞

trace[
1

n
(x0x

′

0)E{n(b(l)δ − β)(b
(l)
δ − β)′}] + λ2

(

σ2
ǫ + σ2

δβ
′β
)

.

From Lemma (4.1), it is clear thatlimn→0 E{n(b(l)δ −β)(b
(l)
δ −β)′} = AlΩAl

′ for l = 1, 2, 3.
Thus for knownx0, we get

lim
n→∞

MSE(T̂l|x0) = λ2
(

σ2
ǫ + σ2

δβ
′β
)

,

for l = 1, 2, 3. �

Thus, the asymptotic mean squared errors (MSE) of all three predictorsT̂1, T̂2 andT̂3 for given
x0 are the same. However, it could be noted that the MSE is affected by the constantλ. Recall that
0 ≤ λ ≤ 1 is a real number specifying the weight assigned to the prediction of actual and average
values ofy0. Clearly, forλ = 0, this MSE is zero. Whenλ = 0, predicting target function is same
as predicting average value of study variable. Also note that the asymptotic MSE of these predictors
is not affected by the skewness and kurtosis of the distribution of measurement errors. Some more
insight of the behavior of MSE is studied through Monte-Carlo simulation in the next section.

Also, we have not obtained asymptotic bias of these predictors. Cheng and Kukush (2006)
proved that the first moment ofb(1)δ does not exist. Because of the relationship ofb

(2)
δ andb(3)δ on

b
(1)
δ , it looks that the first moment of later estimators also do notexist. Therefore, we have doubt on

the existence of the first moment of out predictors. Simulation study conducted in the next section
confirms this doubt.
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5 Simulation Study

In order to study efficiencies of the predictorsT̂1, T̂2 andT̂3, we conducted a Monte-Carlo simulation
study. We adopted various combinations of values ofβ, σ2

ǫ , σ2
φ, σ2

δ . In order to observe the effect of
departure from normality in terms of skewness and kurtosis,we adopted Normal distribution (having
zero skewness and zero kurtosis), Student’st distribution with degree of freedom12 (having zero
skewness but non-zero kurtosis), and Gamma Distribution (having both non-zero skewness and non-
zero kurtosis).

The random observationsǫi, φij , andδij , i = 1, 2, . . . , n, j = 1, 2, . . . , 5, are generated and
transformed suitably to have zero mean and specified variances. A new vector-valued observed
covariatex0 and corresponding value of study variabley0 is fixed in advance. For various values
of λ, the target functionT is calculated. The value of predictorŝT1, T̂2 and T̂3 are computed for
various combinations of parametric values.

We obtained absolute bias (AB)of the predictorsT̂1, T̂2 and T̂3 empirically based on100, 000
repetitions under aforesaid distributional assumptions and for various combinations of parametric
values. For an estimator̂T of the regression coefficientsT and for a fixed parametric value, the
absolute bias of̂T is defined as

AB(T̂ ) =

√

(

E(T̂ − T )
)

′
(

E(T̂ − T )
)

. (5.1)

We observe that these AB do not converge to anywhere and are vague in nature. Cheng and Kukush
(2006) proved that the moments of the estimatorb

(1)
δ do not exist. Since the estimatorsb(2)δ , and

b
(3)
δ are related tob(1)δ , there is a doubt on the existence of moments ofb

(2)
δ andb(3)δ . The simulation

findings support this doubt. Therefore, to study the small sample properties of these estimators we
consider the criteria of absolute median bias which is defined as

AMdB(T̂ ) =

√

(

Median(T̂ )− T
)

′
(

Median(T̂ )− T
)

. (5.2)

In order to study the efficiencies of the predictorsT̂1, T̂2 andT̂3, we obtain mean squared error
(MSE) empirically based on100, 000 repetitions under aforesaid distributional assumptions and for
various combinations of parametric values. For an estimator T̂ of the regression coefficientsT and
for a fixed parametric value, the MSE ofT̂ is defined as

MSE(T̂ ) = E
(

(T̂ − T )′(T̂ − T )
)

. (5.3)

In order to save space, here we present only few important outcomes of simulation in Tables 1–
6. From out simulation study, we observe that absolute median bias of restricted predictorŝT2

and T̂3 are approximately the same. It is not clear, which predictoris having the least bias. For
sample size 50, all three absolute bias are approximately the same. AMdB are minimum under
normal distribution and much larger in case of Gamma andt distribution. The varianceσ2

δ affects
the AMdB in the positive direction in case of Gamma andT distributions and not in case of normal
distribution. The values ofλ have significant effect on AMdB of these predictors.

We also observe that mean squared error (MSE) is the highest for unrestricted predictor̂T1,
while it is approximately the same for restricted predictors T̂2 andT̂3. For sample size 50, all three
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MSE are approximately the same. The varianceσ2
δ affects the MSE in the positive direction. The

values of MSE are minimum under normal distribution and muchlarger in case of Gamma andt
distribution. The values ofλ have significant effect on MSE of these predictors. MSE are highest
whenλ = 1. From Theorem 1, it is clear that asymptotic MSE are zero for all three predictors when
λ = 0. However, for sample size 20 and 50, simulation does not suggest that. It means that the
small sample behavior of these predictors are very different than that in large sample case and larger
sample is required for the convergence of MSE.

In order to provide a straightaway idea of the properties of obtained estimators, the AMdB of
the estimators are shown in Figures 1 – 6 and MSE of the estimators are shown in Figures 7 – 12.

Table 1: Absolute Median bias (AMdB) of̂Tl, l = 1, 2, 3, when(ǫ,φ, δ) have normal distribution

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 0.5

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 0.691 0.004 0.011 0.108 0.001 0.002

0.250 2.219 2.904 2.914 2.851 2.917 2.910

0.500 4.421 3.397 3.391 3.577 3.384 3.390

0.750 0.026 0.820 0.824 0.675 0.826 0.823

1.000 0.232 0.824 0.824 0.713 0.824 0.825

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 1.25

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 1.103 0.011 0.007 0.274 0.010 0.000

0.250 1.583 0.423 0.421 0.218 0.420 0.421

0.500 4.586 3.214 3.156 3.479 3.119 3.141

0.750 1.634 0.491 0.490 0.134 0.489 0.490

1.000 1.525 0.348 0.329 0.556 0.321 0.328
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Table 2: Absolute Median bias (AMdB) of̂Tl, l = 1, 2, 3, when(ǫ,φ, δ) have Gamma distribution

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 0.5

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 0.834 0.001 0.003 0.017 0.278 0.273

0.250 1.033 0.285 0.293 0.168 0.003 0.004

0.500 0.209 0.871 0.877 0.686 0.868 0.865

0.750 2.395 1.375 1.356 1.492 1.347 1.354

1.000 4.176 3.171 3.168 3.405 3.174 3.175

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 1.25

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 2.364 0.242 0.075 0.479 0.047 0.026

0.250 0.391 1.217 1.088 0.486 1.046 1.079

0.500 4.430 0.778 0.782 1.892 0.783 0.782

0.750 6.268 7.965 7.981 7.487 7.985 7.980

1.000 8.435 9.204 9.317 9.198 9.333 9.310

6 Concluding Remarks

We defined a target function given byT in (2.4) for simultaneous prediction of actual and average
value of the study variable in an ultrastructural measurement error model. We also assumed that
some prior information on regression coefficients is available in terms of exact liner restrictions
given by (2.5). We obtained one unrestricted predictor given by T̂1 and two restricted predictorŝT2

andT̂3 of the target functionT . Asymptotic mean squared errors of these predictors are obtained in
Theorem 1 and are the same. However, the simulation study suggest they are not the same even for
a sample size of 50. The outcome of simulation study clearly suggest that restricted predictorŝT2

andT̂3 are far efficient than unrestricted predictorT̂1. The distributions of measurement errors also
play an important role in the efficiency of these predictors.Although, the effect of departure from
normality is not present in asymptotic mean square errors, it can clearly be noticed in simulation
results. The variance of measurement errorsσ2

δ affects the efficiencies of these predictors; larger
the variance, lesser the efficiency. The constantλ also affect the efficiency of the predictors. The
direction of the effect is not very clear for as large sample size as 50. However, the change is in
positive direction asymptotically.

Thus, in the situations when some prior information about regression coefficients is available
in terms of exact linear restrictions and we wish to predict the actual value and average values
simultaneously, we recommend the usage ofT̂2 or T̂3. The efficiency properties of the restricted
estimators,̂T2 or T̂3 are almost the same.
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Table 3: Absolute Median bias (AMdB) of̂Tl, l = 1, 2, 3, when(ǫ,φ, δ) have Student’st distribu-
tion with 12 d.f.

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 0.5

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 0.792 0.005 0.001 0.123 0.003 0.001

0.250 0.524 1.205 1.213 1.092 1.219 1.213

0.500 0.636 1.454 1.460 1.344 1.458 1.452

0.750 3.927 4.709 4.713 4.633 4.734 4.725

1.000 2.212 1.490 1.489 1.576 1.481 1.486

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 1.25

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 1.598 0.029 0.002 0.523 0.012 0.003

0.250 3.748 2.099 2.050 2.517 2.037 2.051

0.500 1.237 1.271 1.423 0.823 1.495 1.441

0.750 7.677 5.971 5.899 6.403 5.880 5.898

1.000 9.404 7.367 7.290 7.795 7.267 7.292

Table 4: Mean squared error (MSE) ofT̂l, l = 1, 2, 3, when(ǫ,φ, δ) have normal distribution

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 0.5

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 7.937 0.489 0.468 1.418 0.174 0.171

0.250 19.072 9.064 9.015 8.884 8.514 8.469

0.500 21.058 11.562 11.508 12.797 11.454 11.494

0.750 14.153 0.755 0.744 2.742 0.683 0.679

1.000 10.049 0.680 0.680 2.155 0.679 0.680

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 1.25

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 127.514 0.780 0.462 12.514 0.174 0.158

0.250 81.947 0.183 0.177 7.559 0.176 0.178

0.500 4.586 3.214 3.156 13.921 9.744 9.868

0.750 117.297 0.242 0.240 11.650 0.239 0.240

1.000 56.050 0.691 0.432 6.167 0.203 0.189
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Table 5: Mean squared error (MSE) ofT̂l, l = 1, 2, 3, when(ǫ,φ, δ) have Gamma distribution

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 0.5

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 10.953 0.079 0.076 2.078 0.285 0.282

0.250 11.319 0.745 0.708 1.957 0.027 0.027

0.500 14.954 0.805 0.867 2.848 0.753 0.749

0.750 23.824 3.279 3.125 5.526 1.985 1.994

1.000 23.397 10.052 10.038 11.674 10.074 10.792

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 1.25

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 100.626 28.790 17.315 12.368 6.664 5.975

0.250 112.347 7.343 4.458 11.227 2.064 1.956

0.500 169.533 0.608 0.611 18.057 0.612 0.611

0.750 148.767 63.494 63.706 57.191 63.752 63.683

1.000 122.693 87.073 86.887 84.718 87.109 86.677

Table 6: Mean squared error (MSE) ofT̂l, l = 1, 2, 3, when(ǫ,φ, δ) have Student’st distribution
with 12 d.f.

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 0.5

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 14.712 0.803 0.765 2.658 0.281 0.275

0.250 6.587 1.839 1.791 1.822 1.494 1.482

0.500 15.500 2.807 2.739 3.939 2.155 2.140

0.750 21.592 22.185 22.211 21.462 22.414 22.324

1.000 11.541 2.395 2.353 3.399 2.193 2.209

σ2

ǫ = 0.5, σ2

φ = 0.5, σ2

δ = 1.25

n = 20 n = 50

λ T̂1 T̂2 T̂3 T̂1 T̂2 T̂3

0.000 78.427 0.948 0.595 6.613 0.224 0.204

0.250 111.859 5.510 4.424 12.249 4.161 4.210

0.500 82.781 20.503 12.840 8.525 5.670 5.175

0.750 93.317 36.913 34.872 41.047 34.582 34.792

1.000 192.283 56.791 53.266 61.289 52.816 53.166
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(a)n = 20 (b) n = 50

Figure 1: AMdB ofT̂1, T̂2, T̂3 in case of normal distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 0.5

(a)n = 20 (b) n = 50

Figure 2: AMdB ofT̂1, T̂2, T̂3 in case of normal distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 1.25

(a)n = 20 (b) n = 50

Figure 3: AMdB ofT̂1, T̂2, T̂3 in case of Gamma distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 0.5



Simultaneous predictions under exact . . . 151

(a)n = 20 (b) n = 50

Figure 4: AMdB ofT̂1, T̂2, T̂3 in case of Gamma distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 1.25

(a)n = 20 (b) n = 50

Figure 5: AMdB ofT̂1, T̂2, T̂3 in case oft(12) distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 0.5

(a)n = 20 (b) n = 50

Figure 6: AMdB ofT̂1, T̂2, T̂3 in case oft(12) distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 1.25
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(a)n = 20 (b) n = 50

Figure 7: MSE ofT̂1, T̂2, T̂3 in case of normal distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 0.5

(a)n = 20 (b) n = 50

Figure 8: MSE ofT̂1, T̂2, T̂3 in case of normal distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 1.25

(a)n = 20 (b) n = 50

Figure 9: MSE ofT̂1, T̂2, T̂3 in case of Gamma distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 0.5
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(a)n = 20 (b) n = 50

Figure 10: MSE ofT̂1, T̂2, T̂3 in case of Gamma distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 1.25

(a)n = 20 (b) n = 50

Figure 11: MSE ofT̂1, T̂2, T̂3 in case oft(12) distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 0.5

(a)n = 20 (b) n = 50

Figure 12: MSE ofT̂1, T̂2, T̂3 in case oft(12) distribution withσ2
ǫ = 0.5, σ2

φ = 0.5, σ2
δ = 1.25
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