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SUMMARY

Deciding on the number of latent factors or classes is a critical issue in statistical analyses
such as factor analysis and finite mixture analysis. No new progress hasbeen made in
recent years with least-squares MDS analysis. In this paper, we proposed the use of parallel
analysis, in addition to the conventionally used stress value, for determiningthe number
of dimensionalities or profiles to retain in MDS analysis. Using two actual datasets, we
demonstrated the approach. The results indicated that parallel analysis seemed to be viable
in MDS model selection.
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1 Introduction

Model selection is an important first step in many statistical analyses. For example, in principal
component analysis (PCA) or factor analysis (FA), one always needs to determine the number of
components or factors that underlie the data, a critical task the researcher encounters when using
these analytical techniques. What is typically believed is that an incorrect decision may lead to
the either under-extraction (i.e., loss of information) orover-extraction (i.e., inclusion of spurious
factors or components) of the data at hand. In the case of over-extraction, one tends to attach mean-
ing to noise in the data, resulting in the interpretation of random variation that affects subsequent
analyses. Another example is finite mixture modeling such aslatent class analysis, factor mixture
analysis, or growth mixture modeling. However, regardlesstypes of analysis approaches used such
as confirmatory-oriented approach with structural equation modeling or exploratory-oriented ap-
proach with multidimensional scaling analysis, a continuing issue is how to determine the numbers
of latent classes (i.e., unobserved subgroups) in the data since latent classes are used for interpreting
results and making inferences. In general, issues for determining the number of factors, components,
or classes are known as model selection (e.g.,Schwarz, 1978).

Many empirical studies have devoted much effort to find statistical procedures that allow select-
ing the best model that represents the data. For statisticalanalyses employing maximum likelihood
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estimation, one of the most studied statistical proceduresused for model selection is information cri-
terion such as Akaike Information Criterion (AIC; Akaike, 1974), Bayesian information Criterion
(BIC; Schwarz, 1978), or different variants of AIC or BIC related statistics. Another technique for
model selection is likelihood ratio test such as Lo-Mendell-Rubin likelihood ratio test (Lo, Mendell,
and Rubin, 2001), or bootstrap likelihood ratio test method(McLachlan and Peel, 2000). Although
there is no common consensus yet with respect to which index is the best in determining the approx-
imating model given the data, much of the progress has been made in the area of model selection.

In contrast, the development of model selection for statistical techniques that employ least
squares estimations has not shown any noticeable progress,particularly for least-squares multidi-
mensional scaling analysis (MDS). One reason may be that MDSmodels have not been widely used
in social science research in recent years, and the utility of MDS analysis, although proven useful to
researchers in different fields of science, including education, health, marketing, psychology, and so-
ciology, is not well understood. However, MDS models have different applications, and it has been
used to study such things as the perceptional structure of people (e.g., Goodrum, 2001; McWhirter,
Palombi, and Garbin, 2000), vocational interest of collegestudents (Johnson, 1995), test content and
validity (Sireci and Geisinger, 1992), and cognitive organization of perceptions (Treat et al., 2002).
More recently, MDS analysis has been developed for latent profile analysis (Davison, Gasser, and
Ding, 1996; Ding, 2006; Kim, Davison, and Frisby, 2007) and exploratory growth mixture anal-
ysis (Ding, 2007a; Ding, 2007b). These developments, particularly exploratory growth modeling,
have expanded our vision on how to explore growth heterogeneity underlying the data structure and
provided complimentary analytical techniques to more confirmatory-based modeling approaches.

Regardless of any specific applications or purposes of MDS analysis, however, the first step
in conducting MDS analyses is to determine the number of dimensions needed to characterize the
distance data. This is the issue of model selection, an issuethat has been studied in many other
statistical modeling procedures as discussed previously.In the case of MDS analysis, there is a
set of alternative distance models, each with a different number of dimensions, also called profiles,
as potential approximations to the distance data. From the perspective of finite mixture modeling,
different number of dimensions or profiles in MDS can be considered to summarize characteristics
of subgroups in the data, with each subgroup showing a uniqueprofile as measured by a particular
set of variables. One generally does not know the proper number of dimensions or profiles,K, with
which to represent the distance data for all possible pairs of v stimuli or v variables to be scaled.
In other words, we seek a solution that parsimoniously approximates the distance data as closely as
possible, and at the same time the model will provide a good summary of individual differences. In
least-squares MDS, the most common measure for model selection is stress value (Kruskal, 1964a)
or a closely related measure called S-Stress value (Young and Lewyckyi, 1988). No new progress
has been made in this regard.

Specifically, Kruskal’s Stress formula one (S1) can be expressed as

S1 =

√

∑

(δ̂ij − dij)2
∑

d2ij
, (1.1)

whereδ̂ij is disparities anddij is model estimated distance. In many MDS applications Stress is both
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the fit measure minimized by the estimation algorithm and theprimary index used in model selection
for models constructed in each of several spaces of varying dimensionalities. In least-squares MDS,
Stress value is a normalized sum of squared discrepancies between the observed distance data points
δ and the model derived data pointsd. The smaller the stress value, the better is the fit of the model
to the data. Kruskal (1964b) suggests that a value ofK (number of dimensions) be chosen which
makes the stress value acceptably small. The benchmarks he suggested based on his experiences
with simulation data were: .20 = poor fit, .10 = fair, .05 = good, .025 = excellent, 0 = perfect.
In MDS analysis, this rule of thumb has often been used for selecting the number of dimensions.
Such criteria, however, may lead to misuse by suggesting that only dimension or profile solutions
with stress values less than .20 are acceptable (Borg and Groenen, 2005) and may lead to arbitrary
decisions. For instance, it is difficult to decide whether a 3-dimensional model with a Stress value
of .025 is a better model than a 4-dimensional model with a Stress value of .02. In addition, Stress is
closely related to the proportion of error in the data, and itis possible that an MDS configuration is
highly reliable over replications of data but with a high stress value (Borg and Groenen, 2005; Cox
and Cox, 1992).

Sometimes a scree plot of Stress or eigenvalues against the number of dimensions is also used
for visual inspection of elbow in the plot (Davison, 1983), similar to the use of scree plot in factor
analysis. In this method, however, there sometimes is no clear cutoff point for elbow, leading to
solution ambiguity and interpretation difficulty. This is because that in real data that do not conform
exactly to the model or in which there is measurement or sampling error, elbow may be hard to
discern. More importantly, a scree plot is simply a plot of Stress values, which may not provide
more objective determination on the number of dimensions inMDS analysis.

So far, all the statistics used for model selection in least-squares MDS are based on a model-
data fit approach; in other words, we are trying to identify a model with a statistic that shows the
best fit between the model and the data. In this paper, we discussed a Monte Carlo method, called
Parallel Analysis, as a statistical approach for MDS model-data fit measure in deciding the best
approximating model for the data at hand. The idea was based on that of parallel analysis in factor
analysis for determining number of factors to retain.

This paper was organized as follows. First, we introduced the basic principles of parallel analysis
and its application in MDS analysis. Because parallel analysis was new in MDS, we discussed
it more in detail. Second, we presented two examples of real datasets to illustrate the analytical
approach proposed here. We used two studies that had a theoretically known dimensionality rather
than artificial data. As indicated by Cudeck and Henly (2003), there were no true models to discover.
Instead, a model was to summarize and formalize the behavioral processes and to make predictions
even if the model was false. Any model selection procedures were to help researchers to make more
objective decisions as to the best approximating model for such a purpose rather than find the true
model. Thus, using real data rather than artificial data may provide a more realistic view of how
parallel analysis could function in this regard. It should be noted that the main point of the paper
was to illustrate parallel analysis as a potential model selection tool in MDS analysis. More in-depth
studies of parallel analysis in MDS model selection were complex and warranted separate studies.
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2 Basic Idea of Parallel Analysis in MDS

Originally parallel analysis was proposed to determine thenumber of factors that underlay the data
in factor analysis (Horn, 1965) based on the generation of simulation data. It has been suggested
that parallel analysis is a promising technique for model selection in factor analysis (Humphreys
and Ilgen, 1969; Humphreys and Montanelli, 1975; Linn, 1968; Weng and Cheng, 2005) and is
considered a better model-selection method in comparison with other methods such as eigenvalues-
greater-than-one, scree plot, or minimum average partial test (Glorfeld, 1995; Zwick and Velicer,
1986). In factor analysis parallel analysis involves the factoring simulated variance-covariance ma-
trix or correlation matrix (including tetrachoric or polychoric correlation) identical with respect to
the number of variables and the number of cases as the original data matrix. Perhaps it is called
parallel analysis for this reason. In a sense, parallel analysis is a Monte Carlo simulation procedure
in which simulated eigenvalues are computed from normal random samples that mirror the real data
at hand; in other words, parallel analysis not only models the same number of cases and variables as
the original data, but also the same marginal distributionsof the variables as well. In model building
both over- and under-estimation may be made when the decision is based on a single sample of data
(Humphreys and Montanelli, 1975). Thus, a Monte Carlo method provides a secondary useful crite-
rion since a large number of parallel data sets are used, and in some cases rather than generating data,
a permutation test approach is used in which individual variable values are mixed with one another
to create the synthetic data. A factor is retained when the corresponding eigenvalue is greater than
the mean or median of those computed from the simulated data.Glorfeld (1995) has also suggested
to use the eigenvalue that corresponds to a particular percentile; in other words, a factor is retained
when the associated eigenvalue is greater than, for instance, the 95th percentile of the distribution
of eigenvalues from simulated data. It seems that most authors now only suggest using a particular
percentile for parallel analysis, rather than the mean or median.

Given the sound rational and proved usefulness of parallel analysis in determining number of
factors in the data (Buja and Eyuboglu, 1992; Glorfeld, 1995; Humphreys and Montanelli, 1975;
Weng and cheng, 2005; Zwick and Velicer, 1986), it is feasible to adapt parallel analysis in MDS
analysis for model selection, that is, number of dimensionsor profiles to retain in MDS analysis.
Since the idea of parallel analysis in factor analysis is based on the criterion of variance that can
be accounted for by a specific number of factors in observed data with that in simulated data, this
logic can also apply to MDS analysis, which has the same goal of explaining maximum amount
of variance in the data by a specific number of dimensions or profiles. Thus, it seems reasonable
that the method of parallel analysis can be used in MDS analysis. Although the mathematics of the
method is not new, the approach is new for MDS analysis.

In factor analysis, eigenvalues are obtained from a correlation matrix, a covariance matrix, or a
cross-product matrix. In MDS analysis, however, a distancematrix is typically used as input data.
In order to obtain eigenvalues associated with each dimension, observed distance matrixD needs
to be converted into an equivalent cross-product matrix andthen eigenvalue of each dimension can
be computed based on this transformed cross-product matrix(Abdi, 2007)1. Specifically, the cross-

1The proof is provided by Abdi (2007) on how distance matrix canbe transformed into a cross-product matrix, which can
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product matrixS can be obtained from distance matrixD as:

S = −
1

2
∈ D ∈

T , (2.1)

where∈= I − 1mT andm is called by Abdi (2007) a mass vector (i.e., a vector of 1/number of
variables) whosev elements give the mass of thev rows of distance matrix,D, which is calculated
between data points,yi andyj , for v variables as:

dij =

√

√

√

√

v
∑

j=1

(yi − yj)2. (2.2)

and this observed distancedij is assumed equal to distancesδij in m Euclidean space with co-
ordinatexik andxjk, which represents the configuration of variables in the geometric space, that
is:

dij = δij =

√

√

√

√

m
∑

k=0

(xik − xjk)2. (2.3)

The elements of∈ are all positive and their sum is equal to one; that is,mTI = 1. The eigen-
decomposition of the cross-product matrixS gives:

S = UΛUT , (2.4)

whereUUT = I and is diagonal matrix of eigenvalues. Thus, one can computeeigenvalues of
dimensions for both observed data at hand and those from simulated data. A dimension with cor-
responding eigenvalue that is greater than median or the 95th percentile of simulated eigenvalues
will be retained. The parallel plot (Ledesma and Valero-Mora, 2007) can be used to graph the ob-
served eigenvalues from the actual data and the estimated ones from the simulation data. The point
at which the two lines of eigenvalues cross indicates the number of dimensions to retain in MDS
analysis. Thus parallel analysis provides a more objectivemethod to assess model-data fit in MDS.

In the following sections, we employed two actual studies todemonstrate how one could em-
ploy parallel analysis in determining the number of dimensions or profiles to retain in MDS. The
first data was on student math achievement over a four-year period, and the second data was on
student reported vocational interest as assessed via Strong-Campbell Interest Inventory (Campbell
and Hansen, 1985). All the analyses were performed using SASsoftware package.

3 Examples

3.1 Profiles of Strong-Campbell vocational interest

The data in this example were from the Minnesota Vocational Assessment Clinic at the University
of Minnesota. The sample used here contained 328 participants with no missing values. The reason

also be transformed back to distance matrix.



24 Ding

for using theStrong-Campbell Interest Inventory in this paper was that the instrument has a well-
known two-dimensional MDS structure (Hogan, 1983; Prediger, 1982). The variables were mea-
sures of the six General Occupational Themes of theStrong-Campbell Interest Inventory (Campbell
and Hansen, 1985): Realistic (practical, hands-on, action-oriented), Investigative (abstract, ana-
lytical, and theory-oriented), Artistic (imaginative andpreferences for literary, musical, or artistic
activities), Social (preferences for helping, teaching, treating, counseling, or serving others through
personal interaction), Enterprising (preferences for persuading manipulating, or directing others),
and Conventional (preferences for establishing or maintaining orderly routines, applications of stan-
dards). According to Holland (1973), these six measures form a two-dimensional hexagonal model.
While Holland did not name the two dimensions, others did, andthe theoretical patterns of these
interests are: (1) highest scores on the Realistic and Investigative scales and lowest scores on the
Enterprising and Social scales and (2) highest scores on theArtistic scale and lowest scores on the
Conventional scale (e.g., Hogan, 1983).

The parallel analysis was performed using the actual sampleand 1,000 random samples drawn
from N(0, σ2) that mirrored the actual sample with respect to sample size and the number of vari-
ables. In the analysis, eigenvalues were computed using cross-product matrix converted from dis-
tance matrix based on Equation (2.1). The eigenvalues greater than the95th percentile from 1,000
random samples were obtained and used as a comparison baseline. The parallel plot of the 95th per-
centile simulated eigenvalues along with the observed eigenvalues from the actual data was used in
model selection. Figure 1 shows the parallel plot. In the plot, the dimension with eigenvalue greater
than the point at which the two lines crossed each other was retained. As can be seen in Figure 1,
two dimensions had eigenvalue that was greater than the 95thpercentile of simulated eigenvalues,
suggesting a two-dimensional model fit the data. In contrast, the stress value was .013, .009, .005,
and .001 for a one-, two-, three- and four-dimensional solution, respectively. Based on the cutoff
point suggested by Kruskal (1964b), the stress value below .025 indicates an excellent fit of the
model. Accordingly, all three models could provide an excellent fit for the current data, leading to
an ambiguity with respect to the appropriate number of dimensions to retain. Similarly, the Bayesian
dimension selection criterion, MDSIC, from Bayesian MDS analysis (Oh and Raftery, 2001; Okada
and Shigemasu, 2009) of one to four dimensions was 144.38, 136.21, 128.81, and 121.53, respec-
tively. This set of MDSIC values suggested a four-dimensional MDS model since it had the smallest
value.

Based on these findings, the result from parallel analysis was consistent with the theoreti-
cal expectation of two-dimensional MDS structure. Dimensionalities more than two led to non-
interpretable dimensions, which were illustrated in Figure 2. Figure 2 shows a configuration of
four-dimensionality vocational interests. The interesting part of Figure 2 was that dimensions 1 and
2 represented the vocational interest suggested by Hogan (1983), with Dimension 1 being highest
scores on the Realistic and Investigative scales and lowestscores on the Enterprising and Social
scales and Dimension 2 being highest scores on the Artistic scale and lowest scores on the Conven-
tional scale. It seemed that MDS parallel analysis identified these two nontrivial dimensionalities
underlying the data structure. On the other hand, Dimensionalities of 3 and 4 did not suggest any in-
terpretable vocational interest patterns, reflecting perhaps random noise in the data. Thus, we would
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Figure 1: Parallel plot for vocational interest data. The first two profiles have eigenvalues greater
than the 95th percentile of the simulated eigenvalues.

retain these two dimensions for interpretation and for subsequent analyses such as examining how
these two profiles were associated with some personality variables.

Figure 2: Four profiles of vocational interests.

3.2 Profiles of student math achievement patterns

In this second example, we presented a dataset that contained student math achievement over a four-
year period. The data in this example were individual test scores from the SAT 9 mathematics test
administered between 1997 and 2000 to a cohort of 337 grade 3 students in a school district from a
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southwestern state in the U.S. These students in grade 3 cohort were tested at 3rd, 4th, 5th, and 6th
grade. Specifically from 1997 to 2000, students in the samplewere annually tested in mathematics
using the standardized, nationally norm-referenced Stanford Achievement Test, 9th edition (SAT-9
Math) as part of a larger effort to monitor the progress of elementary school students toward mas-
tering mathematics knowledge from one year to the next. The SAT-9 is a widely used achievement
test published by Harcourt Brace Educational Measurement in the U.S. It was designed to mea-
sure achievement in the curriculum content commonly taughtin grades 1 through 9 throughout the
United States. The test results of SAT-9 Math were also used as an indicator that students were mak-
ing Annual Yearly Progress, AYP. For the purpose of comparing a student’s progress from one year
to the next, the test scores were vertically scaled across multiple measurements so that the scores
were comparable over time.

The research question was: how did student math achievementchange over these four years?
Did all of them have increased math achievement, how much wasthe increase? Were there any
improvements needed to be made? These questions had practical implications for the school district
in terms of its school improvement plan and teaching and learning interventions. To address these
issues related to growth, we conducted MDS profile growth analysis to explore the growth profiles
underlying the data. Using MDS for growth modeling were investigated by Ding and his associates
(Ding, Davison, and Petersen, 2005) and it was shown to be a viable alternative for studying change
and growth. As in Example 1, the first task was to determine thenumber of growth profiles that
might best approximate the data. The result from parallel analysis with 1,000 simulated samples in-
dicated that model with one growth profile fit the data under the inquiry. Figure 3 shows the parallel
plot of the analysis, and one profile clearly had an eigenvalue greater than the 95th percentile of sim-
ulated eigenvalues. In contrast, the Stress value from MDS analysis of one- to three-dimensions was
.011, .007, and .003, respectively, providing no clear indication of appropriate number of dimensions
based on the cutoff point of .025 as suggested by Kruskal (1964a). The Bayesian dimension selec-
tion criterion, MDSIC, was 132.21, 115.68, and 109.52 for one- to three-dimension, respectively,
indicating a three-dimensional MDS structure, which was inconsistent with what we expected.

Table 1 shows the scale values of math achievement over a four-year period. This profile showed
that the students in the grade 3 cohort had a linear increase in math achievement from 1997 to 2000,
with percentage of increase being 40% in the 1998, 31% in 1999, and 29% in 2000, respectively.

Table 1: Scale Values of Math Achievement of Students in a Grade 3 Cohort

Time Scale Vales

1997 -1.42

1998 -0.35

1999 0.49

2000 1.28
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Figure 3: Parallel plot for math achievement data. The first profile has eigenvalue greater than the
95th percentile of the simulated eigenvalues.

4 Conclusion

In the paper, we suggested using parallel analysis as a MDS model-data fit criterion for determining
the number of dimensions or profiles that underlie the data inMDS analysis. Our results based
on two real datasets revealed that parallel analysis seemedto provide a more objective method
than stress value in this regard. In both examples, results from parallel analysis provided clear
evidence on number of dimensions or profiles to retain in MDS,whereas Stress value did not provide
such a clear indication of appropriate number of dimensionsto retain. In general, the advantage of
parallel analysis is that it should provide more objective criterion for model selection than stress
value and other available methods to determine appropriateMDS solutions. In view of that, this
paper describes a new approach that may serves as a catalyst for stimulating further investigations.

In the current study, parallel analysis for MDS was performed using a SAS macro. SAS is a
commonly used statistical analysis package and the macro for MDS parallel analysis was easy to
use. The programming of such a macro is not extensive, and when SAS is not available, the macro
can also be programmed into R statistical language, which isfree statistical software.

The implication of the current study for practice is that although parallel analysis is one of the
recommended criteria for determining the appropriate number of factors in factor analysis, it has not
been utilized and fully investigated in MDS analysis. Giventhe limited choice of model selection
criteria in MDS analysis, the results of the study provide preliminary evidence of parallel analysis as
a potential method for model selection, adding one more toolfor deciding on the number of dimen-
sions. Research should employ this criterion, along with Stress value and other available methods
to determine appropriate MDS solutions. In view of that, this paper describes a new approach that
may serves as a catalyst for stimulating further investigations.

However, model selection is complex, involving issues of model parsimony, interpretability,
practicality, as well as philosophical perspective on the role of model. There are several points



28 Ding

that are worth noting. First, Abidi’s method for convertingdistance matrix to cross-product matrix
is proposed for metric data. The key difference between metric and nonmetric MDS is how the
observed distance is assumed to be related to the model-derived distance. But the basic logic with
respect to variance explained by the dimensionality is the same for both models. Thus, the parallel
analysis may also be applicable to nonmetric MDS. Second, inthe current study we used the 95th
percentile when comparing the eigenvalues of the observed cross-product matrix with that of the
simulated ones. However, there is a need to examine the conditions in which the 95th percentile
may be preferred over median when comparing the eigenvaluesof the observed cross-product matrix
with that of the simulated ones. Third, given the complexityof model selection, the suitability of
employing parallel analysis in MDS needs to be further examined using more sophisticate methods
such as simulation studies.
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