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SUMMARY

The underpinning assumption of independence of failure time and drop-out time is not well
supported in many clinical or epidemiological studies. As a consequence, the marginal sur-
vival functions are not identifiable. In such a situation, many authors have proposed bounds
for the survival functions to check the sensitivity of the estimates to the independence as-
sumption. In this paper, we propose an alternative methodology by adopting an underlying
selection process to account for this dependency. We use the Farlie-Gumbel-Morgenstern
(FGM) bivariate family for the joint distribution of failure time and the selection variable.
Subsequently we derive the conditional distribution of the survival time, given that it is
observed, and show how, given the association parameter, the survival functions can be es-
timated. We compare the proposed estimates with the Copula-Graphic estimator for a real
home haemodialysis data and simulated datasets for various proportions of drop-outs.

Keywords and phrases: Informative drop-out, Normal selection process, survival function,
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1 Introduction

It is common practice to estimate the marginal survival function to summarize the failure time data,
e.g., the Kaplan-Meier (K-M) or the product-limit estimate in a nonparametric case or the Weibull
estimate in a parametric case. In either case of parametric or nonparametric approach, the validity
of the estimates depends on the appropriateness of the independence assumption of the failure event
(i.e. the event of interest) and the events causing the censored times.

In many clinical studies, the events causing the censored times can be grouped into two cate-
gories: (a) censored due to random causes (e.g. end of the study period or moving to a new location)
and (b) censored due to non-random causes (e.g. too ill to adhere the follow-up schedule, changed to
a different therapy or no need to come to a clinic because of the complete recovery from the disease
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under study). It is the second group where the assumption of independence deserves special scrutiny,
because the event of interest is related to the cause of censoring. For example, if the study objective
is to demonstrate whether the experimental treatment is more effective in prolonging the survival
time than the existing treatment, the second group of censoring contains information that is related
to the study objective whereas the first group can be regarded as independent. In this paper, we
name the first group (a) as “random censoring” and the second group (b) as “informative drop-out”,
defined as the patient who withdraws from the study before the end-of-study for any non-random
cause.

The extent of dependency between the failure time and the drop-out time varies according to
the cause of drop-out. In one extreme, if the cause of drop-out is too ill to adhere to the follow-
up schedule then it is very likely that the dropped-out patient failed immediately after the drop-out
time. The observed drop-out time can be considered as an approximate failure time. In another
extreme, if the drop-out cause is complete recovery from the disease under study then it is very
likely that the dropped-out patient would survive longer (at least to the end-of-study time) and the
patient can be considered as censored at the end-of-study time. Besides these two extremes, other
causes of informative drop-out could be change to another treatment due to lack of effectiveness of
the experimental treatment or due to adverse treatment effects.

From the observed data, it is impossible to get an estimate for the association parameter because
we observe either the failure time or the drop-out time for each patient, but not both. To circumvent
this problem, a well-known approach is to conduct a sensitivity analysis, which proposes a set of
alternative survival functions for a set of plausible values of the association parameter. The upper
and lower bounds can be derived for the limits of the association parameter. Fisher and Kanarek
(1974) are the first authors who proposed a sensitivity analysis of the assumption of independence
for various values of scale parameter. They distinguished the two types of censoring: end-of-study
censoring and lost-to-follow-up censoring. Their model is based on the assumption that the remain-
ing lifetime for lost-to-follow-up cases are shortened or expanded by a fixed quantity associated with
the scale parameter.

To date, a number of authors have proposed alternative methodologies to estimate the bounds for
the survival function (Peterson, 1976; Williams and Lagakos, 1977; Lagakos and Williams, 1978;
Slud and Rubinstein, 1983; Zheng and Klein, 1995). Robins and Finkelstein (2000) also proposed a
correction to the survival function for noncompliance and dependent censoring. In Bayesian frame-
work, Kaciroti et al. (2012) developed a product limit method where estimates of the cumulative
incidence curves were expanded to include informative censoring by pattern mixture models. The
sensitivity analysis was conducted on the prior distribution for the selectivity parameter specified
in a probabilistic range. Shardell et al. (2007) extended the standard approach of estimating sur-
vival functions for the informatively interval-censored data in a Bayesian framework. The estimates
were produced by mixing over a distribution of assumed censoring mechanisms. Yuan et al. (2012)
proposed a model-based method to estimate progression-free survival time when the progression
status of disease for some patients is unknown. The method specified a joint distribution for the
marginal distributions of the time to progression and the time from progression to death by using
a Clayton copula. In relevant area of conducting sensitivity analysis for assessing treatment effect



Bounds of the survival functions with. . . 73

in a follow-up study when patients initiated to a nonrandomized therapy or dropped out, Rotnitzky
et al. (2001) proposed semiparametric cause specific selection models where the magnitude of se-
lection bias varies with the cause over a plausible range of selection parameter. Todem et al. (2010)
used parametric and semiparametric models with shared random effects to explain the dependence
between the measurement and the drop-out processes. A part of the shared random effects was
considered for the sensitivity analysis.

The main objective of this paper is to propose a new methodology to calculate the bounds for the
survival function when the drop-outs are informative. We compare these bounds with the copula-
graphic estimator proposed by Zheng and Klein (1995). To explain the drop-out mechanism, we
assume a hidden selection process (Copas and Li, 1997) to explain the non-randomness of the drop-
out data. To specify the joint distribution for observed failure time and the underlying selection
process, we adopt a bivariate family of distribution known as Farlie-Gumbel-Morgenstern (FGM)
copulas (Morgenstern, 1956; Schucany et al., 1978). Then, we derive the conditional distribution of
the survival probability given that it is observed.

In the next section, we explain the basic ideas behind our formulation of sensitivity analysis
for informative drop-out. In Section 2.1, we propose a modified survival function for sensitivity
analysis based on the underlying selection process. A brief description of Copula-Graphic estimates
proposed by Zheng and Klein (1995) is given in Section 3. In Section 4, we illustrate the proposed
method with a real dataset and compare with the Copula-Graphic estimates. In Section 5, with the
simulated data we compare our estimates with the Copula-Graphic estimates for various drop-out
proportions. The final section includes all the concluding remarks.

2 Methodology

Let F,C, andD be the random variables indicating the failure time, random censoring time and in-
formative drop-out time, respectively, forN subjects. In practice, we observe only T = min(F,C,D)

and a vector of covariates X for each subject. We introduce the notation, T ? = min(F,C?), where
C? combines C and D with the assumption that all the censored events are independent of the cause
of event of interest. The informative drop-out time,D, can be considered as a potential drop-out time
which is assigned to each individual after his/her onset time and it is observed only when Di ≤ T ?i ,
for i = 1, 2, . . . , N .

To explain the drop-out mechanism, we use the concept of unobserved (or, hidden) selection
variables. Let Z be a hidden selection variable with dimension N defined as Zi = Di − T ?i for
i = 1, 2, . . . , N . We assume that a patient is observed to drop-out with drop-out time Di whenever
Zi ≤ 0 and to experience the failure time or random censoring time at T ?i whenever Zi > 0. Thus, it
can be assumed that the main model for observed time, Ti, is supplemented by a selection variable,
Zi > 0, and whenever the drop-outs are informative, the model of interest is the conditional model
of Ti given Zi > 0. In other words, the model of interest is the model of failure time conditioning
on the dropped-out subjects did not drop-out, i.e., the model we observe.

For the model for log-transformed failure time, Y
(

= log(T )
)
, we consider an accelerated

failure-time model and a linear representation with the covariates X = (X1, X2, . . . , Xp)
T . Thus,
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the regression model for Y yields

y =βTx+ σε,

where β = (β1, β2, . . . , βp)
T and σ is a scale parameter, also known as an acceleration parameter.

The probability distribution for the residual, ε ∈ (−∞,∞), will follow either a standard extreme
value distribution with mean−Eg (Euler gamma≈ 0.5772) and variance π2/σ or a standard normal
distribution. It is well known that standard extreme value distribution for the residual yields an
exponential distribution. (when σ = 1) or a Weibull distribution (when σ 6= 1) and standard normal
distribution yields a log-normal distribution for the failure time, T .

Let the selection equation with the same set of covariates X = (X1, X2, . . . , Xp)
T can be

assumed as

z = γTx+ ξ,

where the residual of selection equation, ξ has standard normal density.
In order to calculate the conditional density f(y |x, z > 0), now the problem reduces to define

a joint distribution for the given marginals. We adopt a joint distribution of ε and ξ proposed by
Morgenstern (1956), which is given by

F (ε, ξ) = FM (ε)FS(ξ)
[
1 + θ

(
1− FM (ε)

)(
1− FS(ξ)

)]
,

where FM (ε) and FS(ξ) are the respective distribution functions for ε and ξ. The above joint
distribution is also known as Farlie-Gumbel-Morgenstern (FGM) copulas.The subscripts S and M
stand for the selection process and the measurement process, respectively. The covariance parameter
θ ∈ [−1, 1] is proportional to the product-moment correlation, ρ ∈ [−1/3, 1/3], between the two
residuals, i.e. ρ = kθ. After applying a method proposed by Schucany et al. (1978) for the known
marginals, the value of k is determined to be equal to 0.3049. This smaller value of k indicates that
the limit of the product-moment correlation, ρ , for our choice of marginals, is even tighter than
(−1/3 ≤ ρ ≤ 1/3). Hereafter, we use covariance parameter θ instead of correlation coefficient ρ
as a sensitivity parameter. Because of the notion of hidden selection process, θ is also known as a
selectivity parameter.

The tighter bound of correlation coefficient for FGM copulas has restricted the wider application
of this joint distribution. But for our purpose, this restriction comes as an advantage, since the main
objective of this paper is to show the sensitivity of the survival function for a small violation of the
independence assumption. The other reason for choosing this particular form of joint distribution is
because the conditional survival function can be expressed in a simple form, as we will see in the
next section.

After some simple algebraic operation, the conditional distribution function of Y is given by

FM (y |x, z > 0) = FM (y | x)
[
1− θ

(
1− Φ(γTx)

)(
1− FM (y |x)

)]
,

where Φ indicates standard normal distribution. In Appendix A, we provide the log-likelihood
function and illustrate how the MLE of β̂(θ) and σ̂(θ) can be obtained.
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Interpretation of θ. The covariance parameter, θ, is indexing the extent of association. A useful
interpretation of θ can be given in parallel to Copas and Li (1997) and Rosenbaum (1987, 1988).
When θ > 0, it implies that the subjects with Yz>0 (observed log-failure time) would survive longer
and the subjects with smaller survival times tend to drop out, i.e., the unobserved failure times for
the informative drop-out subjects are likely to be smaller and only the subjects with longer survival
times are observed. For θ < 0, the implication is reversed, i.e., the unobserved failure times for
the informative drop-out subjects are likely to be longer and only the subjects with shorter survival
times are observed. Clearly, for θ = 0, the drop-out is noninformative and the usual analysis, based
on the assumption that any type of censoring events are independent of failure events, is acceptable.

2.1 Survival function

After changing some notation for a better presentation, the conditional distribution function of Y
can be written in the form of conditional survival distribution

S(y |x, θ) = S(y |x, θ = 0)
[
1− θ

(
1− Φ(γTx)

)(
S(y |x, θ = 0)− 1

)]
, (2.1)

where S(y |x, θ = 0) is the usual survival function based on the assumption that the failure event
and any type of censoring events are independent. It is possible to prove that for any fixed value of θ,
the conditional survival distribution S(+∞|x, θ) = 0 and S(−∞|x, θ) = 1, since S(+∞|x, θ =

0) = 0 and S(−∞|x, θ = 0) = 1. This implies that the proposed conditional survival function has
the same limit as the usual survival function has. For a simple representation for comparison of the
survival functions, we ignore all the explanatory variables in equation (2.1). With the replacement of
X by a vector of 1’s in equation (2.1), the function

(
1−Φ(γTx)

)
represents fs(z ≤ 0), a distribution

for drop-out. Thus at time t, fs(zt ≤ 0) can be replaced by an empirical estimate n(t)/N , where
n(t) is the total number of dropped out in the interval (0, t]. The estimate n(t)/N is the probability
of drop-out at time t, thus n(t)/N increases for increasing number of drop-out with time t.

After all these replacements, the conditional survival function in (2.1) reduces to

Ŝ(y | θ) = Ŝ
(
y
)[

1− θ n(t)

N

(
Ŝ(y)− 1

)]
, (2.2)

where the sensitivity parameter θ ∈ [−1, 1] is a function of ρ, Ŝ(y) is an estimate of the usual
survival function based on the assumption that the failure time and any type of censoring time are
independent. Thus the modified survival function, S(y | ρ) tends to be sensitive to the value of θ as
the proportion of drop-out increases.

In the above expression, the survival time, Y , is in logarithmic scale. Changing it to original
scale, T , does not change the expression (2.2). For example, suppose that the survival time T
follows Weibull distribution, then the survival function for Y given ρ is expressed as

Ŝ(y | θ) = exp
(
− exp

(
(y − β̂)/σ̂

))[
1− θ n(t)

N

{
exp

(
− exp

(
(y − β̂)/σ̂

))
− 1
}]
.

On the original scale, the survival function for T given ρ is given by

Ŝ(t | θ) = exp
(
− t1/σ̂ exp(−β̂/σ̂)

)[
1− θ n(t)

N

{
exp

(
− t1/σ̂ exp(−β̂/σ̂)

)
− 1
}]
.
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The survival function in (2.2) can also be written in the form of Kaplan-Meier or product limit
estimate as

Ŝ(t | θ) =
∏
ti<t

(
1− (−di/ni)

)[
1− θ n(t)

N

{ ∏
ti<t

(
1− (−dini)

)
− 1
}]
, (2.3)

where di is the number of deaths at time ti and ni is the number of subjects at risk prior to time ti.
Note that, the expressions (2.2) and (2.3) reduce to the common survival function (when failure time
and censoring time are independent) for θ = 0.

Expected Lifetime. The mean log survival time, µp, when the failure time follows a Weibull
distribution, is given by

µθ = E
(
Y | θ

)
= β + σ

[
− Eg + θ (n/N) log(2)

]
, (2.4)

where β and σ are the mean and scale parameter of log failure time, respectively, and n is the total
number of drop-outs. Thus, for any value of θ, the average survival time is approximately increased
(decreased) by 2σθ(n/N). In other words, the average survival time for a specific θ is 2σθ(n/N) times
longer (shorter) than that of under the independence assumption.

Confidence Interval. Two-sided approximate 100(1 − α)% confidence limits for S(y | ρ) are
given by

SL
(
y | θ

)
= SL(y)

[
1− θ n(t)

N

(
SL(y)− 1

)]
SU
(
y | θ

)
= SU (y)

[
1− θ n(t)

N

(
SU (y)− 1

)]
.

Suffixes L and U are for lower and upper bounds, respectively. Approximate limits are obtained by
following Nelson (1982) for large sample as:

SL(y) = exp
[
− eεL

]
and SU (y) = exp

[
− eεU

]
.

For 95% confidence interval

εL =
(y − β̂

σ̂

)
+ 1.96se

(y − β̂
σ̂

)
and εU =

(y − β̂
σ̂

)
− 1.96se

(y − β̂
σ̂

)
,

where

se
(y − β̂

σ̂

)
=

√
1

σ̂2

[
var(β̂) +

(y − β̂
σ̂

)2
var(σ̂) + 2

(y − β̂
σ̂

)
cov(β̂, σ̂)

]
.

3 Copula-Graphic Estimator
Zheng and Klein (1995) proposed a copula-graphic estimator for the marginal survival function
when failure and censoring times are dependent. In their work, censoring means both random cen-
soring and informative drop-out. Their estimates are based on assumed copula function, but did
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not propose any closed form expression for the survival estimates. Rivest and Wells (2001) gave a
closed form expression for the copula-graphic estimator when the assumed copula is Archimedean.
The estimate is given as

Ŝ(t) = ω−1
[
−

∑
ti<t,δi=1

{
ω
(
π̂(ti))− ω(π̂(ti)− 1/N

)}]
,

where π̂(t) =
∑
I(ti ≥ t)/N and ω(·) is a decreasing convex function defined on (0, 1] satisfying

ω(1) = 0 and δ is a censoring indicator defined as δi = 1 if Ti = Fi and 0 otherwise.
When comparing the proposed survival function in (2.2) (or, in (2.3)) with its closest contender

copula-graphic estimator, it is important to note that the FGM copulas are not Archimedean, but it is
a first-order approximation of Frank copulas which are Archimedean. For this reason, we consider
the copula-graphic estimator for Frank copulas in the comparison. The Frank copulas has the form

C(u, v) = −1

θ
ln
(

1 +
(e−θu − 1)(e−θv − 1)

(e−θ − 1)

)
, θ ∈ (−∞,∞)\{0}.

For which the ω-function (Rivest and Wells, 2001) is given as

ω(t) = − ln
(e−θt − 1

e−θ − 1

)
, θ ∈ (−∞,∞)\{0}.

4 Example: Home Dialysis Data
Lynn et al. (2002) conducted a retrospective cohort study of 168 home dialysis patients to investigate
whether blood pressure (BP) was an independent risk factor for survival. All patients were from a
regional dialysis unit, beginning dialysis treatment within a certain time period. The treatments were
home haemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD). The primary
outcome was death from any cause. Out of 168 patients, 71 died before the end of the study and
97 were censored. Censoring occurred due to kidney transplantation, change of treatment modality
(HD to CAPD, or CAPD to HD), return of renal function, transfer to another centre, and still being
on their initial dialysis modality at the end of the study. In this paper, we consider the HD treated
group because of moderate drop-out size (12.1%) and longer survival compared to the other dialysis
modality treated patients (Delano, 1996) to show how the survival estimates vary for informative
drop-outs.

After careful scrutiny on all the censoring events, it is reasonable to suspect that some of the
censoring events were related to the effects of dialysis. For example, “return of renal function”
or “changed treatment modality” may indicate, respectively, that the patient had recovered from
the treatment or the patient had problem with the ongoing treatment. The other censoring events,
“transplantation”, “transfer to another centre” and “still being on their initial dialysis modality at
the end of the study” can be considered as unrelated to any treatment effects. “Transplantation”
occurred based on waiting time and availability of kidneys conditional to tissue matching. “Still
on their initial dialysis modality” indicates end-of-study censoring and “transfer to another centre”
had no relation to treatment. Based on these assumptions, we classify all censoring events into two
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categories: random censoring and informative drop-out. Table 1 summarizes the data by treatment
group and censoring type.

Table 1: Summary of home dialysis data by treatment group and censoring type

Random Informative
censoring drop-out

Treatment group Dead A B C D E Total

HD 41 57 7 4 2 13 124

CAPD 30 7 2 2 0 3 44

A (transplanted patients), B(still on their initial dialysis)

C (transferred to another center), D (renal function returned)

E (changed treatment modality)

For home HD treated group, the Weibull survival curves for θ ∈ {1.0, 0.0,−1.0} from top to
bottom are given in Figure 1. For the HD treated group, β̂θ=0 = 7.8986 and σ̂θ=0 = 0.7042.
This yield an average survival time of µ̂θ=0 = 1793.88 days based on independent assumption.
When θ = 0.5(−0.5) the average survival time is 1.03(0.97) times longer than that obtained based
on the independence assumption. Similarly, for θ = 1.0(−1.0) , it is 1.06(0.94) times longer,
i.e. approximately 6% increase (decrease). For other values of θ, we can also measure the relative
change in the average survival time.

Figure 1: The Weibull sensitivity analysis for HD treated group. The middle solid curve is for θ = 0,
the upper and lower dashed curves are for θ = 1 and θ = −1, respectively.

In Figure 2, the survival estimates of Kaplan-Meier (K-M) for θ ∈ {1.0, 0.0,−1.0} are compared
with the Copula-Graphic estimates. The middle dotted line is K-M estimates based on independent
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Figure 2: Survival estimates for home dialysis data. FGM estimates (solid lines) for θ = 1 (top) and
θ = −1 (bottom), Copula-Graphic estimates for Frank copula (dashed lines) for θ = 2.1 (top) and
θ = −2.1 (bottom), and K-M estimates (dotted line).

assumption. The two solid lines are the K-M estimates for θ ∈ {1.0,−1.0} (from top to bottom)
calculated by equation (2.3). The two dashed lines are the Copula-Graphic estimates based on
Frank copulas. It clearly shows that the proposed survival estimates based on FGM copulas give
much narrower bounds than the Copula-Graphic estimates.

5 Simulation and Results

We conduct a simulation experiment to check the relative bias of our estimates in comparison to
Copula-Graphic estimates. The relative performance has been checked for varying rates of infor-
mative drop-outs. The comparisons are made for 30%, 15% and 5% drop-out. For all the drop-out
scenarios, we have assumed a constant rate of random censoring, 20%.

We generate 1000 data sets of 100 samples each from a gamma frailty copula (Oakes, 1989) with
exponential marginal distributions. The value of covariance parameter for gamma frailty copula is
assigned to be 1.5 for which Kendall’s τ = 0.2 (Zheng and Klein, 1995). The particular reason for
this choice is the covariance parameter of FGM copulas θ ∈ [−1, 1] the Kendall’s τ ∈ [−2/9, 2/9].
The values for the parameters of the exponential marginal distributions are chosen in a way to attain
30%, 15%, or 5% drop-out. The censoring times are generated from an exponential distribution
where the parameter is defined to ensure 20% censoring. The steps involved in generating the data
sets are given in Appendix B.

The relative bias was defined as the bias of the estimates from the true, divided by the true, and
averaged over 1000 replicates. The K-M estimates are assumed to be the true. In order to ensure that
Kendall’s τ = 0.2; the covariance parameters for the Copula-Graphic estimates for Frank copula
was set to 1.9 and for the FGM estimates was set to 0.9. Figure 3 depicts the relative bias for
the FGM estimates in solid lines and for the Copula-Graphic estimates in dashed lines. From top
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Figure 3: The relative bias of FGM estimates (solid lines), and Copula-Graphic estimates for Frank
copula (dashed lines), for Kendalls τ = 0.2. The drop-out rates from top to bottom are 30%, 15%,
and 5%.

to bottom are the estimates for 30%, 15% and 5% drop-out, respectively. For all these drop-out
scenarios, the FGM estimates have less bias than Copula-Graphic estimates.

6 Conclusion

The lack of identifiability of the competing risk model is a very well-known problem. In order
to overcome this problem, we have proposed a sensitivity analysis which depends on unknown,
inestimable covariance parameter, θ. We have given a simple interpretation of this parameter. An
important advantage of our methodology comes from separating the censoring event into random
and non-random components. We illustrated with a real data set how this non-random component
distorts the survival estimates for different values of the selectivity parameter. For home dialysis
data, where the percentage of drop-out is 12%, the survival curves are clearly distinguishable. The
average survival time at maximum is also increased (or decreased) by 6%. The differences would
be even more marked in a case of heavy censoring where the proportion of drop-outs is likely to be
bigger or in a situation where the hazard of drop-out increases over time.

We showed that the proposed estimates give much narrower bounds than Copula-Graphic esti-
mates. With simulated data for the drop-out proportion 30%, 15% and 5%, we have also demon-
strated that the proposed estimates have less relative bias than Copula-Graphic estimates.

Acknowledgements

The authors are grateful to the Nephrology Department and Elisabeth Wells, Christchurch School
of Medicine and Health Sciences, New Zealand, for providing the home dialysis data and also to
Mohammed Lajmi Lakhal-Chaieb for providing R codes for Copula-Graphic estimator.



Bounds of the survival functions with. . . 81

References
Copas, J. B. and H. Li (1997). Inference for non-random samples. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 59(1), 55–95.

Delano, B. G. (1996). Home hemodialysis offers excellent survival. Advances in Renal Replacement
Therapy 3, 106–111.

Fisher, L. and P. Kanarek (1974). Presenting censored survival data when censoring and survival
times may not be independent. Reliability and Biometry, 303–326.

Kaciroti, N. A., T. E. Raghunathan, J. M. Taylor, and S. Julius (2012). A Bayesian model for
time-to-event data with informative censoring. Biostatistics 13(2), 341–354.

Lagakos, S. W. and J. Williams (1978). Models for censored survival analysis: A cone class of
variable-sum models. Biometrika 65(1), 181–189.

Lynn, K. L., D. O. McGregor, T. Moesbergen, A. L. Buttimore, J. A. Inkster, and J. E. Wells (2002).
Hypertension as a determinant of survival for patients treated with home dialysis. Kidney Inter-
national 62(6), 2281–2287.

Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilungsblatt für
Mathematische Statistik 8(1), 234–235.

Nelson, W. (1982). Applied life data analysis, New York: John Wiley.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical
Association 84(406), 487–493.

Peterson, A. V. (1976). Bounds for a joint distribution function with fixed sub-distribution functions:
Application to competing risks. Proceedings of the National Academy of Sciences 73(1), 11–13.

Rivest, L.-P. and M. T. Wells (2001). A martingale approach to the copula-graphic estimator for the
survival function under dependent censoring. Journal of Multivariate Analysis 79(1), 138–155.

Robins, J. M. and D. M. Finkelstein (2000). Correcting for noncompliance and dependent censor-
ing in an aids clinical trial with inverse probability of censoring weighted (ipcw) log-rank tests.
Biometrics 56(3), 779–788.

Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutation inferences in matched obser-
vational studies. Biometrika 74(1), 13–26.

Rosenbaum, P. R. (1988). Sensitivity analysis for matching with multiple controls. Biometrika 75(3),
577–581.

Rotnitzky, A., D. Scharfstein, T.-L. Su, and J. Robins (2001). Methods for conducting sensitivity
analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57(1),
103–113.



82 Hossain & Sato

Schucany, W. R., W. C. Parr, and J. E. Boyer (1978). Correlation structure in Farlie-Gumbel-
Morgenstern distributions. Biometrika 65(3), 650–653.

Shardell, M., D. O. Scharfstein, and S. A. Bozzette (2007). Survival curve estimation for informa-
tively coarsened discrete event-time data. Statistics in Medicine 26(10), 2184–2202.

Slud, E. V. and L. V. Rubinstein (1983). Dependent competing risks and summary survival curves.
Biometrika 70(3), 643–649.

Todem, D., K. Kim, J. Fine, and L. Peng (2010). Semiparametric regression models and sensitivity
analysis of longitudinal data with non-random dropouts. Statistica Neerlandica 64(2), 133–156.

Williams, J. and S. Lagakos (1977). Models for censored survival analysis: Constant-sum and
variable-sum model. Biometrika 64(2), 215–224.

Yuan, Y., P. F. Thall, and J. E. Wolff (2012). Estimating progression-free survival in paediatric brain
tumour patients when some progression statuses are unknown. Journal of the Royal Statistical
Society: series C (Applied Statistics) 61(1), 135–149.

Zheng, M. and J. P. Klein (1995). Estimates of marginal survival for dependent competing risks
based on an assumed copula. Biometrika 82(1), 127–138.

A Log-Likelihood Function
The log-likelihood function for i = 1, 2, . . . , N subjects can be written as

` =

N∑
i=1

[
δi ln fM (yi | xi) + (1− δi) lnS(yi | xi) + δi ln[1 + θ(2FM (yi | xi)− 1)(1− Φ(γTxi))]

+ (1− δi) ln[1 + θFM (yi | xi)(1− Φ(γTxi))] + ln Φ(γTxi)
]
,

where the indicator variable, δi , equals one for the subject with failure event and zero otherwise.
Here ` is a function of β, σ, γ and θ(= ρ/0.3049). For any specific value of θ, the profile likelihood
method will give the conditional maximum likelihood estimates as β̂(θ), σ̂(θ), γ̂(θ). The first order
approximation of the above log-likelihood function is

` ∼=
N∑
i=1

[
δi ln fM (yi|xi) + (1− δi) lnS(yi|xi) + θ[(1 + δi)FM (yi|xi)− δi](1− Φ(γTxi))

+ ln Φ(γTxi)
]

If the failure time, T , follows Weibull distribution then the log-likelihood reduces to

` = −r lnσ +
∑
i∈F

εi −
N∑
i=1

{
eεi − θ

(
(1 + δi)FM (yi|xi)− δi

)(
1− Φ(γTxi)

)
− ln Φ(γTxi)

}
,
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where r =
∑N
i=1 δi and F is the set of events with failure time and εi = (y − βTxi)/σ. First and

second derivativesw.r.t. βl and σ would enable us to define the likelihood equation and the observed
information matrix for given θ. Now, by using any optimization procedure for maximum likelihood,
e.g. Newton-Raphson method or other iterative methods, we can get the estimates of β̂(θ) and σ̂(θ).

B Data Generation
Failure time (yi) and potential drop-out time (xi) for i = 1, . . . , 100 have been generated as follows:

1. Generate u ∼ Uniform (0, 1), t ∼ Uniform (0, 1)

2. Calculate v = 1−
[
{(1− t)(1− u)θ}−

θ−1
θ − (1− u)−(θ−1) + 1

]− 1
θ−1

3. Calculate x = − 1

λx
ln(1− v)

4. Calculate y = − 1

λy
ln(1− u)

In step 2, θ was set to 1.5. In steps 3 and 4, λx and λy are selected in a way to ensure a desired
proportion of drop-out occurs.


