
Journal of Statistical Research ISSN 0256 - 422 X
2016, Vol. 48-50, No. 1, pp. 15-33

Analysis of ordinal longitudinal data using semi-parametric mixed models
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SUMMARY

A spline mixed item response theory model that allows for three-level multivariate ordinal
outcomes and accommodates multiple random subject effects is proposed for analysis of
ordinal outcomes in longitudinal studies. Assuming cumulative logit model with propor-
tional odds, maximum marginal likelihood estimation for model parameters is proposed
utilizing Monte Carlo Metropolis Hastings Newton Raphson (MCMHNR) algorithm. An
iterative Fisher scoring solution, which provides standard errors for all model parameters,
is considered. The performance of the estimates of the model parameters in finite samples
has been looked into. A longitudinal orthodontic data set, where plaque content in teeth is
repeatedly measured over time, is used to illustrate application of the proposed model.

Keywords and phrases: ordinal response, proportional odds model, spline, Monte Carlo
EM, Metropolis-Hastings, orthodontic data.

1 Introduction

Many interesting problems in Biomedical, industrial and other experiments involve the study of how
an ordered response variable depends on a set of regressors. In psychometric and educational test-
ing literature, a large amount of research has been devoted to developing mixed-effects models for
subject-specific comparisons of multivariate ordinal responses. In longitudinal studies, information
from the same set of subjects is measured repeatedly over time. Multivariate data arise when differ-
ent item responses, related to a single underlying outcome, are measured to provide more complete
and reliable information. The aim of such studies is to estimate the mean or individual response at a
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certain time, to relate time-invariant or time-dependent covariates to repeatedly measured response
variables, or to relate the response variables to each other.

One way to model ordinal regression data is to assume that the observed response is the discrete
version of a continuous latent variable for which a linear regression model holds. Alternatively, an
index model of the discrete probabilities may be written for a given transformation, called link func-
tion as in the seminal paper of McCullagh (1980). It is well known that the latent variable approach
and the index model approach are essentially equivalent (see Greene, 2004 and Wooldridge, 2003).
Examples of such related models are obtained by assuming the logistic distribution for the errors in
the latent variable and the ordered logit model, or the normal distribution for the latent error and the
ordered probit model.

The restricted version of the generalized logit model is the standard ordered logit model dis-
cussed in most statistics textbooks and it is known in the statistical literature as the proportional
odds model (see McCullagh, 1980). Especially when the number of possible ordinal values is large,
the model may require many more parameters than the simple ordered logit model. This may be
justified for example when it is reasonable to assume that the threshold between adjacent categories
depends on subjective judgments, as for instance in the analysis of the determinants of health status,
happiness etc. As the ordered logit model may be seen as a properly constrained generalized logit
model, the effect of covariates on threshold parameters may be tested by imposing appropriate linear
constraints. When the dependence of threshold parameters on individual covariates is not justified
by the nature of the response variable, the rejection of the proportional odds assumption should
be taken as a warning that the latent model is not properly specified, like when, for instance, the
distribution of the error is heteroscedastic or the covariate is not exogenous.

Often in longitudinal studies it is required to characterize the temporal trends exhibited by some
real data. The mean trajectory appears to show curvature. In fact individual series shows more
curvature. In a situation where the primary focus of the analysis is to relate disease progression
at different time points to the subject’s habit/nature, it is of practical interest to develop an appro-
priate method that truly incorporates the temporal patterns as well as the covariate information.
Certainly, a less restrictive assumption on the time functions might be more desired than imposing
some parametric assumptions, which might be incorrect.There has been a tremendous advancement
in statistical research on non parametric function estimation. In many situations a semi parametric
generalized partially linear mixed model (GPLMM) is considered for handling the covariate effects
(time) non-parametrically. Such a model is essentially a compromise between the GLMM and a
fully nonparametric model. This kind of model is popular in longitudinal studies such as human
viral dynamics, pharmacokinetic analyses and studies of growth and decay. On the other hand the
inclusion of a nonparametric covariate in an otherwise GLMM raises the high dimension problem.
In order to avoid this, we consider a generalized partial ordinal longitudinal model (GPOLM) that
can be viewed as a compromise between GLMM and a fully nonparametric model.

Considerable studies have been done on partially linear models (see Hardle et al., 2000). In
order to analyze discrete outcomes, where the influential covariates and the outcome have definite
functional relationship (monotone), it is natural to extend the model to a partial semi parametric Gen-
eralized linear model. Previously, Severini and Staniswalis (1994), Hardle et al. (1998) and Muller
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(2001) have looked into the influential aspects of GPLM. Later Lin and Carroll (2001a), Wang et
al. (2005) and He et al. (2005) have considered the GPLMM in the context of clustered/longitudinal
data. Lin and Carroll (2001b) address that the conventional profile kernel-based approach is inca-
pable of producing a

√
n consistent estimator of the parameters unless the non-parametric function

is under-smoothed or working independence is assumed for the GEE methodology. These limita-
tions can be avoided if regression spline approximation is considered in GPLMM.To the best of
our knowledge, no literature has yet been published for the analysis of GPOLM. Our attempt is to
show that in the regression spline approximation under GPOLM, the spline approach results in the
optimal rate of convergence for estimating the unknown function and the parameters of interest. The
primary focus of our paper is to use a spline mixed regression model for analyzing ordinal longitudi-
nal data. Such a model accommodates longitudinal dependence and subject specific variation in the
data through random effects. We consider a data on oral hygiene where 220 individuals consisting
of students and staff members of medical schools in and around the city of Kolkata were selected
randomly irrespective of age, sex and oral hygiene status and their plaque scoring was recorded ac-
cording to Turesky et al. (1970). The reduction in the thickness of plaque for subjects are usually
recorded as belonging to four different categories, viz ‘no reduction’, ‘slight reduction’, ‘moderate
reduction’ and ‘vast reduction’ (to a great extent). In addition, auxiliary information on age, sex,
food habit, smoking habits etc were also observed for each subject. The purpose of the study is to
see whether the progression of the plaque reduction is truly effective with the use of a solution (kept
in mouth for 1 minute followed by a thorough rinse with water to remove any excess of disclosing
solution) and if so, to what extent such progression depends on the covariates taken.

The article is organized as follows. In Section 2 we introduce the spline mixed cumulative
logit model with proportional odds setup. In Section 3 we consider estimation of model parameters
using MCMHNR approach. In section 4 an asymptotic study is given. An exact sample study has
been carried out in Section 5, to see the performance of the estimator under the proposed approach.
Data arising from an orthodontic study have been analyzed in Section 6. Finally, conclusion and
discussion are made in Section 7.

2 The Model and Likelihood

Consider a trial involving n individuals in which each individual is to be examined at K assessment
times. Let yijk denote the ordinal response that hasL+1 distinct levels, 0, . . . , L (say) for individual
i within the cluster j at the assessment time (k, i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K). This
gives rise to a hierarchical data structure where the assessment times (level 1) are nested within the
clusters (level 2) which in turn are nested within the individuals (level 3). Further suppose, associated
with the ordinal response, xijk denote the covariate vector for individual i in cluster j at time k. The
covariates are completely known and may be assumed to be fixed across the entire observation times.
Let uij denote the subject and cluster specific random component vector corresponding to individual
i in the cluster j. The random component reflects the unobserved heterogeneity in the data. Dummy
variables are often used to represent categorical variables in estimation of parameters. Let us denote
Yijk as a vector of L + 1 indicator variables, given by, Yijk = (Y 0

ijk, . . . , Y
L
ijk)′ with Y lijk = 1, if
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yijk = 1 and 0, otherwise (l = 0, . . . , L). Further suppose, the vector of probabilities and cumulative
probabilities are respectively denoted by πijk = (π0

ijk, . . . , π
L
ijk)′ and ηijk = (η0ijk, . . . , η

L
ijk)′,

where πlijk and ηlijk are given by,

π1
ijk = P

(
Y 1
ijk = 1 | xijk, uij

)
= P (yijk = l | xijk, uij) , (2.1)

η1ijk = P (yijk ≤ l | xijk, uij) =

1∑
i0

π1
ijk. (2.2)

Corresponding to the individual i, the multivariate ordinal data can be represented as (yi11 =

c11, . . . , yijk = cjk, . . . , yirK = crK)′, where cjk (j = 1, . . . , r; k = 1, . . . ,K) can take the ordinal
scores 0, . . . , L. Conditional on the subject and cluster specific random components uij and given
the covariates, the associated probability follows from (2.1) and can be written as,

Pij =

K∏
k=1

L∏
l=0

{P (yijk ≤ l | uij , xijk)− P (yijk ≤ l − 1 | uij , xijk)}l(yijk=l)

=

K∏
k=1

L∏
l=0

(η′ijk − ηl−1ijk )l(yijk=l), (2.3)

where I(yijk = l) = 1, if yijk = l and 0 otherwise, η−1ijk = 0 and ηLijk = 1. To model the
dependence of the response on the covariates and the random component we use cumulative logit
model with proportional odds assumptions. Typically such a model is written as,

log it(η′ijk) = log

(
η′ijk

1− η′ijk

)
= λl + x′ijkβ + z′ijkuij + f0(tijk), (2.4)

where λl (l = 0, . . . , L−1) is the intercept in the lth logit model which satisfy the relationship λ0 ≤
λ1 ≤ λ2 ≤ · · · ≤ λL−1 and β denotes the p dimensional vector of covariate effects corresponding to
xijk. The random component vector uij is a subject and cluster specific random effect of dimension
q associated with the completely specified design vector zijk. For subject i in cluster j, we write the
random component vector uij as, uij = (u1ij , . . . , u

q
ij)
′ and assume that uij ∼ Nq(0, Iq). Let us

further write ui = (u′i1, . . . , u
′
ir)
′, where

ui ∼ Nrq(0, Iq ⊗ Σ), Σ = σ2[(1− ρ)Ir + ρ11′]. (2.5)

In model (2.5), σ2 and ρ denotes the intra cluster variability and correlation coefficient respectively.
They are treated as nuisance parameters and are estimated along with the other regression parame-
ters. In model (4), tijk may be simply time or in general any time dependent covariate and f0(.) is
an unknown smooth function.

We use the basis of cubic B-splines with q preselected knots to approximate the unspecified
smooth function f0 in which the rth knot corresponds to the r/(q + 1)th sample quantile of the
distinct values of tijk(i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K). Let B1(t), . . . , Bq+4(t) be the
cubicB-spline basis for the space of cubic splines with q preselected knots. For details on computing
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of B-splines and their mathematical properties we refer to Boor (2001). The cubic B-splines space
includes a constant function, and the constant is given in the parametric component of the model
(4), so to model f0() one of the (q + 4) B-spline basis functions needs to be dropped so that the
resulting parameterization is of full rank. Any one of them can be dropped, but for convenience
Li (2011) models f0 as a linear combination of the first q + 3 fixed-knot cubic B-spline basis
functions. In this paper in order to approximate f0 by a regression spline, we consider a set of knots
on [0, 1] with 0 = s0 < s1 < · · · < skn = 1 and generate N = kn + l normalized B-spline
basis functions of degree l + 1 that span the linear space. We then express f0(t) ≈ v′(t)γ, where,
v(t) = (B1(t), . . . , BN (t))′ is the vector of basis functions and γ ∈ RN is the spline coefficient
vector. Let us denote the vector of parameters by (θ′, φ′)′ where, θ = (λ0, . . . , λL1, β

′, γ′)′ and
φ′ = (σ2, ρ)′. Then in view of (3) and (5), the likelihood for subject i can be written as,

Li(θ, φ) =

∫ r∏
j=1

K∏
k=1

L∏
l=1

[
η′ijk − ηl−1ijk

]I(yijk=l)
g(ui)dui, (2.6)

where g(ui) denotes the density function of ui given in (2.5). Here our primary focus lies in esti-
mating and making inference on the parameter vector θ although the vector of nuisance parameter
φ is also estimated in the study simultaneously.

The critical issue for getting a rigorous model selection criterion can be based on estimating the
relative expected Kullback-Leibler (K − L) information. Akaike (1973) found that the maximized
log likelihood value was a biased estimate of K − L information but this bias was approximately
equal to ‘p’, the number of estimable parameters in the approximating model. Thus an approxi-
mately unbiased estimator of K − L information for large samples and good models is given by
Akaike’s Information Criterion (AIC), where

AIC = 2 logL(θ̂, φ̂) + 2p. (2.7)

In (2.7) above, (θ̂, φ̂) is the maximum likelihood estimator of the parameter vector arising in model
(2.6) and L(·) denotes the likelihood function given the data vector. Minimizing the AIC over a set
of possible models can thus be seen as minimizing the average distance of an approximating model
to the underlying truth.

3 Parameter Estimation
The likelihood function given in (2.6) is difficult to maximize because of the multidimensional
integral over ui which is the consequence of a mixed effects modelling. Numerical integration
techniques like Gauss Hermite quadrature or adaptive Gaussian quadrature (Pinheiro and Bates,
1995) can be used to approximate the above integral to any practical degree of accuracy. Diverse
methodologies in both Bayesian and Classical paradigm are available in the literature for fitting
GLMM. In Bayesian perspective Markov Chain Monte Carlo (MCMC) method is implemented
via Gibbs sampling techniques (Zeger and Karim, 1991) to generate repeated samples from the
posterior distribution of the random effects. In the classical approach Breslow and Clayton (1993)
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proposed the penalized quasi likelihood (PQL) for approximating the high dimensional integration
using Laplace approximation. However, as reported by several authors PQL estimates are biased
downwards for some variance components. Later Breslow and Lin (1995) and Lin and Breslow
(1996) gave bias corrected PQL. McCulloch (1994) investigated GLMM with a probit link using
Monte Carlo EM (MCEM). He extended MCEM to the logit model and introduced the Monte Carlo
Newton Raphson (MCNR) and simulated maximum likelihood methods. For simple models it was
found that the MCNR estimates inherits the properties of the exact ML estimates. Natarajan et al.
(2000) and Zhou and Liu (2008) used the Monte Carlo version of EM to calculate ML estimates of
parameters. Meza et al. (2009) and Davier and Sinharay (2010) proposed an alternative to MCEM
via the Stochastic Approximation EM (SAEM) of Deylon et al. (1999). We could have considered
any one of the three stochastic versions (SEM, SAEM and MCEM) to analyze our data. Since all
three lead to similar conclusions (Celeux et al., 1995), we preferred to work with MCEM method
here.

In this paper we adopt the MCNR approach to calculate the fully parametric Maximum likeli-
hood estimates based on the likelihood (6). The Monte Carlo approach calls for generating random
observations from the posterior distribution of the random effects which however is not in a closed
form. To circumvent this difficulty Metropolis Hastings algorithm (see Chib and Greenberg, 1995)
is used to generate data from the posterior distribution of the random effects which does not require
the exact form of the conditional distribution. Moreover a good starting solution is needed for the
MCNR method. In our analysis moment estimates are used. McCulloch (1997) pointed out that
although this approach is computationally intensive it provides feasible solutions for a variety of
data configurations. In presence of influential points in the data this method can be extended to the
Robust Monte Carlo Newton Raphson method of Sinha (2004).

3.1 The MCMHNR Approach

To set up the EM algorithm, we consider the random effects to be missing. We write the observed
data for individual i (i = 1, . . . , n), as D0i = {yijk, xijk, tijk; j = 1, . . . , r; k = 1, . . . ,K} and
the complete data is denoted by Dci = {yijk, xijk, tijk; j = 1, . . . , r, k = 1, . . . ,K}. Further
suppose f(Doi | ui) denotes the conditional distribution of the observed data given the random
component. Then using (3) and (5) the complete data log likelihood for all the subjects is given by,

lc(θ, φ) =

n∑
i=1

log(f(D0i | ui; θ)) +

n∑
i=1

log(g(ui;φ))

=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I(yijk = l) log
[
ηlijk − ηl1ijk

]
+

n∑
i=1

log(g(ui;φ))

= lc1(θ) + lc2(φ). (3.1)

From (3.1) it is to be noted that since θ enters only the first term so the M step of EM algorithm
with respect to θ uses only Lc1(θ). The second term in (8) involves only the distribution of ui which
is assumed to be normal and so maximizing the likelihood lc2(φ) gives the standard maximum
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likelihood estimates of φ after replacing ui’s with their conditional expected values. Writing D0 =

{D0i, i = 1, . . . , n} and u = (u′1, . . . , u
′
n)′, the score functions for θ and φ can be expressed as:

ξθ(θ) = Eu

[
∂lc1(θ)

∂θ

∣∣∣D0

]
= 0; ξφ(φ) = Eu

[
∂lc2(φ)

∂φ

∣∣∣D0

]
= 0. (3.2)

In order to solve for θ and φ from equation (3.2), we propose a Monte Carlo Newton Raphson
(MCNR) algorithm. Using MCNR, the updated estimate of θ and φ at (t+ 1)th step is given by,

θ(t+1) = θ(t) − Λ
−1(t)
1 ξθ(θ

(t)), φ(t+1) = φ(t) − Λ
−1(t)
2 ξφ(φ(t)) (3.3)

where Λ
(t)
1 = ∂ξθ(θ)/∂θ|θ(t) and Λ

(t)
2 = ∂ξθ(φ)/∂φ|φ(t) . The expressions for first and second

order derivatives are given in Appendix A1. The MCNR approach gives an iterative computational
scheme, where the maximization step becomes automatic. However the conditional expectations
in (3.2) cannot be computed in a closed form. This is because the conditional distribution of u
involves the marginal distribution of the data which in fact is the likelihood in equation (2.6) that
we are trying to avoid calculating directly. To circumvent this difficulty we use Metropolis Hastings
algorithm (Smith and Roberts, 1993) to produce random draws from the conditional distribution of
u | D0. Then we can approximate the required expectation in (3.2) by Monte Carlo approach.

To implement the Metropolis algorithm, we first specify the candidate distribution h(u) from
which potential new values are drawn and then compute the acceptance function that gives the
probability of accepting the new value (as opposed to keeping the previous value). In our case,
the target density can be expressed as proportional to the product of the density g(u;φ) that can be
sampled and the conditional density f(D0 | u, θ) that is uniformly bounded. Thus following Chib
and Greenberg (1995) we set the proposal density to be equal to g(.) (as in the independence chain)
to draw candidates. In this case the acceptance probability takes a simplified form and requires the
computation of f(D0 | u, θ) only. Let u0 denote the previous draw and ucan is a new value from
the candidate distribution. Then we accept ucan as a potential observation from the conditional
distribution of with probability of acceptance given by,

A(u0, ucom) = min

{
f(D0 | ucom, θ)
f(D0 | u0, θ)

, 1

}
. (3.4)

Incorporating the Metropolis step in MCNR method results in MCMHNR algorithm which can now
be stated as follows:

Step 1: Choose starting values θ0, φ0. Set t = 0.

Step 2: GenerateR values u(1), u(2), . . . , u(R) from the conditional distribution f(u | D0, θ, φ)

using the Metropolis Hastings algorithm and use them to form the Monte Carlo estimates of
the expectations.

Step 3: Compute:

θ(t+1) = θ(t) − Λ̂
−1(t)
1 ξ̂θ(θ

(t))

φ(t+1) = φ(t) − Λ̂
−1(t)
1 ξ̂φ(φ(t)).
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Replacing the expectations in (3.2) by Monte Carlo estimates and using (3.1),it follows that,

ξ̂θ(θ) =
1

R

R∑
r=1

∂

∂θ
log f(D0 | u(r); θ); ξ̂φ(φ) =

1

R

R∑
r=1

∂

∂φ
log g(u(r);φ)

Λ̂1 =
∂

∂θ
ξ̂θ(θ); Λ̂2 =

∂

∂φ
ξ̂φ(φ)

Set t = t+ 1.

Step 4: If convergence is achieved, declare θ(i+1) and φ(i+1) as the maximum likelihood
estimates of θ and φ respectively. Otherwise return to Step 2.

3.2 Knot Selection

An important aspect of spline smoothing is knot selection. Since we are mainly concerned with the
efficiency of the covariate effect estimates, we opt for convenient choices of knot placements. For
the Knot selection we have applied a data adaptive scheme which is briefed below:

Step 1: We at first consider Q1 = 10 largest local maxima and Q2 = 10 smallest local
minima.

Step 2: We have identified the time points corresponding to theseQ = Q1+Q2 points. These
Q points have been chosen as the initial knots. Let q = Q + k + 1, for cubic spline k = 3.

These k points are determined based on the quantiles.

Step 3: We removed the ith knot and evaluated the residual sum of squares (RSSi), for
i = 1, 2, . . .

Step 4: We have chosen that model for which RSSi is minimum and set q = q − 1.

Step 5: We have continued Steps 2-4 till q = k + 1.

4 Asymptotics
In this section, to ensure consistency of the proposed estimates, the asymptotic properties of the
solution to score equations in (3.2) have been investigated. The asymptotic distribution of the esti-
mators of θ and φ would be separately looked into as in view of (3.1), lc1 involves only θ and lc2
involves only φ. Essentially, here this section, we would consider only the asymptotic distribution
of θ̂ as that of φ̂ is straightforward. We consider a sequence of consistent estimators θ̂n(= θ̂ say) in
the sense that as

n→∞, sup
t∈[0,r]

| v′(t)γ̂ − f0(t) | P→ 0, λ̂− λ0 P→ 0 and β̂ − β0 P→ 0,

where λ0 and β0 are true unknown values of λ and β respectively. The required basic assumptions
are given below.
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A.1 The distinct values of tijk, 0 ≤ tijk ≤ τ form a quasi-uniform sequence that grows dense
on [0, 1].

A.2 For every i,Max{‖Xi‖} ≤ B0 for some non-random constantB0,whereXi = ((xijk)) i =

1, . . . , n; j = 1, .., r; k = 1, . . . ,K.

A.3 | f (s)0 (.) |< A0, for some non-random value A0 for s ≥ 2.

A.4 Conditional on data and for every i, supi≥1 E‖Sic‖2+δ < ∞, for some δ > 0, where
Sic = ∂

∂θ lic(θ) and lic(θ) =
∑r
i=1

∑K
k=1

∑L
l=1I(yijk = l) log[η′ijk − ηl−1ijk ]. In fact,

EDEu|D

(
∂2

∂θ∂θ′ lic(θ)
)

= Bi, with sup
i≥1
‖Bi‖ <∞ and D stands for the whole data set.

A.5 True parameter vector θ0 = (λ0l, β0l, γ0l)′ satisfies ‖θ0‖ ≤M0 for some known constant
M0(> 0).

Assumption A.1 essentially indicates that we have only local dependence in the sample. Assumption
A.2 is the compact support for covariates. The smoothness condition on f0 given in assumption A.3
determines the rate of convergence of the spline estimate f̂ = v′(t)γ̂. Both the assumptions A.2 and
A.4 are natural and are easy to check. Assumption A.5 is basically a technical condition required to
justify consistency.

It is true that, in our model, the covariates xijk may be time dependent and hence must depend
on tijk. Such dependence can be taken into account through some relationship (either linear or non-
linear). For example, we can express covariates as,

Xijku = Ψu(tijk) + εijku; i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K;u = 1, . . . , p. (4.1)

where Φu(·) are p functions for each of which sth derivative is bounded and εijku’s are independent
random variables with mean zero and also independent of yijk’s. In view of the fact that γ is the
nuisance parameter vector, for clear representation we modify equation (3.3) as,

θ̂ = θ̂0 −
[
Λ∗−11 ξ∗θ (θ)

]
θ=θ̂0

(4.2)

where

A∗1 = E

[
∂

∂θ′
(X∗′WY0) | D

]
, ξ∗θ = E [X∗′WY0 | D] , X∗ = (I −H)X,

H = P (P ′P )−1P ′, P = 1L ⊗ v′(tijk),

Y0 = (yijkl, i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K; l = 0, . . . , L− 1)′,

Rn = (X∗′X∗),W = Diag (. . . , 1− η′ijk − ηl−1ijk , . . .) and

X =


1L ⊗ 1′L x′111 v′111

1L ⊗ 1′L x′112 v′112
...

...
...

1L ⊗ 1′L x′nrk v′nrk
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For the existence of Fisher Information, the following assumptions are further made,

A.6 (i) lim
n→∞

kn
n

(P ′P ) = Q, (ii) lim
n→∞

Rn = R.

In assumption, A.6 (i), kn is the number of knots, Q and Rare positive definite matrices with all
eigen values bounded. Assumption A.6 (i) is a very standard property of B-spline basis functions
and holds true under general design conditions (He and Shi, 1996). A.6 (ii) is a prerequisite for the
existence of asymptotic distribution of the proposed estimator. The asymptotic distribution of β̂n
then follows from the following theorem:

Theorem 1. Under assumptions A.1-A.6, the MLE θ̂ of θ0 is consistent i.e. ‖θ̂−θ0‖ P→0 as n→∞.
Specifically as n→∞,

(
β̂ − β0

)
P→0, sup

t∈[0,r]
| v′(t)γ̂ − f0(t) |→ 0. (4.3)

The sketch of the proof is given in Appendix A2.

5 Simulation Study

In the simulation study we focus on a setting where L = 4,K = 4, r = 4 and n = 100.We simulate
the clustered longitudinal ordinal response from a model with,

logit(η′ijk) = λl + βxi + uij + sin(πtijk), (5.1)

where the monotone difference intercepts (λ0, λ1, λ2) are assigned the value (−2.0,−1.5,−1.0) and
the regression parameter β is chosen to be 0.5. The time dependent covariate tijk is simulated from
Uniform (−1, 1) while the baseline covariate xi is generated from N(0, 1). The random component
ui = (ui1, . . . , uir)

′ is generated from a r-variate normal distribution with mean zero and variance-
covariance matrix given by σ2

u [(1− ρ)Ir + ρ11′] , where the true values of σ2
u and p are taken to

be 1.0 and 0.6 respectively. During the estimation process the function sin(πtijk) is approximated
by the normalized cubic B spline basis function. The data adaptive scheme outlined in Section
3.2 is applied and the number of internal knots is chosen to be 4. The knot points are taken as
the 20th, 40th, 60th and 80th percentile values of tijk; i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K.

Metropolis Hastings (MH) algorithm is employed for generating observations from the conditional
distribution of ui given the data. For simplicity and time saving purpose, the MH sample size R
is chosen to be 500. The number of iterations needed in the Newton Raphson method within the
Metropolis algorithm is predetermined to be 30. This resulted in about two-decimal accuracy in
the simulation study. The simulation is repeated 100 times. For each parameter θi associated with
the outcome model the goodness of fit measures namely bias and mean square error (MSE) are
computed. Suppose θ̂u′ denote the estimate of θi in the t′th simulated data. Then Bias and MSE are
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given by,

Biasi =
1

100

100∑
u=1

(θ̂u − θi);MSEi =
1

100

100∑
u=1

(θ̂u − θi)2. (5.2)

The first measure assesses the accuracy of θ̂i and the second measure assesses the precision. We
also compared the efficiency of the proposed model with the naı̈ve model. For a naı̈ve model the
ordinal responses are generated using (5.1), but we fit a model after replacing the nonlinear function
of time by tijk simply. The estimated values of the parameters along with the bias and MSE of the
estimates of the parameters are presented in Table 1 for the naı̈ve model as well as for the proposed
model which accounts for the longitudinal effect through spline function. The program has been
implemented in R 2.14.1.

Table 1: Parameter estimates, simulated biases and mean square error of the parameter estimates for
the proposed model and naive model.

Parameters True Naive Model Proposed Model

values Estimates Bias MSE Estimates Bias MSE

λ0 -2.0 -1.8059 0.1933 0.3802 -2.0319 0.0319 0.0435

λ1 -1.5 -1.419 0.1065 0.3334 -1.507 -0.0906 0.0227

λ2 -1.0 -1.155 -0.1563 0.3866 -1.003 -0.0032 0.0161

β 0.5 0.5178 0.0178 0.0152 0.4968 -0.0131 0.0097

σ2
u 1.0 0.9137 -0.0232 0.0128 0.9677 -0.0962 0.0020

ρ 0.6 0.6000 0.0000 .0000 0.6000 0.0000 0.0000

Table 1 shows that the monotone difference estimates and the regression coefficients are biased
under the naı̈ve model, whereas the proposed model recovers the estimates well. However the
estimates of the parameters associated with the distribution of the random component remains robust
under model misspecification. In the naı̈ve model we have 6 parameters while the proposed model
involves 13 parameters. The AIC factor under naı̈ve model comes out to be 3642.622 while that
under the proposed model is 3552.039. During the estimation process under the proposed model the
spline coefficients γ = (γ1, . . . , γN ) are also estimated along with the other parameters of interest.
The fitted function is then given by,

f̂0(t) =

N∑
m=1

γ̂mBm(t), (5.3)

where γ̂m is the estimated value of γm and Bm(t) denotes the B-spline basis function. The calcu-
lation of basis functions for the cubic B-spline is done using the {splines} package in R. With four
internal knot points and spline of order 3 and intercept =False the bs(.) function in R returns N = 7
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basis functions. Figure 1 displays the graph of the fitted function given by (5.3) and the true function
given by sin(πt)against the different values of tijk. The graph reveals that the cubic B-spline basis
function approximates the true function sin(πt) well.

Figure 1: Plot of true function and estimated function against the time- dependent covariate.

For justification of the working of MCMHNR algorithm a simpler set up is chosen. Here we
assume that in model (16), ρ = 0. This leads to uncorrelated random components and hence the
multidimensional integration over ui = (ui1, ui2, ui3, ui4)′ is reduced to one dimensional integrals.
The score equations now involve integrals over the random component ui,which are evaluated using
Gauss Hermite quadrature. Alternatively we apply MCMHNR algorithm as outlined in Section 3
under this simple set up. The likelihood estimates of the parameters are computed for each case.
The AIC for the exact approach comes out as 2641.332, while that on application of EM algorithm
is 2599.236. This shows that the MCMHNR method approximates the exact likelihood approach
well.

6 Data Analysis

In this section we motivate the proposed model through an analysis of orthodontic data. Oral hygiene
is of severe concern as a significant proportion of world population is highly susceptible to some
destructive periodontal diseases. The data are the result of a study of 220 individuals consisting of
staff members and students of medical schools in and around the city of Kolkata. These individuals
have been selected at random irrespective of age, gender and oral hygiene status. A detailed history
of each subject was recorded a week prior to the beginning of the study to collect information
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like age, gender, occupation, food habits and smoking habits. Plaque scoring was done according
to Tureskey et al. (1970). The teeth selected for scoring of plaque were the maxillary right first
permanent molar, maxillary left permanent central incisor, maxillary left first premolar, mandibular
left first permanent molar, mandibular right central incisor and mandibular right first premolar which
we shall denote as teeth 1-6. Ordinal score of 0-2 was assigned as: 0 (No plaque), 1 (A thin band of
plaque up to 1 mm at the cervical margin of the crown of the tooth.), 2 (A band of plaque wider than
1 mm of the crown of the tooth).

The categories ‘moderate reduction’ and ‘vast reduction’ were assigned the ordinal scores 1 and
2 respectively while the categories ‘no reduction’ and ‘slight reduction’ were combined and given
the ordinal score 0.The plaque scoring on individual teeth was measured on four occasions separated
at an interval of 1 month. Figure 2 shows the average response (plaque score) over time for each
of the six teeth. The graph reveals a non-linear pattern in plaque deposit over time. The main
focus of this orthodontic study is to see whether plaque reduction is truly effective with the use of a
solution (kept in mouth for 1 minute followed by a thorough rinse with water to remove any excess
of disclosing solution) and if so, to what extent such progression (i.e. plaque reduction) depends on
the covariates taken. We consider the following model:

ηlijk = λl + βAxAi + βGxGi + βFxFi + βSxSi + uij + f0(tK). (6.1)

In equation (6.1) above, the baseline covariates xAi, xGi, xFi, xSi (i = 1, . . . , 220) correspond
to age, gender, food habit and smoking habit respectively. The binary covariates xGi, xFi and xSi
takes the value 1 if the person is a male , non-vegetarian and a smoker. The non-linear behavior of
the response over time is captured by the smooth unknown function f0(tk)(k = 1, . . . , 4), where
tk = k. In the analysis, the unknown function is approximated by a smoothing spline of order 1
with 4 internal knot points. Table 2 provides the estimated values of the parameters along with their
standard errors for both the naive model and the proposed model. The naive model replaces the
non-linear function by tk. The results reveal that the smokers will have on an average less value of
the response i.e. plaque reduction. Moreover food habit is not a significant factor in determining the
effect of the solution (treatment) on plaque reduction.In this study ‘age’ does not play a significant
role. The reason for this may be that the subjects considered belonged to almost the same age group.
Finally it can be concluded from the results that the particular treatment applied on plaque reduction
had better effect on males. The fitted function f̂0(t) =

∑N
m=1γ̂mBm(t) is computed for N = 3.

Here γ̂m denotes the estimated value of the spline coefficients corresponding to the basis spline
function Bm(t) for different time points (t). The function shows a non-linear decreasing trend over
time. Thus it can be inferred that in general the application of the solution helps in reducing plaque
deposit over time.

7 Conclusion
In many longitudinal set up where responses are ordinal in nature, one faces the stiff challenge in
expressing the dependence of such responses over time. In our present orthodontic study, it is evident
from Figure 2 that average response (plaque reduction) varies nonlinearly over time. The variation



28 Das, Roy, and Chattopadhyay

Figure 2: The average response (plaque score) over time for each of the six teeth.

also changes over the six teeth. To account for such unknown variability, we have proposed a
GPOLM that can be viewed as a compromise between GLMM and a fully nonparametric model. We
have approximated the non-parametric function in the GPOLM by a regression spline. A MCMHNR
method has been proposed to estimate the model parameters. Simulation study indicates that the
model which ignores the non-linear effect of time produces biased estimates of the intercepts and
the regression coefficients. Result from the orthodontic study reveals that smoking has a negative
effect in plaque reduction. However in general the application of the solution helps in reducing
plaque deposit over time.
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Appendix A1

First order derivatives:

∂lc1(θ)

∂θ
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l)(
ηlijk − η

l−1
ijk

) (∂ηlijk
∂θ
−
∂ηl−1ijk

∂θ

)
, (A1.1)
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Table 2: Estimated values of the covariate effects along with their standard errors.

Parameters Naive Model Proposed Model

Estimates Standard Error Estimates Standard Error

λ0 -3.091 0.2211 -3.0624 0.2186

λ1 0.4670 0.1237 0.6944 0.1172

βFOOD 0.0956 0.2082 0.0095 0.1602

βAGE -0.0030 0.1102 -0.0004 0.0080

βGENDER 0.3095 0.2113 0.3744 0.1865

βSMOKE -0.1651 0.1619 -0.3023 0.1510

σ2
u 0.9077 0.1153 0.9513 0.0629

ρ 0.6002 0.0014 0.6000 0.0014

where I(x) is an indicator function, η′ijk = logit (λ1+x′ijkβ+z′ijkuij+v
′(tijk)γ), θ = (λ0, . . . , λL−1, β

′, γ′)′,

and

∂η′ijk
∂λl

= η′ijk(1− η′ijk), l = 0, . . . , L− 1,
∂η′ijk
∂β′ = η′ijk(1− η′ijk)x′ijk
∂η′ijk
∂γ′ = η′ijk(1− η′ijk)v′(tijk)

 (A1.2)

Substituting (A1.2) in (A1.1) we get,

∂lc1(θ)

∂θ
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l)
(

1− η′ijk − ηl−1ijk

)
X̃ijk, (A1.3)

where X̃ijk = (1′x′ijkv
′(tijk))′.

Second order derivatives:
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∂2(θ)

∂λ2l
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijk; l = 0, . . . , L− 1

∂2lc1(θ)

∂β∂β′
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkxijkx
′
ijk

∂2lc1(θ)

∂γ∂γ′
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkv(tijk)v′(tijk)

∂2lc1(θ)

∂βT∂λl
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkx
′
ijk

∂2lc1(θ)

∂γ′∂λl
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkv
′(tijk)

∂2lc1(θ)

∂β′∂γ
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkxijkv
′(tijk)

where b′ijk = −η′ijk(1− η′ijk)− ηl−1ijk (1− ηl−1ijk )

Appendix A2
Proof of Theorem 1 : We give an outline of the proof as it is essentially based on the result of Stone
(1985). Equation (4.3) can be proved following Lemma 8 and 9 in Stone (1985). In fact, it can be
shown that if the number of knots kn ∼= O

(
n

1
(2m+1)

)
then for m ≥ 2,

1

nrK

n∑
i=1

r∑
j=1

K∑
k=1

(v′(tijk)γ̂ − f0(tijk))
2

= OP
(
n
−2m

(2m+1)
)

(A2.1)

Expression (A2.1), in view of Stone (1985) can be expressed as,∫ {
f̂(t)− f0(t)

}2
dt = OP

(
n
−2m

(2m+1)
)

(A2.2)

The proof of equations (4.3) are rather straightforward application of Zeng and Cai (2005). Under
assumptions A.1–A.6 a solution to equation (3.2) exists and with probability unity, θ̂ → θ0.
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