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SUMMARY

Bayesian nonparametric (BNP) models are prior models for infinite-dimensional parame-
ters, such as an unknown probability measure F or an unknown regression mean function
f . We review some of the most widely used BNP priors, including the Dirichlet process
(DP), DP mixture, the Polya tree (PT), and Gaussian process (GP) priors. We discuss how
these models are used in typical inference problems. The examples include R code using
available packages for inference under BNP priors.
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1 Introduction
Statistical models are almost never right. All models involve certain parametric and structural as-
sumptions. Bayesian nonparametric inference is an increasingly widely used approach to mitigate
the dependence on such assumptions. Technically, Bayesian nonparametric (BNP) models can be
defined as probability models on infinite-dimensional parameter spaces, usually devised for random
distributions or random mean functions. Typical examples are the Dirichlet process (DP) and the
Polya tree (PT) priors for random distributions, or Gaussian process (GP) priors for random func-
tions.

In this review we introduce some of the most widely used models and methods, with an empha-
sis on practical implementation. Recent more comprehensive reviews of BNP inference appear in
Walker et al. (1999), Hjort (2003), Müller and Quintana (2004), Hjort et al. (2010), Walker (2013),
Phadia (2013), or Müller and Mitra (2013). An in-depth discussion of asymptotic properties can
be found in the forthcoming book by Ghoshal and van der Vaart (2017). A recent more applied
discussion of BNP, similar in style to this review, appears in Müller et al. (2015).
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2 Density Estimation - Random Probability Measures
One could argue that density estimation is the simplest statistical inference problem. Given data
xi ∼ F , i.i.d., i = 1, . . . , n, we wish to estimate F . Letting x = (x1, . . . , xn), this defines a
sampling model

p(x | F ) =

n∏
i=1

F (xi). (2.1)

Choosing a Bayesian approach we need to complete the model by adding a prior probability model
on all unknown quantities that appear in the sampling model, in this case F . We could now assume
that F is a member of some parametric family, like F ∈ {Fθ, θ ∈ Θ}, for example with θ = (µ, σ2)

and Fθ = N(µ, σ2). In that case we indirectly put a prior on F by assuming a prior p(θ) and the
problem reduces to traditional parametric inference. We would report the posterior distribution
p(θ | x) ∝ p(x | θ)p(θ).

Often, however, investigators are not willing to make such a sweeping assumption, and prefer
instead to treat F itself as the unknown quantity. In that case Bayesian inference requires to complete
(2.1) with a prior probability model p(F ) for the unknown distribution. Prior probability models for
infinite dimensional quantities, such as the probability measure F in this case, are known as BNP
models.

2.1 Dirichlet process (DP) prior

The first discussion of priors on random probability measures in the context of statistical inference
was Ferguson (1973), who introduces the Dirichlet process (DP) prior. Let δx denote a unit point
mass at x. The idea is very simple. We define a random probability measure

F =

∞∑
h=1

whδmh
(2.2)

by generating mh ∼ F ?, i.i.d. and generating the wh as beta-distributed fractions by wh =

vh
∏
`<h(1 − vh) with vh ∼ Be(1,M), i.i.d. In words, wh is a vh fraction of whatever proba-

bility mass is left of an initial total probability 1.0. We say the random distribution F follows a DP
with base measure F ? and total mass M , and write

F ∼ DP(M,F ?).

The base measure has an interpretation as prior mean. Consider any event A and the probability
F (A). Since F is random, the probability F (A) becomes a random variable itself. It is easy to show
E{F (A)} = F ?(A). Here, the expectation is with respect to the random F , that is, with respect to
the wh and mh in (2.2). The total mass parameter has an interpretation as precision parameter. In
fact, one can show F (A) ∼ Be{MF ?(A),M(1 − F ?(A))}. That is, the random probability is a
beta random variable. Considering the expression for the variance of a beta random variable we see
that uncertainty decreases with larger M , leaving it interpretable as a precision parameter. Figure
1a shows an example of F ∼ DP(M,F ?) with M = 1 and a standard normal F ?. The random
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Figure 1: The left panel shows draws from a DP prior for a random probability measure F . The thick
line shows the prior mean F ?. The many thin lines show 10 random draws F ∼ DP(M,F ?). Dis-
tributions are shown as cumulative distribution functions (cdf). The right panel shows the posterior
DP, F | x ∼ DP(M1, F

?
1 ), conditional on data (shown as tick marks on the x-axis).

distributions are shown as c.d.f’s. This is convenient since F is a.s. discrete, as is already implicit
in the notation used in (2.2).

One of the reasons for the wide use of the DP prior is its conjugacy under i.i.d. sampling. Assume
xi | F ∼ F , i.i.d., i = 1, . . . , n, as in (2.1), together with a DP prior on F , i.e., F ∼ DP(M,F ?).
Then p(F | x) is again a DP. Let F̂n = 1

n

∑
δxi

denote the empirical distribution. Then

F | x ∼ DP(M1, F
?
1 ) with M1 = M + n, F ?1 = (MF ? + nF̂n)/(M + n). (2.3)

Figure 1b shows random draws from a posterior DP, conditional on observing datax = (x1, . . . , xn).

2.2 Dirichlet process mixture (DPM)

The discrete nature of F under a DP prior is awkward for many applications and usually makes it
unsuitable as a prior for F in the density estimation problem (2.1). This is the case in the following
example.

Example 2.1 (Old Faithful geyser). Azzalini and Bowman (1990) analyze a data set concerning
eruptions of the Old Faithful geyser in Yellowstone National Park in Wyoming. The data record
eruption durations and intervals between subsequent eruptions, collected continuously from August
1st until August 15th, 1985. Of the original 299 observations we removed 78 observations that were
taken at night and only recorded durations as “short”, “medium”, or “long”. Let xi, i = 1, . . . , n

denote the remaining n = 221 eruption durations. Figure 2a shows a histogram of the data. The
data look decidedly non-normal. The data are available, for example, in the R package DPpackage
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(Jara et al., 2011), as faithful$eruptions. Assuming xi ∼ F we wish to make inference on
F .

The DP prior (2.2) is easily extended to a prior model for continuous distributions by convoluting
with a continuous kernel. Let N(y;µ, σ2) indicate a normal distributed r.v. y, and by a slight abuse
of notation a normal kernel in y, centered at µ and variance σ2. We generalize (2.2) to

F =

∞∑
h=1

whN(y;mh, σ
2) =

∫
N(y;m,σ2) dG(m) (2.4)

with G =
∑
whδmh

∼ DP(M,G?). The normal kernel could be replaced by any other continuous
kernel ϕ(y;m). The model is known as DP mixture. We write

F ∼ DPM(M,G?, ϕ).

Often the kernel includes some additional hyperparameters, like σ2 above. DPM models were intro-
duced in Ferguson (1983), Lo (1984), Escobar (1988, 1994), and Escobar and West (1995). Infer-
ence under the DPM model is implemented in DPpackage as the function DPdensity(.). We
briefly show the code to estimate F in Example 2.1, using a DPM prior. See the documentation of
DPpackage and Jara et al. (2011) for details on the parameters and settings. Figure 2b shows the
estimated distribution F = E(F | x) for example 2.1.

require("DPpackage") ## cran.r-project.org/
y <- round(faithful$eruptions, digits=2) # data
state <- NULL # Initial state
mcmc <- list(nburn=10,nsave=1000,nskip=10,ndisplay=100) # MCMC parameters
prior1<-list(alpha=1,m1=rep(0,1), # prior

psiinv1=diag(0.5,1),nu1=4,tau1=1,tau2=100)
fit1 <-DPdensity(y=y,prior=prior1,mcmc=mcmc, # fit the model

state=state,status=TRUE)
plot(fit1,ask=FALSE) # Plot the estimated density
cbind(fit1$x1,fit1$dens) # Extracting Fhat
plot(fit1, ask=T,output="param", nfigr=2, nfigc=2) # plot pars

Model-based clustering with DP mixtures. For later reference we state two more equivalent
ways of writing the DPM model (2.4). First, the integral in F =

∫
N(y;m,σ2) dG(m) can be

replaced by a hierarchical model by way of introducing latent variables µi. Assume yi | F ∼ F .
We can equivalently write

yi | µi ∼ N(µi, σ
2)

µi | G ∼ G, (2.5)

i = 1, . . . , n and G ∼ DP(M,G?). Marginalizing with respect to the newly introduced latent
variables µi we get back to yi ∼

∫
N(y;m,σ2) dG(m), as before.
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(a) data xi (b) estimate F = E(F | x)

Figure 2: The left panel shows the data xi, together with a kernel density estimate. The right panel
shows the estimate F = E(F | x) under the DPM prior (using plot(fit1) in the included code
fragment).

As a sample from a discrete probability measure G the µi can include ties. Let {θ?1 , . . . , θ?K}
denote the K ≤ n unique values, let si = k if µi = µ?k and let nk = |{i : si = k}|. We use the
convention of labeling θ?k by appearance, that is, s1 = 1 and si ≤ max{s`, ` < i}+ 1. We can then
alternatively rewrite the DPM model as

yi | si = k,µ? ∼ N(µ?k, σ
2)

µ?k ∼ G?, (2.6)

i = 1, . . . , n and k = 1, . . . ,K, independently. It can be shown that (2.5) implies

p(s) ∝ αK
K∏
k=1

(nk − 1)!. (2.7)

The indicators si can be interpreted as cluster membership indicators for clusters Sk = {i : si = k}.
This makes (2.7) a random partition of [n] = {1, . . . , n} into subsets S1, . . . , SK . The prior (2.7)
is also known as the Polya urn prior or Chinese restaurant process. In other words, the DPM model
includes inference on a partition s of experimental units (by unique µ?k). What might seem like
a coincidental property of the DPM model is in fact often the main inference target. Often the
DPM model is explicitly used for model-based clustering of the experimental units i = 1, . . . , n.
A posteriori, p(s | x) summarizes inference about the unknown partition of the experimental units
{1, . . . , n}. We will not further explore this in the upcoming discussion. For a more extensive review
see, for example, Müller et al. (2015, chapter 8).
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2.3 Polya tree

The DP can be characterized as a special case of several other more general models. One is the Polya
tree (PT) prior. The PT specifies essentially a random histogram. Without loss of generality, assume
that G is a random probability measure on the unit interval [0, 1]. The PT defines G as a random
histogram over [0, 1]. Start with the simplest possible histogram with two bins, B0 = [0, 12 ) and
B1 = [ 12 , 1]. Let Y0 = G(B0) and Y1 = G(B1). We assume Y0 ∼ Be(a0, a1) and Y1 = 1−Y0. This
defines the random probability measure G at the very coarse level of this partition [0, 1] = B0 ∪B1.
Next we refine the histogram by splitting B0 into B00 = [0, 14 ) and B01 = [ 14 ,

1
2 ) and similarly for

B1 = B10 ∪ B11. Defining G(Be1e2), em ∈ {0, 1}, we need to be careful to respect the already
defined G(Be1). This is easiest done by defining conditional probabilities Y00 = G(B00 | B0) etc.
Continuing like this we define

Ye,0 = G(Be0 | Be) ∼ Be(ae0, ae1) (2.8)

for any length m binary sequence e = e1 · · · em. The construction implies

G(Be) =

m∏
`=1

Ye1...e`

for any partitioning subset Be. That is all! In summary the PT prior is determined by a nested
sequence of partitions Π = {Π1,Π2, . . .} with Πm = {Be1···em}, m = 1, 2, . . . , and a sequence of
beta parameters A = {ae; e = e1 · · · em}. We write

G ∼ PT(Π,A).

See Lavine (1992, 1994) for an extensive discussion. The special case with ae = ae0 + ae1,
that is, the beta coefficients adding up over different level partitions, reduces to the DP. In general
the nested partition sequence Π and A need to specified. However, there are convenient default
choices. For example, if ae = cm2 for e = e1 · · · em and any c > 0, then the PT prior generates
a.s. continuous distributions. And Π can be chosen by specifying a desired prior mean, say G?

by using dyadic quantiles as the boundaries of the partitioning subsets Be. For example, for a
distribution G? on the real line, let Q1,Md, and Q3 denote the 1st quartile, median, and 3rd quartile
and define B0 = (−∞,Md], B1 = (Md,∞), B00 = (−∞, Q1], B01 = (Q1,Md], etc. Together
with symmetric beta parameters, ae0 = ae1, this implies E(G(A)) = G?(A). We write

G ∼ PT(G?,A).

Example 2.2 (Galaxy data). Roeder (1990) analyzes a data set with radial velocities (km/second)
for 82 galaxies (Postman et al., 1986). The galaxies are located in six well-separated conic sections
of the Corona Borealis region. Figure 3 shows a histogram of the data and the estimated density
F = E(F | x) under a PT prior on F . Inference was implemented using the function PTdensity
in DPpackage . See the code fragment below. See the package documentation for details on the
function.
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Figure 3: Estimated F = E(F | x) under a PT prior F ∼ PT(Π,A). For reference the histogram
shows the data and the thin red line shows a kernel density estimate. Inference includes mixing with
respect to c in ae = cm2.

require(DPpackage) ## cran.r-project.org/
data(galaxy) ## Data
speeds<-galaxy$speed/1000
state <- NULL ## Initial state
mcmc <- list(nburn=2000,nsave=5000,nskip=49,ndisplay=500,

tune1=0.03,tune2=0.25,tune3=1.8) ## MCMC parameters
prior<-list(a0=1,b0=0.01,M=6,m0=21,S0=100,sigma=20) ## Prior information
fit1 <- PTdensity(y=speeds, ## Fitting the model

ngrid=1000,prior=prior,mcmc=mcmc, state=state,status=TRUE)
plot(fit1$x1, fit1$dens, ## estimated density

xlab="SPEED",ylab="DENS", bty="l",type="l", lwd=2)
hist(speeds, nclass=12, add=T,prob=T) ## add the data
dens <- density(speeds) ## add kernel density estimate
lines(dens$x,dens$y,type="l",col=2,lty=3)

3 Regression

Regression analysis assumes that a response yi is generated from some underlying probability model
Fxi

that is indexed by covariates xi. In other words, we assume a family of probability models
F = {Fx; x ∈ X}, indexed by covariates x. For a particular observation yi the assumed sampling
model is the one indexed by the corresponding covariate xi. IfFx is described by a finite dimensional
parameter vectors, for example, Fx = N(β′xi, σ

2), then inference reduces to learning about the
parameter vector θ = (β, σ2), with the sampling model defined by

yi = fθ(xi) + εi, εi ∼ N(0, σ2) (3.1)
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with some parametrized function fθ(xi), such as fθ(xi) = β′xi. A prior probability model on F
is defined by assuming a prior p(θ) on the parameter vector and we are back to usual parametric
inference.
In many problems, however, investigators are not able to restrict Fx to a parametric family. This
leads to BNP to relax the mean function, the residual distribution or both in (3.1). Under this
description it becomes natural to distinguish three types of BNP regression.

3.1 Partially nonparametric regression

Nonparametric residual distribution. Parametric mean function and unknown residual distribution

yi = fθ(xi) + εi, with εi ∼ F,

with some BNP prior p(F ) on the residual distribution. This approach is explored, for example,
in Hanson and Johnson (2002) who use a mixture of PT priors for p(F ). For a meaningful inter-
pretation of F as a residual distribution it is important to restrict F to zero mean or median. One
attraction of the PT prior is that it easy to restrict to zero median. Recall the earlier construction of
the PT prior, and restrict the first level partition B0 ∪ B1 to using a partition boundary at 0, and fix
Y0 ≡ 0.5. This restriction ensures a zero median.

Nonparametric mean function. Parametric residual distribution with nonparametric mean func-
tion,

yi = f(xi) + εi with εi ∼ N(0, σ2)

and BNP prior p(f) on f . A widely used prior for a random mean function f is the Gaussian process
prior. A GP specifies a prior on f by assuming a multivariate normal for f evaluated at any finite set
of covariate values xi,

(f(x1), . . . , f(xn)) ∼ N(m, S).

Here the (i, j) element of S is given by a covariance function C(xi, xj) and the mean m is a mean
function µ(x) evaluated at x1, . . . , xn. We write

f ∼ GP(µ(·), C(·, ·)).

Bayesian inference under GP priors can be computationally intensive, essentially due to the (n×n)

covariance matrix S, with typically all non-zero correlation. One solution is proposed by Gramacy
and Lee (2008) who develop treed GP priors which avoid high-dimensional matrix factorization by
partitioning the covariate space. The approach is implemented in the R package tgp.

3.2 Fully nonparametric regression

In the third case neither mean function nor residual distribution are restricted to a parametric form,
leaving F = {Fx; x ∈ X} as the unknown quantity and assuming

yi | xi = x ∼ Fx.



A short tutorial on Bayesian . . . 9

To proceed with Bayesian inference we need to complete the inference model with a prior p(F) on
a set of random probability measures indexed by x.

Dependent DP. The by far most popular such prior is the dependent DP (DDP) (MacEachern,
1999). The construction is actually quite simple. Recall the stick breaking representation (2.2) of
the DP prior,

Fx =
∑
h

wxhδmxh
, (3.2)

x ∈ X . We have slightly modified the stick-breaking representation for the upcoming discussion by
adding a second index x on weights wxh and locations mxh. The DP construction involved then the
independent beta fractions to generate wxh and i.i.d. mxh. Importantly, independence is across h.
Across x we are free to introduce any construction. That is exactly the idea of the DDP. We define
mxh as a realization of a stochastic process {µh(x)}x, indexed by x. For example, this could be a
GP over x. There is one realization {µh(x)} for each h, and they are independent across h. In the
simplest DDP construction wxh = wh are shared across all x. This is all. The same description in
other words: For each x we generate a DP random measure Fx, including independence of the point
mass locations mxh across h. For different x1 and x2, the point masses mx1h,mx2h for the same
h are dependent. We introduce this dependence using a GP prior for µh(x) = mxh. The weights
are generated as before by independent beta distributed random fractions of a unit total probability
mass. We write

{Fx; x ∈ X} ∼ DDP(M,GP (µ(·), C(·, ·)) (3.3)

for a DDP with GP prior to introduce the dependence across x on the point masses. Other variations
of the DDP introduce dependence on weights wxh and/or locations mxh. But the basic principle
remains the same. Convoluting Fx in (3.3) with an additional normal kernel to obtain continuous
random probability measures we get

Gx =
∑

wxhN(µh(x), σ2) =

∫
N(m,σ2) dFx(m),

with {Fx} ∼ DDP.
ANOVA-DDP (LDDP). A particularly simple version of the DDP arises when we replace the GP

prior for the dependent (across x) locations by a simple linear model, that is, µh(x) = β′hx with
βh ∼ G? (De Iorio et al., 2009). De Iorio et al. (2009) refer to the model as DDP-ANOVA, having
in mind the case when x indicates categorical factors. Already including the convolution with the
normal kernel Jara and Hanson (2011) refer to the model as LDDP (linear dependent DP). We write

{Fx} ∼ ANOVA-DDP(M,G?, X, σ2),

where X is the design matrix with i-th row xi (or some function of xi). For an application of
the DDP-ANOVA model specifically for survival analysis see De Iorio et al. (2009). Below is an
example using the R package ddpanova, available from www.math.utexas.edu/users/
pmueller/prog.html (as “ANOVA-DDP univariate”).

Example 3.1 (Oral cancer). We use a dataset from Klein and Moeschberger (2003, Section 1.11).
The data report survival times yi for n = 80 oral cancer patients. Samples are classified as one of
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Figure 4: Estimated survival function by tumor type (solid black and dashed red curves). The
grey shaded bands around the estimated survival functions show pointwise ±1.0 posterior standard
deviation bounds. The piecewise constant lines plot the Kaplan-Meier estimates.

two types, aneuploid (xi = 1) versus diploid (xi = 0). We use the R function ddpsurvival()
from the package ddpanova to estimate an ANOVA DDP model for survival. The only covariate
is an indicator for type. Posterior inference is shown in Figure 4.

require(KMsurv) ## from R CRAN
require(ddpanova) ## from www.math.utexas.edu/pmueller/prog
## tongue data from Section 1.11, Klein & Moeschberger (2003)
data(tongue); attach(tongue) ## data
Y <- cbind(time,delta,time)
D = cbind(1, ifelse(type==2,1,-1)) ## design matrix
D0= cbind(1, c(-1,1)) ## design matrix for prediction
ddpsurvival(Y,D,n.iter=3000,d0=D0,S.init=100,S.prior=0) ## fit
pp <- post.pred() ## posterior predictive
matplot(pp$ygrid,t(pp$Sy),type="l")
fit <- survfit(Surv(time,delta)˜type) ## add KM plot
lines(fit,col=1:2,bty="l",lty=1:2)

Inference under the LDDP, that is, DDP-ANOVA with an additional normal kernel, is also im-
plemented in the function LDDPsurvival in DPpackage . The implementation includes the
possibility of interval censored observations, like in the following example.

Example 3.2 (Breast retraction data.). Hanson and Johnson (2004) analyze data on the time to
cosmetic deterioration of the breast for women with stage 1 breast cancer who have undergone a
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lumpectomy (Beadle et al., 1984). Women were assigned to one of two treatments, A (xi = 0) or B
(xi = 1). There are nB = 46 patients under A and nA = 48 patients under B. The outcome is time
yi to moderate or severe breast retraction. Event times are interval censored, with interval endpoints
occurring at clinic visits. We fit the data using the ANOVA DDP model. The only predictor is
the treatment indicator xi. Below is the R code to implement inference in DPpackage . See the
DPpackage documentation for the meaning of the hyperparamers in prior. Inference summaries
are shown in Figure 5.

require(DPpackage) ## cran.r-project.org/
data(deterioration); attach(deterioration)
ymat <- cbind(left,right) ## data
zpred <- rbind(c(1,0),c(1,1)) ## design matrix for posterior predictive
S0=diag(100,2) m0=rep(0,2) psiinv=diag(1,2) ## Prior
prior <- list(a0=10, b0=1, nu=4, m0=m0, S0=S0, psiinv=psiinv,

tau1=6.01, taus1=6.01, taus2=2.01)
state <- NULL ## initial state
mcmc <- list(nburn=5000, nsave=5000, nskip=3, ndisplay=100) ## MCMC pars
fit1 <- LDDPsurvival(ymat˜trt,prior=prior, ## fit model

mcmc=mcmc,state=state,status=TRUE, grid=seq(0.01,70,1),zpred=zpred)

plot(fit1$grid,fit1$survp.h[1,],type="l", ## x0=(1,0)
xlab="TIME",ylab="SURVIVAL",lty=2,lwd=1,ylim=c(0,1),bty="l")

lines(fit1$grid,fit1$survp.l[1,],lty=2,lwd=1)
lines(fit1$grid,fit1$survp.m[1,],lty=1,lwd=3)
lines(fit1$grid,fit1$survp.h[2,],lty=2,lwd=2,col=2) ## Add: x0=(1,1)
lines(fit1$grid,fit1$survp.l[2,],lty=2,lwd=2,col=2)
lines(fit1$grid,fit1$survp.m[2,],lty=1,lwd=3,col=2)

Recent literature includes almost endless variations of similar constructions. Some examples are
the order based DDP of Griffin and Steel (2006), the probit stick-breaking model (PSBP) of Chung
and Dunson (2008) and the weighted mixture of DPs (WMDP) of Dunson et al. (2007). The order
based DDP introduces the desired dependence across Fx by permuting the weights in a systematic
fashion as x changes. The PSBP parametrization uses a representation like (1), but with covariate-
dependent weights wxh and common point masses mh. The weights are explicitly parametrized as
a regression on x. The WMDP assumes that the random distributions Fx are weighted mixtures of
independent random probability distributions F o` . The weights are functions of the covariates.

Dependence by additive constructions. Müller et al. (2004) consider a variation of the DDP
mixture of normal model for the special case when x ∈ {1, 2, . . . , k} indexes k related studies. We
define p(F) by assuming an additive decomposition of the mixing measure Gx for Fx, as

Gx = εH0 + (1− ε)Hx and Hj ∼ DP(M,H?),

independently across j = 0, 1, . . . , k. The construction has a natural interpretation when the Fx are
distributions for patient-specific random effects in related studies x = 1, . . . , k. The model reflects
heterogeneity of patient populations, with H0 representing a subpopulation that is common across
studies and Hx representing patient subpopulations specific to each study. A similar construction,
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Figure 5: Estimated survival curves for x = (1, 0) (black) and x = (1, 1) (red) and pointwise 95%
HPD intervals (dashed lines). For comparison the dotted line shows a Kaplan Meier estimate.

but in much more generality and in such a way that Gx is again a well known process is introduced
in Lijoi et al. (2014).

3.3 Conditional regression

We introduced fully nonparametric regression using BNP priors on F = {Fx; x ∈ X}. An alter-
native approach reduces regression to density estimation, using the following model augmentation.
Note that in the earlier construction we used xi only to select one of the models in F . There was no
notion of a probability model for xi. But for a moment pretend that xi were also random. In ob-
servational studies this is a reasonable assumption. Let ỹi = (yi,xi) denote an augmented outcome
vector and assume

ỹi ∼ F (3.4)

i = 1, . . . , n, i.i.d., and complete the inference model with a BNP prior p(F ) on F . The problem is
now reduced to a density estimation problem on F . We proceed as before, in Section 2. The implied
conditional distribution under F , that is F (y | x) ∝ F (y,x), as a function of y for fixed x, solves
the original regression problem. The conditional F (y | x) is the desired model Fx. Note that here
and elsewhere we use generic notation F for a probability model, using the arguments to clarify the
specific use (joint, conditional etc.).

Müller et al. (1996) and Park and Dunson (2010) propose this approach using a DP mixture
model for inference on the unknown joint distribution F (y,x). The implied regression mean func-
tion is

f(x | F ) = EF (y | x)
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with the expectation being with respect to y (under the implied conditional F (y | x)). The posterior
estimated mean function becomes f̄(x) = E{f(x | F ) | data} with the additional expectation
being with respect to the posterior on F . The mean function f(x | F ) under this approach takes the
form of a locally weighted linear regression line, similar to traditional kernel regression in classical
nonparametric inference. In words, this is the case, because a (DP) mixture of normal model for
(yi,xi) implies a locally weighted mixture of linear regressions for p(y | x, data) for a future
observation. For a detail statement, consider a DP mixture of normal kernels, mixing with respect
to location and scale. Write the DPM as a hierarchical model as in (2.5),

(xi, yi | µi,Σi) ∼ N(µi,Σj)

θi ≡ (µi,Σi) | G ∼ G and G ∼ DP(M,G0). (3.5)

Let θ?k = (µ?k,Σ
?
k), j = 1, . . . ,K, denote the unique values of θi, i = 1, . . . , n, with multiplicities

nk. Let g(y | x, θ?k) denote the conditional normal density in y given x under the multivariate normal
N(µ?k,Σ

?
k) and let s(x | θ?k) denote the marginal normal density in x under N(µ?k,Σ

?
k). Similarly, let

g0(y | x) and s0(x) denote the implied conditional and marginal when θ? is generated fromG?(θ?),
i..e., g0(y | x) =

∫
g(y | x, θ) dG?(θ) and s0(x) =

∫
s(x | θ) dG?(θ). Now consider a future

observation θn+1 and write (x, y) as short for (xn+1, yn+1). We get the predictive distribution

p(y | x, θ?1 , . . . , θ?k) ∝M s0(x)g0(y | x) +

K∑
k=1

nk s(x | θ?k) g(y | x, θ?k). (3.6)

The predictive p(y | x, θ?1 , . . . , θ?K) takes the form of a locally weighted mixture of linear regres-
sions, each regression line being indexed by a unique θ?k, and the weights being the normal kernels
nks(x | θ?k). Plus one term corresponding to the base measure G?.

Example 3.3 (Simulation example.). We use a simulation setup from Dunson et al. (2007) to gen-
erate n = 500 observations from a mixture of two normal linear regression models,

yi | xi
ind.∼ e−2xiN(yi|xi, 0.01) +

(
1− e−2xi

)
N(yi|x4i , 0.04), i = 1, . . . , n,

and xi
iid∼ U(0, 1). Inference under DPM conditional regression is implemented in the DPpackage

function DPcdensity. Below is the R code. See the package documentation for the interpretation
of the hyperparameters in prior.

require(DPpackage) ## cran.r-project.org/
nrec <- 500; x <- runif(nrec) ## generate the data
p <- exp(-2 * x)
y <- ifelse(runif(nrec) < p,

x + rnorm(nrec, 0, sqrt(0.01)),
xˆ4 + rnorm(nrec, 0, sqrt(0.04)))

w=cbind(y, x); wbar=apply(w, 2, mean); wcov=var(w) ## prior
prior <- list(a0 = 10, b0 = 1, nu1 = 4, nu2 = 4, s2 = 0.5 * wcov,

m2 = wbar, psiinv2 = 2 * solve(wcov), tau1 = 6.01, tau2 = 3.01)
mcmc <- list(nburn=5000,nsave=5000,nskip=3,ndisplay=1000) ## mcmc
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(a) Fx = p(y | x = 0.1, data) (b) Fx = p(y | x = 0.88, data) (c) f̄ = E(f | data)

Figure 6: Panels (a) and (b) shows the estimated conditional p(y | x, data) for a future data point
with x = 0.1 (a) and x = 0.88 (b). The dashed black lines show pointwise 95% HPD intervals for
the conditional density. For comparison the dotted red line shows the simulation truth. Panel (c)
shows the estimated mean function f̄(x) = E(f(x | F ) | data). Again for comparison the dotted
red curve shows the simulation truth.

xpred=seq(0,1,0.05) ## x-grid for fit
fit <- DPcdensity(y = y, x = x, xpred=xpred, ## fit

ngrid = 100, compute.band = TRUE, type.band = "HPD",
prior = prior, mcmc = mcmc, state = NULL, status = TRUE)
## note, this might take a while.

plot(x, y, xlab = "x", ylab = "y",
bty="l", pch=1, cex=0.5) ## E(f | dta)

lines(xpred, fit$meanfp.m, type = "l", lwd = 3, lty = 1)
lines(xpred, fit$meanfp.l, type = "l", lwd = 3, lty = 2)
lines(xpred, fit$meanfp.h, type = "l", lwd = 3, lty = 2)

j=6 ## plot cond p(y | x,data) for x=xpred[6]=0.1
plot(fit$grid, fit$densp.h[j,], ylim = c(0, 4),bty="l",

lwd = 3, type = "l", lty = 2, xlab = "y", ylab = "f(y|x)")
lines(fit$grid, fit$densp.l[j,], lwd = 3, type = "l", lty = 2)
lines(fit$grid, fit$densp.m[j,], lwd = 3, type = "l", lty = 1)

Figure 6ab shows the estimated density E(Fx | data) and pointwise 95% HPD intervals for
x = 0.1 and x = 0.88. Panel (c) shows the data along with the estimated mean function f̄(x) =

E(f(x | F ) | data).

4 Classification
An interesting application of fully nonparametric regression arises when a categorical covariate x
indexes different subpopulations of interest, and the aim of the study is to classify a new patient into
one of these subpopulations. Without loss of generality assume x ∈ {0, 1}. Cruz-Mesı́a et al. (2007)
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construct a BNP model that allows such classification. Let yi denote the response for the i-th subject,
and let xi denote the classification into the two subpopulations. Assume that the classification xi
is known for i = 1, . . . , n, and the unknown classification xn+1 for a future observation should
be predicted on the basis of a partially observed response yn+1. Cruz-Mesı́a et al. (2007) use an
ANOVA-DDP for p(yi | xi,F) = Fx, and augment the model by a simple additional assumption,

p(xi = 1) = π.

That is, they add a prior probability model for the classification xi. Under this simple augmentation
the (marginal posterior) predictive probability p(xn+1 = 1 | yn+1, data) defines the desired clas-
sification for a future observation. In the following example yi = (yi1, . . . , yimi) is a longitudinal
response, allowing to update p(xn+1 = 1 | yn+1,1...,m, data) with increasing number m of repeat
observations.

Example 4.1 (Pregnancy classification). De la Cruz et al. (2007) analyze hormone data yij ,for
n = 173 pregnant women, i = 1, . . . , n, for repeat measurements at times tij , j = 1, . . . , ni. The
data include n0 = 124 normal pregnancies (xi = 0) and n1 = 49 pregnancies that were classified
as abnormal (xi = 1). The data are modeled as a non-linear mixed-effects model

p(yij | xi = x, βx, σ
2
x, θi) = N(mij , σ

2
x) with mij = θi [1 + exp {−(tij − β1x)/β2x}]−1 ,

i.e., a logistic regression with coefficients βx and scaled by random effects θi and with normal
residuals. Fixed effects, βx, σ2

x are group-specific. Let φ = (βx, σ
2
x, x = 0, 1). The model

includes a patient-specific random effect θi with θi | xi = x ∼ Gx(θi), and an ANOVA DDP
prior, (G0, G1) ∼ ANOVA-DDP(M,G?, X, τ2) where X is a design matrix with i-th row (1, 0) for
normal pregnancies and (1, 1) for abnormal pregnancies. The model is completed with a bivariate
normal base measure G? and conditionally conjugate priors for φ. Figure 7ab shows the estimated
random effects distributions E(Fx | data) (panel a) and the posterior classification probabilities
p(xn+1 = 1 | yn+1,1...m, data) as a function of m.

5 Conclusion

We have reviewed some popular BNP models, and showed how to implement inference for some of
these models in R, using public domain software. BNP inference can be very useful when paramet-
ric models become too restrictive. However, while we tried to introduce a clear distinction between
parametric and non-parametric inference by defining BNP as priors on infinite dimensional parame-
ters, this distinction is not always as clear. Flexible parametric models, like finite mixture of normal
models can be almost as flexible as BNP models, and often suffice for practical data analysis.
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Figure 7: Estimated random effects distributions Fx under x = 0 (thick black curve) and x = 1
(thick red) (panel a), and posterior probability p(xn+1 = 1 | yn+1,1...m, data) for a future woman
with unknown pregnancy status, as a function of hormone measurements yn+1,j over time. In panel
(a) the think grey lines show posterior simulations Fx ∼ p(Fx | data). In panel (b), the red dashed
line shows results for a simulated future woman with simulation truth of abnormal pregnancy, that
is, xn+1 = 1 in the simulation (“i = 135”). The solid black curve shows the same for a woman who
was simulated with a normal pregnancy (“i = 13”).
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