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SUMMARY

Extreme value theory (EVT) is a branch of statistics that seeks to access, from a given
ordered sample, the probabilities of events that are more extreme than usually observed.
Under very general conditions, EVT’s main results characterize the distribution of the sam-
ples maxima or the distribution of values above a given threshold. Thus, two particular
approaches exist, block maxima, which divides a time period into equal sections and the
maximum of each section is selected. This usually leads to generalized extreme value
(GEV) distribution. The second approach is peaks over threshold (POT) which selects
every value that exceeds a certain threshold. Threshold excesses follow an approximate
distribution within the generalized Pareto family. This study focuses on modeling the tail
of a heavy tail distribution by using the threshold approach. The purpose of this study is
manifold: firstly, to compare the estimates of the generalized Pareto distribution (GPD) pa-
rameters by three estimation techniques, namely, maximum likelihood estimation (MLE),
method of moments (MOM), and probability weighted moments (PWM) in the light of a
hydrological application; secondly, to select an appropriate model for the Mississippi River
flow data by using the model validation and hypothesis testing; thirdly, to introduce the
bootstrap re-sampling approach in hydrological applications; lastly, to obtain a required
design value with a given return period of exceedance and probabilities of occurring ex-
treme floods using bootstrap sampling.
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1 Introduction

Extreme Value Theory (EVT) focuses on the risk of low probability events that could lead to dev-
astating losses. The goal is to make the best possible use of what little information we have about
the extremity of distributions of particular interest. It is often the case that various safety measures
fail us during catastrophic events, and it is during these times that we need them the most. This
is largely due to the fact that most of the time, we simply ignore the risk of such events because
they are associated with very low occurrence. However, through the study of EVT we can predict
the frequency and cost of such events over a period of time, relative to a given location. EVT has
great usefulness in many fields, especially in hydrology and in insurance. Some uses for application
include: extreme floods, large wildfires, large insurance loss, equity and market risk, freak waves
and a host of others. It has also been used to predict human limitations, such as fastest time possible
to run 100m dash, the maximum magnitude/force of a punch without shattering one’s bones, or the
amount of blood a person can lose and stay alive. Although there are various applications when an-
alyzing extremes, two practical approaches exist. Block maxima (minima) extracts annual maxima
(minima), generating an annual maxima series (AMS). This type of data collection leads to general-
ized extreme value distribution (GEV) for fitting. However, this method could be problematic, given
that the number of extreme events in a given year may be rather limited. Moreover, for a sample of
moderate size, the standard GEV estimator is quite inefficient due to the possibly slow convergence
toward the asymptotic theoretical distribution.

The second method, peaks over threshold (POT), extracts from a continuous record of the peak
values reached for any period where values exceed a certain threshold or fall below a certain thresh-
old. For POT data, the analysis involves fitting two distributions: one for the number of events in a
basic time period and the second for the size of the exceedance. Fitting this type of data requires use
of the generalized Pareto distribution (GPD). This method requires careful selection of the threshold,
if it is set too high or too low, the model may prove to be invalid. POT method has popularly been
used to estimate return levels of significant wave height (Mackay et al., 2011; Ferreira and Guedes,
1998; Mathiesen et al., 1994; Sterl and Caires, 2005), hurricane damage (Daspit and Das, 2012;
Dey and Das, 2014; Dey and Das, 2016), annual maximum flood of the River Nidd at Hunsingore,
England (Hosking and Wallis, 1987), earthquake magnitude (Edwards and Das, 2016) and aviation
accidents (Das and Dey, 2016).

Floods have been identified as the most common hydrological disasters. In practice, flood design
is estimated in two ways: (1) rainfall-runoff modeling, and (2) direct statistical analysis of stream-
flow extremes. In many countries the latter is the preferred method. This study focuses on estimating
extreme water flow probabilities because it is important to understand the stochastic behavior of ex-
treme water flow events for efficient planning and design of coastal defense structures. Both for
economic and environmental reasons studying river flow records covering a considerable length of
time is important. Over the past five decades, several approaches for estimating probabilities of
extreme still water levels have been developed (Arns, 2013). However, currently no universally
accepted method of analyzing extreme water level is available. In contrast, different authors and
software provide different methods and often propose several alternative means for the related pro-
cedure. We have compared the effectiveness of three widely used estimation techniques to model
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the study. We have also used the domain of attraction concept to verify the suitability of the model
used in this study. The problem of threshold selection is crucial in hydrological applications. We
have used multiple approaches to select a proper threshold. In particular, the bootstrap approach dis-
cussed in this study is novel and effective. Finally, we have used nonparametric bootstrap sampling
to quantify the uncertainty of the return level estimates.

The rest of the paper is organized as follows. Section 2 provides background information on
GPD. Section 3 describes and compares three estimation techniques. Section 4 presents an appli-
cation of GPD in Mississippi River data.We estimate and interpret extreme return levels and the
uncertainty of such estimates in Section 5. Section 6 describes findings of the study.

2 Generalized Pareto Distribution

2.1 Definition and notations

The Pareto distribution was named after the Italian civil engineer Vilfredo Pareto. Originally, this
distribution was used to describe the allocation of wealth among individuals since it seemed to show
rather well the way that a larger portion of wealth of any society is owned by a smaller percentage of
the people in that society. This idea is sometimes expressed as the “80-20 rule” which says that 20%
of the population controls 80% of the wealth. However, over time the Pareto distribution has evolved
into a family of distributions known as Generalized Pareto distribution with various applications
including but not limited to wealth. There are three parameters associated with the GPD: scale
parameter (denoted by α), shape parameter (denoted by k), and location parameter(denoted by µ).
A random variable X has a GPD if it has a cumulative distribution function of the form

F (x) =

1−
(

1− k(x−µ)
α

) 1
k

if k 6= 0,

1− exp
(
−x−µα

)
if k = 0.

The probability density function (pdf) of a GPD is defined as:

f(x) =

(1/α)
(

1− k(x−µ)
α

) 1
k−1

if k 6= 0,

(1/α) exp(−x−µα ) if k = 0,

where the pdf is positive for x ≥ µ, when k ≤ 0, or for µ ≤ x ≤ α/k, when k > 0.
A special case of GPD is given when the shape parameter is considered as zero, the result is

equivalent to the exponential distribution. The graphics in Figure 2.1 display GPD shapes with fixed
location µ = 0, fixed scale α = 1, and various values for the shape parameter k. In Plot A we
see a triangular fit, in plot C we have a uniform fit, E and F display heavy tailed shape. There is
no useful application for D when k > 1 (Singh and Guo, 1995). In this study, we consider only a
two-parameter (scale and shape) GPD.

The POT modeling is based on the GPD family of distributions being appropriate for describing
statistical properties of excesses (Pickands, 1975). For the random variable X the foundation of the
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Figure 1: Densities of the generalized Pareto distribution

modeling is based on the excess distribution over a threshold u which is defined as

Fu(x) = P
(
X − u ≤ x |X > u

)
. (2.1)

In hydrology, the use of POT modeling is critical since it can be used to model the level of water in
a river or sea to avoid flooding. For instance, the level u could represent the height of a river bank,
dam or levee.

2.2 Use of GPD in modeling extreme events

It is understood that many situations (e.g. natural disasters, extreme floods, heat waves, cold waves,
and wild fires) are fat-tailed, which means the normal distribution is not adequate to describe the
probability of severe events. In order to model these extreme events, we need a distribution which is
fat tailed. This is obtained by selecting a cut-off point- a threshold- which specifically defines events
in the tail. Thus, the use of GPD has surfaced. As previously mentioned, we need to carefully select
the threshold; if it is too high or low the model may prove invaluable. To assist proper selection
of a threshold we use the mean excess plot (Klugman, 2012). The mean excess (ME) function is a
tool popularly used to aid this choice of u and also to determine the adequacy of the GPD model in
practice. The ME function of a random variable X is defined as (Ghosh and Resnick, 2010)

M(u) = E
[
X − u |X > u

]
, (2.2)

provided E(X+) < ∞, and is also known as the mean residual life function, especially in survival
analysis (Ghosh and Resnick, 2010). Note that (X+) is the function that assigns the value of X
whenever X > 0 and otherwise assigns the value of zero.
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3 Estimation Techniques

3.1 Maximum likelihood estimation (MLE)

The likelihood function of independent observations X1, X2, . . . , Xn from a two-parameter GPD is

L(xi; k, α) =

n∏
i=1

f(xi; k, α), (3.1)

where f = dF/dx. The MLEs are the values of k and α, which maximize the equation ( 3.1). Very
often, it is easier to maximize the logarithm of the likelihood function. The log-likelihood function
for k 6= 0 states that the function can be made arbitrarily large by taking k > 1 and α/k close to
the maximum order statistic xn:n. Maximum likelihood estimates of α and k can be obtained by
maximizing the likelihood function above. However, there are some samples for which no maximum
likelihood solution exists. In order for the MLE to perform its best for the GPD, there are certain
criteria that must be present. One, the sample size n, must be large because the maximum likelihood
does not display its asymptotic efficiency even in samples as large as 500 (Castillo and Hadi, 1997).
Two, the values of k, the shape parameter must stay within the bounds of (−1/2) and (1/2). When
these criteria are met, then MLE would be preferred due to its effective efficiency with large samples.

3.2 Method of moments

Method of Moments (MOM) estimators of the GPD were derived by Hosking and Wallis (1987).
Note that E(1 − kX/α)r = 1/(1 + kr) if 1 + rk > 0. The rth moment of X exists if k > −1/r.
Provided that they exist, the moment estimators for α and k are solutions to the following equations
(Hosking and Wallis, 1987) :

x̄ =
α

1 + k
(3.2)

s2 =
α2

(1 + k)2(1 + 2k)
(3.3)

where x̄, and s2 are the sample mean, and sample variance, respectively. In other words, the moment
estimators for k and α are solutions of the two equations (3.2) and (3.3) above. MOM estimators for
k and α denoted by k̂ and α̂ respectively are as follows:

k̂ =
1

2

(
x̄2

s2
− 1

)
and α̂ =

x̄

2

(
x̄2

s2
+ 1

)
.

Castillo and Hadi (1997), and Hosking and Wallis (1987) recommended MOM for 0 < k < 0.4.
Since the parameters are easy to compute, MOM estimates can also be used as the initial estimates
in other estimation procedures which require numerical technique (Jockovic, 2012; Singh and Guo,
1995). When k ≤ (−1/2), the variance of the GPD does not exist.



60 Das, Sams & Singh

3.3 Probability-weighted moments (PWM)

The probability-weighted moments (PWM) were introduced by Greenwood et al. (1979) and rep-
resent an alternative to the ordinary moments. As for the moments estimator, parameters can be
expressed as a function of PWMs. The estimator is particularly advantageous for small data-sets
because the probability weighted moments have a smaller uncertainty than the ordinary moments.
The best performance is reached for k ≈ 0.2 (Deidda and Puliga, 2009); for positive shape values,
performances are very close to the MLE ones, while for k < 0 (Deidda and Puliga, 2009), PWM
performances become a little worse than those of MLE. Hosking and Wallis (1987) used two def-
initions of PWM: unbiased (PWMU) and biased (PWMB), but the difference can be detected only
for small samples. We only display the results involving PWMU in this paper. Hosking and Wallis
(1987) defined the PWM estimates of the GPD parameters as :

k̂PWM =
x̄

(x̄− 2t)
− 2 and α̂PWM =

2x̄t

(x̄− 2t)

where t = (1/n)
∑n
i=1(1− pi:n)xi:n with pi:n = (i− 0.35)/n and xi:n is the ith order statistics of

a sample size of n.

4 Application of GPD to Mississippi River Data

In this section we will use GPD to model a real data set. Mississippi river flow data obtained from
the Tarbert Landing Discharge has been used in this study. The Tarbert Landing Discharge Range is
located on the Mississippi River at river mile 306.3 about 4 miles upstream of Read River Landing.
The daily computed values are based and related to corresponding stage values read at the Red River
Landing gage. Daily flow data from 1961 to 2011 was collected from the US Army Corps Engineers
database. A total of 18,627 data points were used in this study. Note that the river discharge (flow)
units are CFS (cubic feet per sec).

POT approach has been used to analyze the data. The basic descriptive statistics is shown in
(Table 1). The entire data analysis is done by statistical programming language R with commonly
used R packages for extreme value analysis such as evmix, POT, extRemes. In order to determine if
data are extreme, we check for the presence of outliers by using the fourth spread, fs which is also
known as inerquartile range. The fourth spread fs is a measure of spread that is resistant to outliers
(Devore, 2010). We order the n observations from smallest to largest and separate the smaller half
from the larger half using the median x̃. The median of the smaller half, the first quartile (Q1) is
the lower fourth. The median of the larger half, the third quartile (Q3) is the upper fourth. Then the
fourth spread fs, is given by Devore (2010)

fs = upper fourth− lower fourth.

Any observation farther than 1.5fs from the closest fourth is an outlier. An outlier is extreme if it is
more than 3fs from the nearest fourth, and it is mild otherwise (Devore, 2010). Subtracting 1.5fs
from the lower 4th gives a negative number, and none of the observations are negative, so there are
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Table 1: Five-number summary (Unit : Millions)

Minimum First Quartile (Q1) Median (Q2) Third Quartile (Q3) Maximum

0.11 0.27 0.43 0.70 1.62

no outliers on the lower end of the data. However, from Table 1 we do observe mild outliers on the
upper end, in particular, all values above 1.34 are outliers since upper 4th + 1.5fs = 1.34.

4.1 Test for independence

It is important that POT events are independent of one another. In particular, hydrological variables
need to be tested for independence because of climate change and anthropogenic influence. We have
used the nonparametric Von Neumann ratio test for independence in this study. This test is suggested
for time series of at least 30 points. The objective is to test the null hypothesis that the series consists
of independent elements. The basis for the test statistic of the Von Neumann test is given by

R =
T
∑T
t=1

[
X(t+ 1)−X(t)

]2
(T − 1)

∑T
t=1

[
X(t)− X̄

]2
with X̄ being the mean of the seriesX(t). ThisR follows a normal distribution with mean 2T/(T − 1)

and variance 4(T − 2)/(T − 1)2. Thus, the test statistic for the Von Neumann test is defined as

C =
R− 2T/(T − 1)√
4(T − 2)/(T − 1)2

,

which has a standard normal distribution. We investigate the independence of all values above the
threshold 1.25 using the Von Neumann test discussed above and found that the hypothesis that the
series consists of independent observations can not be rejected (the observed test statistic value is
C = −0.60). However, we also found that the observations above threshold 1.17 are not indepen-
dent of each other with an observed test statistic value, C = −13.96.

4.2 Model fitting

In order to build a model for our data, we need to select a proper threshold. Using the ME plot
in Figure 4.2, we can see that the plot is almost linear everywhere, however there is a rough spot
around 1.25 suggesting this may be a good estimate for our threshold. Using the value of 1.25,
threshold quantities were selected that precede and exceed this value in order to observe any trend
and find the threshold of best fit (see Table 2). Also, notice Figure 4.2, the curved shape of the
QQ plot increasing from left to right indicates the data distribution is skewed to the right, further
verifying the presence of outliers. Now that we have estimates for our model, the question arises:
which parameters provide a good fit? To assess the quality of the model, we do the following:
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Figure 2: Mean excess plot of Mississippi river flow

Figure 3: Normal Q-Q plot of Mississippi river flow
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Table 2: Comparing Estimation Techniques (standard errors are in parenthesis), where u is the
threshold (in millions) and nT is the number of data points above u

Scale, α Shape, k

u nT MLE MOM PWMU MLE MOM PWMU

1.17 392 0.1887 0.1705 0.1613 -0.3770 -0.2580 -0.1898

(0.0117) (0.0120) (0.0124) (0.0531) (0.1187) (0.0628)

1.21 275 0.2125 0.2404 0.2426 -0.4964 -0.6590 -0.6740

(0.0144) (0.0217) (0.0228) (0.0426) (0.9560) (0.1049)

1.25 227 0.1917 0.2345 0.2413 -0.4934 -0.7792 -0.8306

(0.0143) (0.0238) (0.0252) (0.0474) (0.1187) (0.1293)

1.29 189 0.1624 0.2009 0.2106 -0.4591 -0.7610 -0.8460

(0.0135) (0.0223) (0.0241) (0.0526) (0.1277) (0.1433)

1.33 155 0.1318 0.1677 0.1833 -0.4075 - 0.7523 -0.9154

(0.0124) (0.0205) (0.0233) (0.0590) (0.1399) (0.1661)

1.37 126 0.0928 0.1020 0.1136 -0.2804 -0.4035 -0.5627

(0.0103) (0.0129) (0.0157) (0.0718) (0.1079) (0.1428)

1.41 83 0.0678 0.0684 0.0771 -0.1675 -0.1787 -0.3278

(0.0102) (0.0104) (0.0129) (0.1044) (0.1087) (0.1487)

1.45 45 0.0405 0.4362 0.0383 0.1486 0.0755 0.1886

(0.0108) (0.0099) (0.0089) (0.2238) (0.1692) (0.1788)
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Figure 4: Model validation by MLE scale plot and MLE excess plot

1. The estimates of α are plotted versus the threshold values u. The theoretical value of α as a
function of u is given by Castillo et al. (2005)

α(u) = α0 − ku, (4.1)

where k is the shape parameter, α0 is the value of α associated with threshold, u = 0. Thus,
we expect a linear trend in the plot.

2. Provided that k > −1, u > 0, and α − ku > 0, we have the ME function (Castillo et al.,
2005)

E(X − u |X > u) =
α− ku
1 + k

. (4.2)

In fact, the linearity of the mean excess function characterizes the GPD class. If the ME
plot is close to linear for high values of the threshold then there is no evidence against the
use of a GPD model (Ghosh and Resnick, 2010). Accordingly, if the GPD is appropriate,
the scatter plot of the mean observed excess over u versus u should resemble a straight line
with a slope of −k/(1 + k) and an intercept of α/(1 + k). If the points in the scatter should
show a strong linear relationship, then the GPD assumption should seem reasonable Castillo
(et al., 2005). Figure 2 shows a clear linear trend for α and E[X − u|X ≥ u] versus the
threshold value u when u > 1.25, indicating that the assumption of a GPD model for the
data is reasonable for u > 1.25. Note that, α − ku is not positive for u = 1.45 and this has
not been included in the MLE Mean Excess Plot in Figure 2. A clean linear trend for either
estimated α or E(X − u|x ≥ u) versus threshold value has not been observed for MOM and
PWM parameters, therefore MLE provides the best estimators in this case.

4.3 Hypothesis test for the domain of attraction

There are three domains of attraction in EVT: Gumbel, Fréchet, and Weibull domains. All distri-
butions in the Gumbel domain have the exponential as the limiting distribution of their tail. This
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Figure 5: Model validation by density comparison

domain contains the majority of well-known distributions such as the normal, the exponential, and
the gamma. The Fréchet domain contains distributions with an infinite yet heavier tail than the ex-
ponential (Beisel et al., 2007). On the other hand, the Weibull domain contains distributions with
lighter tails than exponential, which possess a finite upper bound (e.g., the uniform distribution.)
It should be noted that the Weibull domain is not the same as the Weibull distribution, in fact, the
Weibul distribution belongs to the Gumbel domain. We want to test for the domain of attraction
which is exactly determined by the shape parameter k. Thus, testing H0 : k = 0 versus H1 : k < 0

is equivalent to testing a Gumbel versus a Fréchet domain of attraction. Similarly, testingH0 : k = 0

versus H1 : k > 0 is equivalent to testing a Gumbel versus a Weibull domain of attraction (Castillo
et al., 2005). Using a 95% confidence interval for all estimated values of k in Table 3 indicates
k is likely to be negative, thus we reject H0 in favor of H1 supporting the distribution of the data
follow a Fréchet domain of attraction (Castillo et al., 2005). GPD certainly has a heavier tail than the
exponential and thus the use of GPD to model the data set can be justified. Figure 4.3 also confirms
the statement.

5 Estimation of Extreme Return Levels

The concepts of return period and return level are commonly used to convey information about
the likelihood of extreme events such as floods, earthquakes, hurricanes etc. It is usually more
convenient to interpret extreme value models in terms of return levels on an annual scale, rather than
individual parameter values. The m−year return level is the level expected to be exceeded once
every m years. If there are ny observations per year, then the m−year return level, provided that m
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Table 3: Maximum likelihood estimates and corresponding 95% confidence intervals (CI) for scale
and shape parameters

Scale α Shape k

Threshold (in millions) MLE 95% CI MLE 95% CI

1.17 0.1887 (0.1658, 0.2116) -0.3770 (-0.4811, -0.2729)

1.21 0.2125 (0.1843, 0.2407) -0.4964 (-0.5799, -0.4129)

1.25 0.1917 (0.1637, 0.2197) -0.4934 (-0.5863, -0.4005)

1.29 0.1624 (0.1359, 0.1889) -0.4591 (-0.5622, -0.3560)

1.33 0.1318 (0.1075, 0.1561) -0.4075 (-0.5231, -0.2919)

1.37 0.0928 (0.0726, 0.1130) -0.2804 (-0.3112, -0.2496)

1.41 0.0678 (0.0478, 0.0878) -0.1675 (-0.1928, -0.1422)

is sufficiently large to ensure that xm > u, is defined by

xm =

u+ (α/k)
[
(mnyζu)k − 1

]
for k 6= 0,

u+ α log(mnyζu) for k = 0,

where ζu = Pr(X > u), u is the threshold value, α and k are GPD scale and shape parameter
respectively. Estimation of return levels requires the substitution of parameter values by their es-
timates. For α and k this corresponds to substitution by the corresponding estimates with lowest
standard error (Table 2). With an exception of threshold value 1.45, MLE provides the estimates
with lowest standard error and that is why we use MLE estimates in our calculations. An estimate of
ζu, the probability of an individual observation exceeding the threshold u, is also needed. This has
a natural estimator of ζ̂u = r/n, the sample proportion of points exceeding u. Since the number of
exceedances of u follows the binomial distribution Bin(n, ζu), ζ̂u is also the maximum likelihood
estimate of ζu (Coles and Simiu, 2003). Considering 1.25 as the threshold, the m−year return level
(x̂m) for different values of m are obtained (Table 4) using the return level formula in Equation
(5.1). For example, 50 year return level is 1.6118 million CFS, which means that 1.6118 million
CFS or more water flow is likely to occur at the Tarbert Landing Discharge in the Mississippi River
once every 50 years.

Table 4: Return level summary (in million CFS)

Year 5 10 20 30 50 100

Return 1.5552 1.5793 1.5965 1.6041 1.6118 1.6195
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5.1 Uncertainty of the return level estimates

An accurate estimate of the uncertainty associated with parameter estimate is important to avoid
misleading inference. This uncertainty is usually measured by any standard error, coefficient of
variation and confidence level of the parameter of interest. The estimated confidence level is claimed
to include the true parameter value with a specified probability. In the previous section we obtained
the estimates of an m−year return level for specific values of m. The aim of this section is to
calculate the uncertainty of return level estimates. We use the technique of bootstrapping to calculate
this uncertainty. In many statistical problems we seek information about the value of a population
parameter θ by drawing a random sample Y from that population and constructing an estimate
θ̂(Y) of the value of θ from that sample. The bootstrap principle is to obtain information about the
relationship between θ and random variable θ̂(Y) by looking at the relationship between θ̂(yobs)
and θ̂(Y∗), where Y∗ is a resample characterized by the sample yobs. Y∗ can either be constructed
by sampling with replacement from the data vector yobs, the so-called non-parametric bootstrap,
or by sampling from the distribution function parameterized by θ̂(yobs), the so-called parametric
bootstrap (Carpenter and Bithell, 2000). Here we discuss only non-parametric bootstrap approach.

Non-parametric resampling makes no assumptions concerning the distribution of, or model for,
the data. Our data is assumed to be a vector yobs of n independent observations, and we are in-
terested in a confidence interval for θ̂(yobs). The general algorithm for a non-parametric bootstrap
works as follows: a sample of size n is drawn, with replacement, from yobs to obtain a bootstrap
data set, denoted by Y∗. From this data set the statistic of interest, θ̂∗ = θ̂(Y∗) is calculated. This
procedure can be repeated many times, say R times, to obtain estimates θ̂∗1 , θ̂

∗
2 , . . . , θ̂

∗
R. The series

θ̂∗1 , θ̂
∗
2 , . . . , θ̂

∗
R can be regarded as a sample from a distribution that approximates the sampling dis-

tribution of θ̂(yobs). Accordingly, standard errors, coefficient of variation and confidence intervals
can be obtained from the simulated θ̂∗i series (Coles and Simiu, 2003).

For our analysis the original data set consists of 227 observations above the threshold u = 1.25

million. A random sample of size 227 is selected with replacement from the original data set to
obtain a bootstrap data set. From this bootstrap data set the maximum likelihood estimates α̂ and
k̂ of the parameters are calculated and using these estimates the return level (x̂m) is determined
for each m = 5, 10, 20, 30, 50, and 100. This procedure is repeated 1,000 times. Therefore, for
each return period (m) we have 1,000 values of return level. From this set of 1,000 values the mean
return level, standard error, coefficient of variation, and 95% confidence intervals are calculated. For
each of the specified return levels, the information is summarized in Table 5.2. Results in Table 5.2
shows that the standard error, the coefficients of variation and 95% confidence intervals for return
level remains stable throughout the return period which indicates a stable model for the data.

Though we have illustrated our methodology in detail only for the threshold 1.25, we also ap-
plied the technique to the data for each of the following thresholds, u =1.17, 1.21, 1.25, 1.29, 1.33,
1.37, 1.41, and 1.45. A summary of this analysis (Table 5.3) shows the number of data that exceed
the threshold, the 20, 30, 50, and 100-years return level estimates, together with 95% confidence in-
tervals. It is seen that for thresholds between 1.17 and 1.41, the 30-year, 50-year and 100-year return
level estimates do not differ greatly. For 20-year return level, the estimates are almost indifferent for
all threshold values. This implies the model gives similar results for a threshold value between 1.17
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and 1.41.

Table 5: Mean, standard error (SE), coefficient of variation (CV), and 95% confidence intervals (CI)
for return level estimates from bootstrap resampling (threshold=1.25).

Period (in years) Mean SE CV 95% CI

5 1.554 0.0098 0.629 (1.534, 1.571)

10 1.578 0.0095 0.600 (1.557, 1.593)

20 1.595 0.0093 0.582 (1.573, 1.609)

30 1.603 0.0092 0.576 (1.581, 1.617)

50 1.611 0.0093 0.575 (1.588, 1.624)

100 1.618 0.0094 0.580 (1.597, 1.633)

Table 6: Return level estimates for different years with 95% bootstrap confidence intervals from the
GPD model for several threshold values (number of observations in tail)

Threshold 20−years 30−years 50−years 100−years

1.17(392) 1.594[1.569, 1.619] 1.605[1.579, 1.632] 1.617[1.588, 1.646] 1.629[1.598, 1.665]

1.21(275) 1.597[1.573, 1.609] 1.604[1.579, 1.616] 1.612[1.588, 1.624] 1.619[1.595, 1.633]

1.25(227) 1.597[1.573, 1.609] 1.604[1.581, 1.617] 1.612[1.588, 1.624] 1.619[1.597, 1.633]

1.29(189) 1.595[1.569, 1.609] 1.603[1.576, 1.617] 1.612[1.582, 1.625] 1.621[1.589, 1.635]

1.33(155) 1.593[1.569, 1.609] 1.602[1.575, 1.619] 1.613[1.583, 1.629] 1.622[1.592, 1.639]

1.37(126) 1.590[1.563, 1.612] 1.602[1.572, 1.625] 1.615[1.582, 1.639] 1.629[1.594, 1.658]

1.41(83) 1.589[1.557, 1.615] 1.605[1.568, 1.632] 1.622[1.581, 1.653] 1.643[1.596, 1.682]

1.45(45) 1.596[1.552, 1.627] 1.622[1.568, 1.665] 1.656[1.587, 1.726] 1.709[1.613, 1.835]

6 Concluding Remarks

Estimation of parameters for multiparameter families is challenging because it requires optimization
of complicated functions or solving non-linear equations. That is why finding an appropriate and
efficient estimation method for GPD parameters is always of interest. We have studied popularly
used estimation techniques such as MLE, MOM, and PWM in the light of hydrological variable.
Though no estimation technique is ideal for every situation, we can see MLE gives us the best
fit for this data set. We have used river flow data to model flood design which has rarely been used
before.The fitted model appears to have captured the key empirical features of the data set. Although
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the threshold selection is complicated in hydrological examples, the bootstrap approach provides a
reasonable way to choose such a threshold in this study. Our nonparametric bootstrap approach
provides accurate estimate of the uncertainty associated with parameter estimation. Stable return
level throughout the return period indicates a stable model for the data.
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