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SUMMARY

A case-cohort study is a two-phase study where at the first phase a representative sample,
referred to as the study cohort, is selected from the target population. At the second phase, a
subsample is selected from the study cohort based on the case status. All cases are included
in the subsample whereas only a random sample of controls is included. The endpoint of
interest in such studies is usually the failure time. Several methods have been proposed to
estimate the relative risk or hazard ratio from a case-cohort study. Many of these methods
disregard the covariate information that is not included in the sampled study sub-cohort,
and therefore, results in the loss of efficiency. While there have been attempts to derive the
most efficient estimators, the resulting estimators are not easily implemented from the data
analysis point of view. We propose a locally efficient estimator (LEE) based on Robins et
al. (1994, J. AM Stat. Assoc. 89, 846-866) by restricting the estimator to a class of regular
asymptotically linear estimators. The properties of this estimator are investigated through
simulations, and application to the Wilm’s tumor study.

Keywords and phrases: Case-cohort study; Influence Function; Martingale theory; Regular
asymptotically linear estimator; Two-stage design

1 Introduction

Standard prospective cohort designs require assembly of all covariate (exposure) histories. In such
studies, participants are followed prospectively, and subsequent status evaluations with respect to
a disease or outcome are ascertained for exposure characteristics. Although subjects in a cohort
design can be matched, which limits the influence of confounding variables, and since patients are
followed prospectively for longer periods of time, the ascertainment of outcomes in this design is
often delayed; as a result, this type of studies are generally expensive. Cohort studies typically
measure exposure in many controls. This measurement of exposures in controls are wasteful and
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thus inefficient. In addition, cohort designs require extended follow-up to observe the development
of the condition of interest, e.g. death due to lung cancer.

Prentice (1986) introduced the case-cohort design as an economical way of studying large co-
horts; this type of design is widely used in epidemiological studies with time-to-event data. The
case-cohort study is a two-phase study where at the first phase, a representative sample referred to
as the study cohort is selected from the target population. In practice, certain covariates such as
treatment allocations, gender, age, and surrogate measurements of expensive covariates are obtained
in all subjects in the cohort (Kulich & Lin, 2004). Considering that evaluation of all covariates on
this cohort could be expensive, this list of covariates is usually kept to a minimum. At the second
phase, a subsample is selected from the cohort based on the case status, and the most expensive
covariates that were not measured in the first phase are evaluated for the subsample. All cases are
included in the subsample, whereas only random samples of controls are included in the subcohort.
The endpoint of interest in such studies is usually the failure time, e.g. time to death. Rothman
(2002) described the advantages of using the case-cohort design. This design is very efficient, since
controls can be used in all risk sets for which they qualify. Furthermore, this type of design is very
flexible, and allows testing hypotheses that were not anticipated when the cohort was drawn from
the subsample. That is, the subsample can be used to study multiple outcomes.

Analysis of case-cohort studies is very similar to the usual Cox regression approach with a few
modifications. It is assumed that, if we had full data, then the standard Cox proportional hazard
model would suffice. Prentice (1986) showed how to estimate the relative risk from a Cox propor-
tional hazard model without necessarily obtaining the covariate information of all subjects in the
cohort. His method used an estimating equation for the regression parameters through a pseudolike-
lihood approach that weighted the contributions from the cases and subsample members using the
inverses of their true or estimated sampling probabilities.

Since Prentice’s initial work, many authors have derived variations of his method by proposing
different estimating equations. Most of these methods, however, fail to account for the covariate
data collected outside the case-cohort sample, and hence incur loss of efficiency. In particular, the
Kalbfleisch & Lawless (1988) estimator, which is based on the modifications of the full data partial
likelihood score function, weights the contributions from the cases and subsample members with
inverses of their true or estimated probabilities, called sampled fraction. However, it ignores the first
phase covariate data. Similarly, the estimator proposed by Self & Prentice (1988) ignores all the first
phase information. Only Borgan & Goldstein et al. (1995) method utilizes some of the first phase
information by stratifying on the first phase covariates (Kulich & Lin, 2004).

To improve the efficiency of the case-cohort estimators, several authors have introduced different
estimators. For example, Barlow (1994) introduced an estimator that incorporates time-varying
weights by proposing different weighting schemes. This weighting scheme assigned a value of one
for all cases inside or outside the subsample. On the contrary, the cases in the subsample prior to
failure, and the subsample controls are weighted by the inverses of the sampling fraction. Also, Chen
& Lo (1999) proposed an estimator based on the partial likelihood score function that improves the
efficiency gain within the doubly weighted class of estimators that is stratified on all combinations
of binary covariates (Kulich & Lin, 2004).



A relatively simple efficient estimator . . . 39

The efficiency of the relative risk estimation in analyzing case-cohort studies was further im-
proved by Borgan & Langholz et al. (2000) where they proposed an exposure stratified case-cohort
estimator, whereby complete covariate information is assembled for all failures (cases) and a strati-
fied random subsample of the non-failures (controls). The stratification is usually based on an inex-
pensive easily observable covariate that is measured on all members in the cohort. By this approach,
Borgan & Langholz et al. (2000) showed that stratified sampling designs can lead to substantial
efficiency gain in case-cohort studies by employing the weighted versions of the pseudolikelihood
methods. In addition, Kulich & Lin (2004) introduced the combined doubly weighted estimator
(CDW), which is a linear combination of the class of augmented estimators described in Robins et
al. (1994) and Borgan & Goldstein (1995) estimators. In their 2004 paper, Kulich and Lin compared
their combined doubly weighted (CDW) estimator to the Borgan II estimator, hereafter referred to
as BII-estimator. The BII-estimator is one of the most efficient estimators within the class of doubly
weighted estimators. However, the BII estimator did not perform well against the CDW estimator in
a head to head comparison. According to Kulich and Lin (2004, page 838), estimates of the CDW
estimator for fully observed binary covariates show smaller efficiency gains compared with BII, but
have the highest overall efficiency. They show that the efficiency gain of CDW for incompletely ob-
served continuous covariates ranges from substantial to negligible, depending on the quality of the
surrogate information. Thus, the CDW estimator is protected against a deterioration of efficiency be-
low that of the Borgan et. al. estimators due to an incorrectly specified model (Kulich & Lin, 2004).
Mark & Katki (2006) proposed a simple estimator based on inverse-probability weighting (Horvitz,
1952), which they refer to as the α̂-estimator, reflecting that the probability of being included in
the sample, α, is estimated. In addition, Nan (2004) proposed an estimator for case-cohort designs
with discrete covariates by solving the efficient score equations using a one-step Newton-Raphson
approximation.

All the aforementioned estimators seek to efficiently estimate the association parameters from a
case-cohort design by using the Cox proportional hazard model. Although the CDW estimator has
appealing asymptotic properties, it may not always perform well in finite samples. It is computa-
tionally complex and difficult to implement. In addition, the efficiency gain of the CDW estimator
depends on whether a fully observed continuous or binary covariate is observed at baseline. That
is, fully observed continuous covariates achieve more efficiency compared to fully observed binary
covariates.

The α̂-estimator proposed by Mark & Katki (2006) relaxes the requirement that the selection
of subjects into the subsample be independent with known probabilities. It is similar to the usual
inverse-probability weighted Horvitz-Thompson estimator (Breslow et al., 2009). The authors re-
placed the sampling probability α with its maximum likelihood estimate α̂. The efficiency gain of
the α̂-estimator depends on the assumed correctness of the logistic model used to estimate α. The
estimation procedure ignores the first phase information, and hence there is further room for effi-
ciency gain. Since the asymptotic properties of the α̂-estimator is similar to the CDW, but without
its complexities in terms of implementation, we anticipate the efficiencies of these two estimators
are similar. As a result, the α̂-estimator will be used as a comparator for our proposed estimator.

In this article, we present a semiparametric locally efficient estimator for analyzing case-cohort
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studies that do not require strong model assumptions and yet achieves efficiency gain over α̂-
estimator. We derive the most efficient estimator along the lines of the semiparametric theory of
Robins et. al (1994) by restricting ourselves to a subclass of estimators which are regular and
asymptotically linear (Newey, 1990). Our proposed estimator is an asymptotically linear estimator
which is not only easily computable, but also the most efficient within this subclass of estimators,
and enjoys nice asymptotic properties.

In the next section, we present the model, notation, and assumptions used throughout this chap-
ter, and we review a class of estimating equations for analyzing case-cohort studies. Section 3
presents our proposed locally efficient estimator. We demonstrate how to draw inference on the re-
gression parameters on our proposed locally efficient estimator (LEE). Also, we show that LEE has
the smallest asymptotic variance among all the class of restricted asymptotic linear (RAL) estima-
tors. Section 4 shows simulation study results comparing our proposed estimator to the α̂-estimator.
Finally, Section 5 discusses the analysis of the Wilm’s tumor data.

2 Model, Notation, and Assumption
Let T be the failure time, C be the potential censoring time and Z be the vector of covariates.
Suppose that T is conditionally independent of C given Z and that the conditional distribution of T
given Z follows the Cox (1972) proportional hazards model

λ(t |Z) = λo(t) exp(βTZ), (2.1)

where λ(t |Z) is the conditional hazard for failure given the covariate history up to time t, β is a
vector-valued parameter, and λo(t) is an unspecified baseline hazard function. We will often write
λ(t |Z) as λ(t) for brevity. Our goal is to draw inference about β from data observed through a
case-cohort sampling scheme.

The case-cohort design evaluates some covariates on the overall cohort and measures expensive
covariates on the subcohort of controls and all cases. Let the observed data be denoted by{

∆i, Ui, (1−∆i)ξi,
{

∆i + (1−∆i)ξi
}
Zi,Wi

}
, i = 1, . . . , n,

where ∆i = I(Ti ≤ Ci), the indicator for cases, Ui = min(Ti, Ci) the observed time, ξi is
the indicator for the controls ∆i = 0 who are in the subcohort, Zi be the covariate of interest
that is observed for all individuals in the subcohort ∆i = 1 or (1 − ∆i) ξi = 1, or equivalently,
∆i + (1 −∆i) ξi = 1, and Wi is the other covariates observed for the i-th individual. We assume
that the cohort study involves n individuals.

Inference for Cox model with simple random sampling follows the approach of a partial like-
lihood. Since our method primarily relies on the influence function from this process, we briefly
describe the procedure in this section. Suppose the exposure Zi is observed on all individuals in the
sample. The partial likelihood score equation for estimating β in such case is given by

n∑
i=1

τ∫
0

{
Zi −E(u, β)

}
dNi(u) = 0 (2.2)
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where

E(u, β) =

n∑
i=1

Yi(u)Zi exp(βTZi)

n∑
i=1

Yi(u) exp(βTZi)

is the weighted average of the exposure vector Zi among those who are at risk at time u, Yi(u) =

I(Ui ≥ u) be the at risk indicator at time u, and Ni(u) = ∆iI(Ui ≤ u), i = 1, . . . , n; τ is a
fixed time chosen to limit the analysis to a follow-up time beyond which there is still a reasonable
number at risk. The solution of β, β̂PL from Equation (2.2) is known to follow an asymptotic normal
distribution. Moreover, one can write (Tsiatis, Chapter 3, Page 21)

n1/2(β̂PL − βo) = n−1/2
n∑
i=1

ϕi + op(1),

where

ϕi = I−1
i (βo)

τ∫
0

{
Zi − E(u, βo)

}
dMi(u) (2.3)

is the influence function of β̂PL, with

E(u, β) =
s1(u, β)

so(u, β)
=
E
[
Yi(u)Zi exp(βTZi)

]
E
[
Yi(u) exp(βTZi)

]
Ii(β) = E

[{ τ∫
0

{
Zi − E(u, β)

}
dMi(u)

}
×
{ τ∫

0

{
Zi − E(u, β)

}
dMi(u)

}T]
,

where Mi(u) = Ni(u)−
u∫
0

λ(u |Zi)Yi(u) du is the martingale process corresponding to the hazard

function λ(u |Zi), and the death and at-risk processes Ni(u) and Yi(u) respectively; op(1) is a term
that converges to zero in probability as n approaches infinity.

In the case-cohort sampling, however, not all the exposure variables are measured on all individ-
uals. Therefore, it is not possible to estimate β from Equation (2.2). To account for the probability
of such variables being included in the subsample, Equation (2.2) is usually weighted by the inverse
of the probability of inclusion. In what follows, we first describe common approaches to estimating
β from the case-cohort sampling, and their limitations, and then we describe our proposed estimator.

Almost all existing estimators for analyzing case-cohort studies are based on score equations
similar to Equation (2.2). In a typical case-cohort setting, it takes the form

n∑
i=1

{
∆i + (1−∆i)ξi

} τ∫
0

{
Zi −Ec(u, β)

}
dNi(u) = 0, (2.4)
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where

Ec(u, β) =

n∑
i=1

(ξi/αi)Yi(u)Zi exp(βTZi)

n∑
i=1

(ξi/αi)Yi(u) exp(βTZi)

is the at-risk average of the exposure vector Zi, and αi is the sampling fraction which is estimated
from true or estimated sampling probability. Various proposals for obtaining the sampling weight,
αi, have been published, yielding different case-cohort estimators (Kulich & Lin, 2004). In particu-
lar, the α̂-estimator is obtained by solving the equation

n∑
i=1

{
∆i + (1−∆i)(ξi/α̂i)

} τ∫
0

{
Zi −Ec(u, β)

}
dNi(u) = 0. (2.5)

This estimator replaces the sampling probability αi by its maximum likelihood estimate α̂i in a
correctly specified model. Since the estimation procedure in Equation (2.4) eliminates subjects
with incomplete data, all existing estimators that incorporate the pseudoscore in Equation (2.2) for
analyzing case-cohort study, including the α̂-estimator, use only the second phase subjects, while
ignoring the first phase information. This leads to loss of efficiency.

To account for the missing covariates which result from ignoring the first phase information
in the estimation in Equation (2.4), Robins et al. (1994), Laan & Robins (2003), and Nan (2004)
have proposed estimators that augment the full data influence function, ϕi, by projecting it onto
the orthogonal complement of the nuisance tangent space. In particular, the estimator proposed by
Nan (2004), is obtained by a one-step Newton-Raphson approximation, solves the efficient score
equation with initial values from existing estimators. In our notation, this estimator has influence
function {

∆i + (1−∆i)(ξi/αi)
}
ϕi +

{
1−∆i − (1−∆i)(ξi/αi)

}
E
{
ϕi | data

}
, (2.6)

where E
{
ϕi | data

}
indicates the expectation of the full data influence function given the observed

data. The expectation in Equation (2.6) contains population quantities which are often intractable,
and without additional assumptions on the full data model and censoring mechanism, can not be be
reasonably estimated with finite samples (Van der Laan et al., 2003 p.35). As a result, in the section
that follows, we propose an estimator that restricts the influence function to a class of estimators that
are regular and asymptotically normally distributed. Our proposed locally efficient estimator (LEE)
is built on the semiparametric efficiency theory (Tsiatis, 2006), and contains quantities that are easy
to calculate, and is more efficient than the α̂-estimator.

3 Proposed Locally Efficient Estimator

In this section, we describe the procedure in deriving our proposed estimator. We restrict ourselves to
the class of estimators that are regular and asymptotically linear (RAL) (Newey, 1990). Following
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the theory of inverse-weighting and the semiparametrics, all influence functions for case-cohort
estimator of β can be written as{

∆i + (1−∆i)(ξi/αi)
}
ϕi +

{
1−∆i − (1−∆i)(ξi/αi)

}
g
(
F(Ti)

)
, (3.1)

where ϕi is as defined in Equation (2.3), and F(t) is the history of covariates up to time t. The
optimal influence function that gives rise to semiparametric efficient estimator is given by Equation
(2.6). However, it is not easy to implement in practice due to its complex structure with intractable
expectations. Alternatively, we restrict the class by setting g(·) as a linear function of the data
indexed by a vector parameter γ, namely,

g
(
F(Ti)

)
= γTH(Ti),

where H(Ti) is a q-dimensional vector function of the covariates observed prior to Ti. In practice,
H(Ti) could represent age, gender and other expensive covariates that only need to be measured for
the subcohort. In other words, we start with the influence function

Ψi =
{

∆i + (1−∆i)(ξi/αi)
}
ϕi + (1−∆i)

(
1− (ξi/αi)

)
γTH(Ti). (3.2)

The influence function (3.2) is indexed by the q-dimensional vector parameter γ. Choice of this
vector parameter γ will determine how efficient the corresponding estimator will be. Therefore,
the problem of finding the estimator with the minimum variance is equivalent to finding optimal γ
for which the variance of Ψi in (3.2) is minimum. Also, the influence function for the α̂-estimator
belongs to this class with γ = 0. Therefore, optimal influence function in this class will be more
efficient than the influence function for α̂-estimator.

Let us define K(u) = Pr(Ci > u) and M c
i (u) = N c

i (u) −
u∫
0

λc(t)Yi(t)dt be the martingale

associated with the censoring process, where N c
i (u) = I(Ui ≤ u,∆ = 0), and λc(u) is the hazard

rate for the censoring distribution. Then plugging in ϕi from Equation (2.3) and using Gill (1980)
equality

∆i

K(Ti)
= 1−

Ti∫
0

dM c
i (u)

K(u)
,

we can express Equation (3.2) as

{
K(Ti)−K(Ti)

Ti∫
0

dM c
i (u)

K(u)

}{
1 + (ξi/αi)

}
I−1
i (β)

τ∫
0

{
Zi − E(u, β)

}
dMi(u)

+

{
1−K(Ti) +K(Ti)

Ti∫
0

dM c
i (u)

K(u)

}{
1− (ξi/αi)

}
γTH(Ti). (3.3)

To find the optimal influence function, as in Robins et al. (1994), we consider the Hilbert spaceH
consisting of all zero-mean random functions of the observed data with finite variance equipped with
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the covariance inner product. Within this space we define the closed linear subspace U consisting of
random functions

Ui =

{
1−K(Ti) +K(Ti)

Ti∫
0

dM c
i (u)

K(u)

}{
1− (ξi/αi)

}
γTH(Ti). (3.4)

Our aim is to find the γ which minimizes the variance of Equation (3.3), or equivalently, to find
the element in U which is at the minimum distance from

Vi =

{
K(Ti)−K(Ti)

Ti∫
0

dM c
i (u)

K(u)

}{
1 + (ξi/αi)

}
I−1
i (β)

τ∫
0

{
Zi − E(u, β)

}
dMi(u). (3.5)

By the projection theorem for Hilbert spaces (Tsiatis, 2006, pp.13-19), and the results presented
in the Appendix, we deduce that the optimal γ is given by

γopt = E
[
ζiH(Ti)H

T (Ti)
]−1

E
[
H(Ti)ηi

]
, (3.6)

where

ζi = −
(

1− ξi
αi

+
ξi
α2
i

){
(1−K(Ti))

2 −K2(Ti)

Ti∫
0

λc(u)S(u)

K(u)
du

}

and

ηi = K(Ti)I
−1
i

[{
(1−K(Ti))

(
1− ξi

αi
+
ξi
α2
i

)

−K(Ti)

(
1− ξi

αi

)} Ti∫
0

(Zi − E(u, β))λc(u)λ(u)S(u)du

+K(Ti)

(
1− ξi

αi
+
ξi
α2
i

) Ti∫
0

(Zi − E(u, β))

K(u)
λc(u)λ(u)S(u)du

]
.

Thus the optimal influence function,Ψ, is given by (3.2) with γ replaced by γopt from Equation
(3.6). Consequently, we can obtain the optimal estimator of β, β̂LE , by solving

n∑
i=1

Ψ̂i =

n∑
i=1

[{
∆i +

(1−∆i)

αi
ξi

}
ϕ̂i +

{
1−∆i −

(1−∆i)

αi
ξi

}
γ̂opt

T

H(Ti)

]
= 0, (3.7)
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where we estimate the following quantities as follows:

ϕ̂i = Î−1
i (β̂LE)

τ∫
0

{Zi −Ec(u, β̂LE)}{dNi(u)− Yi(u)λ̂c(u)du},

Îi(β) =

{ Ti∫
0

(Zi −Ec(u, β){dNi(u)− Yi(u)λ̂c(u)du}
}

×
{ Ti∫

0

(Zi −Ec(u, β){dNi(u)− Yi(u)λ̂c(u)du}
}T

γ̂opt = E
[
ζ̂iH(Ti)H

T (Ti)
]−1

E
[
H(Ti)η̂i

]
ζ̂i = −

(
1− ξi

αi
+
ξi
α2
i

){
(1− K̂(Ti))

2 − K̂2(Ti)

Ti∫
0

λ̂c(u)Ŝ(u)

K̂(u)
du

}

η̂i = K̂(Ti)Î
−1
i (β)

[{
(1− K̂(Ti))

(
1− ξi

αi
+
ξi
α2
i

)

−K(Ti)

(
1− ξi

αi

)} τ∫
0

(Zi −Ec(u, β̂LE))λ̂c(u)λ̂(u)Ŝ(u)du

+ K̂(Ti)

(
1− ξi

αi
+
ξi
α2
i

) τ∫
0

(Zi −Ec(u, β̂LE))

K̂(u)
λ̂c(u)λ̂(u) ˆS(u)du

]

λ̂c(u) =
dN c

i (u)

Yi(u)
and λ̂(u) =

dNi(u)

Yi(u)

and Ŝ(u) is the survival function estimated by the product limit estimator. Note that even though the
hazard λ(u |Zi) and the survival S(u |Zi) are dependent on covariates, for simplicity, in estimating
ζi and ηi, we ignored the covariates and simply used Nelson-Aalen and product limit estimator to
estimate them. However, the form of the baseline cumulative hazard function, Λ(u |Zi), can be
estimated as

dΛ̂i(u, β̂) = λ̂(u |Zi) = dΛ̂0(u, β0) exp(β̂TZi), (3.8)

and the survival function, S(u|Zi), can be estimated as

Ŝ(u |Z) = n−1
n∑
i=1

∆i

K̂(Ti)
I(Ui > t). (3.9)

This leads to an estimator for β that is consistent and asymptotically normal. The variance of
β̂LE can be estimated by

var(β̂LE) = (1/n2)

n∑
i=1

Ψ̂2
i . (3.10)
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4 Simulation Study

Simulation experiments have been carried out to evaluate the large sample properties of our proposed
efficient estimator LEE. For comparisons, we also assessed the α̂-estimator, and then we used the full
data Cox estimator as a reference estimator. The simulation set up is very similar to that described
by Kulich & Lin (2004). Our simulation study involves three covariates, a binary covariate Z1 with
Pr(Z1 = 1) = p, and two continuous covariates Z2 ∼ N(0, 0.52), and log(Z3) ∼ N(cz2, 0.5

2)

conditional onZ2 = z2, and we set p = 0.5 and c = 0.2. Thus, our model contains three parameters:
one for binary covariate Z1, and two for continuous covariates Z2 and Z3. Also, the failure times are
generated from the exponential distribution, and the censoring times are generated from a uniform
distribution independent of the survival data. We choose 3,000 subjects in the study cohort and the
subsample are drawn from the entire cohort.

Simulation results presented are for exp(β1) = 1.3, exp(β2) = 1.2, and exp(β3) = 1.2 corre-
sponding to Z1, Z2 and Z3 respectively. We assumed that Z1 and Z3 were observed at phase one,
while Z2 was only observed at phase two. We generated a surrogate variable Z̃2 ≡ Z2 + ε for every
subject, where ε is normal with mean zero independent of Z2. We note that Z2 and Z̃2 have correla-
tion equal to either 0.71 or 0.93. We designated the vector function of covariates, H(Ti), as Z̃2 and
Z3 and αi = (0.100, 0.105, 0.09)T . The choice of H(Ti) in this setting was arbitrary, but could be
tailored to the most expensive covariates that only need to be measured for the sub-cohort. Also, the
sampling scheme for the sub-cohort is exactly the same as that described by Kulich and Lin (2004,
page 834). Given the failure status, the probability that a case is included in the sub-cohort sample is
1. Once a failure status is known, one can form separate stratum consisting of the cases and consider
the whole stratum sampled with probability 1, whereas the sub-cohort is sampled with probabilities
α1, . . . , αk from the controls classified into the remaining K strata. In our simulation setup, strati-
fied sampling was done so that sub-cohort subjects were about equally distributed among the strata.
As a result, eight (8) strata were defined based on Z1 and on the medians of Z2 and Z3. Simulation
results are based on 1,000 replications. Also, the exact simulation setup was used to calculate the
α̂-estimator. Then we used the Nested Cohort package in R, written by Mark and Katki (2006), to
obtain the estimates. The simulation results are based on 1000 replicates, and so the means of the
standard error estimates are based on Monte Carlo simulation samples. Full data estimates are based
on all 3000 subjects and relative efficiencies (REs) are calculated by comparing the Monte Carlo
variance of the full data estimate to the other estimates. Table 1 presents the estimators and relative
efficiencies for the different estimators. The first row shows the results of 10% event rate for all three
estimators. This means that after including all the cases, we obtained 1275 samples for analysis. We
set the full data Cox as the reference category, and compared both our proposed locally efficient
estimator (LEE), and the α̂-estimator to the full data Cox model. The relative efficiencies have been
calculated by using the ratio of the Monte Carlo means-squared errors. For instance, the entry 1.320
(0.150), RE = 0.87 for α̂-estimator in row one of Table 1 refers to the case where with a sample size
of 1275, Monte Carlo mean of relative risk estimates for the covariate Z1 is 1.32, showing a bias
of 0.03. The ratio of the Monte Carlo mean-squared error of the full data Cox model to that of the
α̂-estimator is 0.87. Thus, the α̂-estimator in this case is 13% less efficient compared to the full data
Cox estimator. In contrast, for the same scenario, the LE estimator has Monte Carlo mean of 1.339
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Table 1: Estimator, Monte Carlo standard deviations (MCSE) and relative efficiencies (RE) of LEE
and α̂-estimators with Corr(Z2, Z̃2) = 0.71. True Relative Risks are exp(β1) = 1.3, exp(β2) =
1.2, and exp(β3) = 1.2.

Full data Cox LE estimator α̂-estimator

Event Rate:(n) Var Est. (MCSE) Est. (MCSE) RE Est. (MCSE) RE

10% : 1275 Z1 1.331(0.140) 1.339(0.145) 0.93 1.320(0.150) 0.87

Z2 1.201(0.099) 1.206(0.102) 0.94 1.197(0.109) 0.82

Z3 1.155(0.083) 1.158(0.085) 0.95 1.151(0.089) 0.87

20% : 1537 Z1 1.868(0.096) 1.876(0.100) 0.92 1.887(0.104) 0.85

Z2 1.486(0.076) 1.483(0.078) 0.95 1.477(0.084) 0.82

Z3 1.107(0.083) 1.111(0.086) 0.93 1.112(0.088) 0.89

and a relative efficiency of 0.93, showing a bias of 0.01. This suggests that the LE estimator is only
7% less efficient compared to the full data Cox estimator. Furthermore, comparing the estimators
show that the efficiency gain of the LE estimator over the α̂-estimator is approximately 7%.

For the variable Z2 the LE estimator has Monte Carlo mean estimate of 1.206 and a relative
efficiency of 0.94; the α̂-estimator, which has Monte Carlo mean estimate of 1.197 and relative
efficiency of 0.82. In terms of efficiency gain for the Z2 variable, the LE estimator gains 12%
efficiency over the α̂-estimator. For the variableZ3, the LE estimator has Monte Carlo mean estimate
of 1.158 and relative efficiency of 0.95, compared to the α̂-estimator which has Monte Carlo mean
estimate of 1.151 and a relative efficiency of 0.87. This suggests an efficiency gain of 9% of the LE
estimator over the α̂-estimator. From the relative efficiencies of the two methods, it is evident that
our proposed estimator always performs better. Also, when we increased the event rate by sampling
20% from the subsample and adding all cases in the cohort (n= 1537), a similar trend is observed.
The LE estimator is more efficient than the α̂-estimator.

Likewise, Table 2 shows the relative efficiency of our proposed estimator compared with other
estimators, while varying the correlation coefficient from 0.71 to 0.93. We notice that the differences
in correlation has little effect on the overall results. This holds true for all three estimators. However,
as the event rate increases (i.e. 10% to 20%), the relative efficiencies of case-cohort estimators are
high compared to full-cohort estimator. The MCSEs are certainly smaller for higher event rate as
the effective total sample size is larger compared to lower event rate.

5 Analysis of Wilm’s Tumor Data

Wilm’s tumor is a rare type of kidney cancer that occurs in children. Many factors contribute to the
survival or relapse of this tumor. Some of the factors include: age at diagnosis, stage of diagnosis
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Table 2: Estimator, Monte Carlo standard deviations (MCSE) and relative efficiencies (RE) of LEE
and α̂-estimators with Corr(Z2, Z̃2) = 0.93. True Relative Risks are exp(β1) = 1.3, exp(β2) =
1.2, and exp(β3) = 1.2.

Full data Cox LE estimator α̂-estimator

Event Rate:(n) Var Est. (MCSE) Est. (MCSE) RE Est. (MCSE) RE

10% : 1201 Z1 1.328(0.147) 1.336(0.149) 0.97 1.318(0.151) 0.95

Z2 1.196(0.101) 1.198(0.104) 0.94 1.191(0.108) 0.87

Z3 1.151(0.081) 1.154(0.084) 0.93 1.149(0.089) 0.83

20% : 1425 Z1 1.866(0.095) 1.878(0.100) 0.90 1.891(0.103) 0.85

Z2 1.484(0.076) 1.490(0.078) 0.95 1.487(0.082) 0.86

Z3 1.106(0.083) 1.112(0.085) 0.95 1.111(0.088) 0.89

of disease (usually 4 stages), histological type of tumor, and the tumor diameter. We dichotomized
the stage variable by combining stages I and II into one group and stages III and IV into another
group. There are six parameters in our model excluding the intercept term. We have two interaction
variables: histology and the continuous age variable, and the stage and tumor diameter variables. A
total of 3915 patients were enrolled into the Wilm’s Tumor Study [D’Angio et al, 1989]. We assume
that all covariates except histological group are observed at phase one. Also, we assign the vector
function of covariates, H(Ti) as age and stage variables. After the second phase sampling we obtain
660 control subjects and 669 cases. As a result, a total of 1329 observations are analyzed.

Results in Table 3 show that the for each centimeter increase in tumor diameter, the relative
risk of death is 1.06 for patients in stage I-II. This represents a 6% increase in risk of death per
1 unit increase in tumor diameter for individuals in this group. However, individuals in stage III-
IV have a slightly lower risk (RR=0.98). Thus, an increase in tumor diameter for persons in stage
I-II can be fatal but not for persons in stage III-IV. This is may seem counter-intuitive, however
it is because individuals in stage III-IV are already at higher risk of dying from cancer and so
an additional increase in diameter of the tumor would not necessarily determine the survival or
otherwise death of the patient. The age effect is amplified among patients with unfavorable histology
compared to those with favorable histology. For every year increase in age, the risk for a person
with unfavorable histology increases by 10% (RR =1.10, CI =(1.07,1.13)) whereas for a person with
favorable histology, age is not statistically significant.

As patients become older, the risk of death increases for patients in the unfavorable histology
group compared to patients in the favorable histology group. The risk of death in Stage III-IV
compared to that in Stage I-II depends on the diameter of tumor such that for smaller tumor diameter
the relative risk is close to one; whereas, for larger tumor size, the Stage I-II patients are at greater
risk of death compared to Stage III-IV patients.
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Table 3: Analysis of Wilm’s Tumor Data Using LE Estimator.

Variable Relative Risk SE CI

Tumor Diameter (per cm):

For Stage I-II patients 1.06 0.015 (1.03, 1.09)

For Stage III-IV patients 0.98 0.013 (0.95, 1.01)

Stage III-IV vs Stage I-II:

At tumor diameter = 5cm 0.71 0.065 (0.58, 0.84)

At tumor diameter = 11.5cm 0.43 0.096 (0.24, 0.61)

At tumor diameter = 20cm 0.22 0.086 (0.05, 0.39)

Age effect (per year):

With Favorable Histology 0.95 0.034 (0.89, 1.02)

With Unfavorable Histology 1.10 0.018 (1.07, 1.13)

Unfavorable vs Favorable Histology:

At age = 1 year 0.95 0.001 (0.95, 0.96)

At age = 3.5 years 0.66 0.086 (0.49, 0.83)

At age = 10 years 0.26 0.037 (0.19, 0.32)

6 Discussion

In this article, we have derived an expression for the most efficient estimator for the restricted asymp-
totically linear estimators for analyzing case-cohort designs. The proposed LE estimator works well
for both binary and continuous covariates. The LE estimator is guaranteed to gain efficiency over
other available estimators such as the estimator proposed by Mark & Katki (2006). In particular,
the LE estimator is more efficient than the α̂-estimator. Our proposed estimator uses all the first
phase information, and therefore, for inferential procedures, our estimator will give more accurate
results than existing ones. Furthermore, our proposed estimator contains quantities that are easy to
calculate, with nice asymptotic properties.

On the contrary, the efficiency of the α̂-estimator depends on whether we have completely ob-
served continuous covariates versus completely observed binary covariates. In addition, the ef-
ficiency of the α̂-estimator depends on the correctness of the assumed logistic model, while the
efficiency of LEE does not depend on whether the observed covariates are binary or continuous.
Through simulations and data analysis, we have shown that the efficiency gain of the LE estimator
is substantial over the inverse probability weighted estimator. Also, the LE estimator is consistent
and asymptotically normal.
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Define the filtration F(u) as the increasing sequence of sub−σ−algebras

F(u) = σ{Ni(s), N c
i (s), Zi, 0 ≤ s ≤ u, i = 1, . . . , n},

and H1i(·) and H2i(·) are predictable functions with respect to F(u). Unless otherwise stated, this
is the filtration with respect to which all the martingales are defined in this paper.

A Derivation of γopt

In order to derive the optimal gamma we use the following results which follow from theorem 2.4.4
in Fleming and Harrington (1991).

Under the assumption of independent censoring

E

[ Ti∫
0

H1i(u)dMi(u)×
Ti∫
0

H2i(u)dM c
i (u)

]
=− E

[ Ti∫
0

H1i(u)H2i(u)Yi(u)λ(u)λc(u)du

]

=− E
[ Ti∫

0

H1i(u)H2i(u)λc(u)λ(u)S(u)du

]
,

(A.1)

E

[
H1i(u)

∫ Ti

0

H2i(u)dM c
i (u)

]
= E

[
H2i(u)

Ti∫
0

H1i(u)dMi(u)

]
= 0, (A.2)

and

E

[ Ti∫
0

H1i(u)dM c
i (u)×

Ti∫
0

H2i(u)dM c
i (u)

]
= E

[ Ti∫
0

H1i(u)H2i(u)λc(u)K(u)S(u)du

]
. (A.3)

From the discussion in Section 3, the optimal influence functions, or equivalently, the optimal γ
is obtained by projecting Vi in Equation (3.5) on U defined by the elements Ui in Equation (3.4). By
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the projection theorem, the optimal gamma (γopt) must satisfy

E

[[{
K(Ti)−K(Ti)

Ti∫
0

dM c
i (u)

K(u)
+
ξi
αi

[
1−K(Ti) +K(Ti)

Ti∫
0

dM c
i (u)

K(u)

]}

×I−1
i (β)

τ∫
0

(Zi − E(u, β))dMi(u) +

{
1−K(Ti) +K(Ti)

Ti∫
0

dM c
i (u)

K(u)
− ξi
αi

[
1−K(Ti)

+K(Ti)

Ti∫
0

dM c
i (u)

K(u)

]}
× γopt

T

H(Ti)

]
×
[{

1−K(Ti) +K(Ti)

Ti∫
0

dM c
i (u)

K(u)

− ξi
αi

[
1−K(Ti) +K(Ti)

Ti∫
0

dM c
i (u)

K(u)

]}
× γTH(Ti)

]]
= 0 (A.4)

Since Equation (A.4) has to be true for any γ, we set γ = 0 and solve Equation (A.4) for γopt using
iterative conditional expectation.

Consequently, we obtain

γoptE

[
−
(

1− ξi
αi

+
ξi
α2
i

){
(1−K(Ti))

2 −K2(Ti)

Ti∫
0

λc(u)S(u)

K(u)
du

}]
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[
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i (β)
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(
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+
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α2
i

)

−K(Ti)

(
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αi

)} τ∫
0

(Zi − E(u, β))λc(u)λ(u)S(u)du

+K(Ti)

(
1− ξi

αi
+
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α2
i

) τ∫
0

(Zi − E(u, β))

K(u)
λc(u)λ(u)S(u)du

]
(A.5)

Therefore, by solving Equation (A.5) for γopt we obtain

γopt = E
[
ζiH(Ti)H

T (Ti)
]−1

E
[
H(Ti)ηi

]
(A.6)

where

ζi = −
(

1− ξi
αi

+
ξi
α2
i

){
(1−K(Ti))

2 −K2(Ti)

Ti∫
0

λc(u)S(u)

K(u)
du

}
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and

ηi = K(Ti)I
−1
i

[{
(1−K(Ti))

(
1− ξi

αi
+
ξi
α2
i

)

−K(Ti)

(
1− ξi

αi

)} τ∫
0

(Zi − E(u, β))λc(u)λ(u)S(u)du
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(
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]
.
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