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SUMMARY

Research has shown that in mixed effect longitudinal models, influential observations can
have a large effect on the estimates of subject-specific parameters. Furthermore, they can-
not always be detected by the classical Cook’s distance due to potentially large between-
subject variation. Thus, influential observations should be approached by conditioning on
the subjects. However, no rigorous approach has been developed for influential observa-
tion detection for multivariate longitudinal mixed models where more than one response is
measured for each subject at each time point. We propose a multivariate conditional Cook’s
distance for this more general situation. Examples are given to illustrate how the influential
observation in one characteristic changes the effects of both characteristics.
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1 Introduction

In many medical and epidemiological researches and clinical trials, individuals are measured not
only repeatedly, but also with respect to several response variables. Hence, multivariate longitudinal
data allow one to study and analyze the joint evolution of multiple response variables over time. The
use of multivariate mixed effect models allows one to model a longitudinal process where multiple
outcomes are repeatedly measured. These multivariate mixed effect models can accommodate (1)
variances of residuals that may be different for different variables; (2) residuals that may be corre-
lated for the same characteristic measured at different time points (within-characteristic correlation);
(3) residuals that are also correlated among different characteristics measured at a given time point
(inter-characteristic correlation); (4) variables that are often not measured at all time points; and (5)
assessments that are not always equally spaced for one or more subjects.

Cook’s distance (Cook, 1977) is one of the most important diagnostic tools for detecting influ-
ential observations in linear regression for univariate cross-sectional data. Since then, considerable
research has been done to extend Cook’s distance to detect influential observations in more complex
data structures under various kinds of models. For multivariate data, Barrett and Ling (1992) pro-
posed general classes of influence measures for multivariate regression based on analogous forms of
univariate Cook’s distance. Diaz-Garcia and Gonzalez-Farias (2004) proposed a generalized Cook’s
distance for elliptical distributions. Hossain and Naik (1989) and Naik (2003) extended deletion
of single observation in univariate regression models to the multivariate case. Srivastava and von
Rosen (1998) developed a formal test for detecting a single influential observation for a multivariate
linear regression model. For longitudinal data, in mixed effect models, these statistics may fail to
or incorrectly detect observations influential due to their omission of variances and covariances of
associated random effects Tan et al. (2001). Banerjee and Frees (1997) and Banerjee (1998) noticed
that the effectiveness of Cook’s distance is limited in longitudinal data analysis because it was de-
signed for independent observations and hence, cannot be directly used in the longitudinal setting.
Tan et al. (2001) and Ouwens et al. (1999) showed the advantage of using observation-oriented influ-
ence measures instead of subject-oriented influence measures because the subject-oriented influence
measures may fail to or incorrectly detect influential subjects or influential observations, owing to
the relative position of the observations within and across subjects. Tan et al. (2001) proposed a
conditional version of Cook’s distance by conditioning on the subjects. However, for the detection
of influential observations in multivariate mixed effect model, especially multilevel multivariate lon-
gitudinal data, no rigorous approach has been developed. Zhu et al. (2012) developed a Bayesian
local influence measure method for joint models for longitudinal and survival data. Although assess-
ments of the influence of a model perturbation are generally regarded being useful, a practical and
well established approach to influence analysis in statistical modeling is still based on case deletion
methods, as pointed out by Lawrance (1990).

The rest of this article is organized as follows. In section 2, we derive the multivariate extension
of the conditional Cook’s distance. In section 3, we do a simulation study to compare the multivariate
conditional Cook’s distance and multivariate unconditional Cook’s distance, then apply our method
to a glaucoma clinical dataset, and present a detailed analysis of the composition of the multivariate
conditional Cook’s distance.
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2 Multivariate Conditional Cook’s Distance

Cook’s distance is based on the concept of an influence function introduced by Hampel (1974). This
concept was applied in a regression setting to the distance measurement between a fitted model and
the data by Cook (1977). The idea behind Cook’s distance is described as follows. Suppose there is a
probability density function. p(Y|θ), of a random vector Y, where θ is the vector of the parameters
of the probability density function. Cook’s distance measures the distance between the maximum
likelihood estimators (MLE) of θ with and without the subset of the data. LetA denote the subset of
data to be removed. The new probability density function with A removed is denoted by p(Y(A)|θ),
the MLE of θ based on the full dataset Y is θ̂, and the MLE of θ based on the subsample dataset
with A removed, Y(A), is θ̂(A), respectively. Hence, Cook’s distance for the subset A, denoted by
CD(A), is defined as CD(A) = (θ̂(A) − θ)TB(θ̂(A) − θ), where B is a positive definite matrix to
be estimated but does not change when the sub dataset is removed.

For multivariate data, longitudinal data, or multivariate longitudinal data, the within subject ob-
servations are correlated. Hence, the likelihood function p(Y |θ) has to account for the correlation
structure. Thus we set

B = I(θ) = −∂
2 log(p(Y |θ))
∂θ ∂θT

(2.1)

which incorporates the correlation structure of Zhu et al. (2012). Here, I(θ) denotes the Fisher
information for θ. In this model, θ is the vector of the parameters of the probability density function,
including both fixed effects and random effects. Multivariate influence measures for models with
and without random effects will be developed and compared.

2.1 Model Specification

We now introduce notation for a the multivariate mixed effect model. The model for the observations
at jth time point of ith individual is:

yij︸︷︷︸
m×1

= Xij︸︷︷︸
m×p

βββ︸︷︷︸
p×1

+ Zij︸︷︷︸
m×q

bi︸︷︷︸
q×1

+ εij︸︷︷︸
m×1

, (2.2)

where i indicates the number of subjects, i = 1, 2, . . . , N ; j indicates the jth measurements for the
ith subject, j = 1, 2, . . . , ni; m indicates the number of characteristics measured for each individ-
ual; p is the total number of fixed effects parameters, and q is the total number of random effects
parameters.

We assume that εij ∼ N(0,Σm×m), where Σm×m is an unstructured variance-covariance
matrix. If we stack observations for each individual over time, then the “stacked” error vector for
the ith individual has the property that εi ∼ N

(
0, Ini ⊗Σ

)
. The random effects are distributed as

bi ∼ Nq(0,G) independently for i = 1, . . . , N . Depending on the application, we may allow G to
be either unstructured or block diagonal with m non-zero blocks of size qk × qk corresponding to
the m characteristics.
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Here, we want to estimate βββ, bi, Σ and G. The multivariate mixed effect model with missing
value and correlated error term can be fitted using SAS PROC MIXED (version 9.2 or later), the
following repeated statement allows one to fit the desired error structure:

random int_b1 int_b2 /subject=id type=un g gcorr;
repeated var_type /subject=id*visit_order type=un r rcorr;

If we want to fit the multivariate mixed effect model with independent errors structure (Σ is
diagonal), we simply change the option to type=vc in the repeated statement above.

2.2 Multivariate Conditional Cook’s Distance

Using a concept similar to Cook’s distance and the conditional Cook’s distance of Tan et al. (2001),
we propose a multivariate longitudinal extension. Conditioning on all of the individuals and each
characteristic of the individuals, we have the following log-likelihood:

l(Φ) = −1

2
log |S| − 1

2
(y −Xβββ − Zb)TS−1(y −Xβββ − Zb)

where S = diag [In1 ⊗Σ, . . . , InN
⊗Σ], and Φ is the vector containing all the fixed and random

effects parameters to be estimated, that is, Φ = {βββT ,bT }T .
The corresponding Fisher Information is given as:

B = I(Φ) = − ∂2 l(Φ)

∂Φ∂ΦT
=

XTS−1X XTS−1Z

ZTS−1X ZTS−1Z


and so, the conditional Cook’s distance can be written as:

CD(A) = (Φ̂(A) − Φ̂)TB(Φ̂(A) − Φ̂)/c

= (β̂ββ(A) − β̂ββ)TXTS−1X(β̂ββ(A) − β̂ββ)/c+ (b̂(A) − b̂)TZTS−1Z(b̂(A) − b̂)/c

+ 2(β̂ββ(A) − β̂ββ)TXTS−1Z(b̂(A) − b̂)/c

= CA1 + CA2 + CA3, (2.3)

where c = (Nm− 1) q + p.
From equation (2.3), we can see that CD(A) can be decomposed into three parts: CA1, CA2,

and CA3. The term, CA1, is written as

CA1 = (β̂ββ(A) − β̂ββ)TXTS−1X(β̂ββ(A) − β̂ββ)/c

=

N∑
i=1

ni∑
j=1

(β̂ββ(A) − β̂ββ)TXT
ijΣ

−1Xij(β̂ββ(A) − β̂ββ)/c ,

and is the total distance measurement for the fixed (marginal) effect between the complete dataset
and the data with subset A removed. The expression, (β̂ββ(A) − β̂ββ)TXT

ijΣ
−1Xij(β̂ββ(A) − β̂ββ)

/
c , in
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CA1 is actually the overall marginal Cook’s distance for the ith subject at the jth time point. It
is the total distance measurement of m characteristics, but only normalizes the residual variance-
covariance matrix, without normalizing the random variance-covariance matrices (Tan, 2001). If
we assume the residual covariance matrix is diagonal, that is, Σ = diag

[
σ2
1 , . . . , σ

2
m

]
, then the

expression becomes
∑m

k=1

[
(β̂ββ(A)−β̂ββ)TxT

ijkxijk(β̂ββ(A)−β̂ββ)
/
(cσ2

k)
]
, which is the simple summation

of the distance measurements for all the characteristics, and CA1 then becomes

CA1 =

N∑
i=1

ni∑
j=1

m∑
k=1

(β̂ββ(A) − β̂ββ)TxT
ijkxijk(β̂ββ(A) − β̂ββ)/cσ2

k .

When Σ is not diagonal, the total distance measurement for the fixed (marginal) effect also takes
into account the correlations among all the m characteristics. Similarly, the second term

CA2 = (b̂(A) − b̂)TZTS−1Z(b̂(A) − b̂)/c =

N∑
i=1

ni∑
j=1

(b̂i(A) − b̂i)
TZT

ijΣ
−1Zij(b̂i(A) − b̂i)/c

is the total distance measurement for the random effect parameters between the complete dataset
and the data with subset A removed. and the third term

CA3 = 2(β̂ββ(A) − β̂ββ)TXTS−1Z(b̂(A) − b̂)/c

= 2

N∑
i=1

ni∑
j=1

(β̂ββ(A) − β̂ββ)TXT
ijΣ

−1Zij(b̂i(A) − b̂i)/c

is the distance measure of covariation between the change in the population average profile and the
change in the subject-specific profile relative to the population average profile. If we assume the
residual covariance matrix is diagonal, that is, Σ = diag

[
σ2
1 , . . . , σ

2
m

]
, then the terms CA2 and

CA3 can be reduced to simple summations of the distance measurements of all the characteristics
for subject-specific effects and covariances, that is,

CA2 =

N∑
i=1

ni∑
j=1

m∑
k=1

(b̂i(A) − b̂i)
T zTijkzijk(b̂i(A) − b̂i)/cσ

2
k , and

CA3 =

N∑
i=1

ni∑
j=1

m∑
k=1

(β̂ββ(A) − β̂ββ)TxT
ijkzijk(b̂i(A) − b̂i)/cσ

2
k.

When Σ is not diagonal, the total distance measurements take into account the correlations among
all the m characteristics, for subject-specific effects and covariance, respectively.

Note that this is an extension of the work presented by Tan et al. (2001). We have multiple char-
acteristics per individual at each time point whereas Tan had only one characteristic per individual
at each time point.
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2.3 Simulation Study

The purpose of our simulation study is two fold: (1) To demonstrate the conditional and naive
multivariate Cook’s distance for a single realization; and (2) To investigate the ability of each method
to detect a “known” influential observation.

2.3.1 The Model

For both purposes described above, we generated a bivariate longitudinal dataset for our simulation
study. The dataset contains n individuals and each individual has two characteristics, yij1 and yij2,
which are repeatedly measured. The bivariate mixed effect model is:

yij1 = β10 + β11ui1 + β12tij + b1i + εij1

yij2 = β20 + β21ui2 + β22tij + b2i + εij2
(2.4)

where i indicates the individual, i = 1, . . . , N ; j indicates the time point, j = 1, . . . , ni, which is
randomly sampled from {1, 2, . . . , 9}. The random effects bi = [b1i, b2i]

T , are generated from a
bivariate normal distribution

bi =

bi1
bi2

 ∼ N
0,

1 .2

.2 1

 .

The fixed effects design matrix

Xij =

1 ui1 tij 0 0 0

0 0 0 1 ui2 tij

 ,

where tij is the jth time point for ith individual. ui1 and ui2 denote baseline covariates for the
two characteristics. The random variables, ui1 and ui2, were generated from a bivariate normal
distribution

ui =

ui1
ui2

 ∼ N
0,

 1 0.8

0.8 1

 , tij = log(j), εij =

εij1
εij2

 ∼ N
(0,

 1 0.5

0.5 1

 .

The true components of βββ are [β10, β11, β12, β20, β21, β22]
T = [1, 1, 1, 1, 1, 1]T .

One goal of the simulation is to compare the multivariate conditional and the naive Cook’s
distances. To do so, we first generated 50 individuals (N = 50). Without loss of generality, we set
the number of measurements of the 50th individual to be 9. Then we reset b1,50 = 6 for time point
5. Thus, the observation of yij1 at time point 5 of the 50th individual has a strong influence due to
the extreme values of b1i. One thousand datasets using this process were generated.
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2.3.2 Demonstration of Methods for One Simulated Dataset

First, we demonstrate a single realization of the 1,000 datasets generated. Figure 1 shows the scat-
tergram of the relationship between the response [yij1, yij2]

T and the time points. Note that the
diamonds indicate the y1’s and the small circles indicate the y2’s. It can be seen that the fifth obser-
vation of the y1’s of individual 50 (diamond), that is, y50,5,1 , is extremely high. In this dataset, all
individuals have at least one measurement and at most nine measurements.

Influential Observation

time point

y1
, y

2

0

5

10

0.0 1.0 2.0

1 2

0.0 1.0 2.0

3 4

0.0 1.0 2.0

5 6

0.0 1.0 2.0

7 8

9 10 11 12 13 14 15

0

5

10
16

0
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10
17 18 19 20 21 22 23 24

25 26 27 28 29 30 31

0

5

10
32

0

5

10
33 34 35 36 37 38 39 40

41 42 43 44 45 46 47

0

5

10
48

0

5

10
49

0.0 1.0 2.0

50

Figure 1: Scattergram of one simulated dataset

Figure 2 shows the multivariate conditional Cook’s distance for all observations. Clearly the y1
value of the fifth measurement of individual 50 was detected. Figure 3 shows the multivariate naive
Cook’s distance for all observations. Clearly the y1 value of the fifth measurement of individual 50
was not detected.
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Figure 2: Conditional Cook’s Distance for all observations
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Figure 3: (Unconditional) Cook’s Distance for all observations

Figure 4 shows, for each observation, the percentage changes relative to their values with all obser-
vations included in the estimated fixed effects of y1, β̂10, β̂11, β̂12, the estimated fixed effects of y2,
β̂20, β̂21, β̂22, and the estimated random intercept of the 50th individual, b̂50,1 and b̂50,2. Note that
the percentage change for b̂50,1 and b̂50,2 were divided by 10 so it can be shown more clearly in the
plot. The relative change of b̂50,1,y2

is around 51%, not 5%. The diamonds indicate the y1’s and the
small circles indicate the y2’s.
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Figure 4: Relative changes for all parameters estimated (in percentage)

Figure 4 indicates that the fifth observation of y1 of the 50th individual (the extreme observation we
made) does not have the largest effect on any of the six fixed effects parameters. But Figure 4 shows
that the value of b̂50,1 (the random intercept of y1 of the 50th individual) is strongly influenced by
the fifth observation of y1 of the 50th individual. Figure 4 also shows that observations of y1 have
much stronger influence on y1’s parameters (both fixed effects and random effects) than those of y2,
and similar for y2. This is understandable.

For the random intercept of y2 of the 50th individual, of course, one of the observations of y2
has the largest influence. But it is noticeable that, among the observations of y1, the fifth observation
of the 50th individual (the extreme observation we made) has the largest effect. That is because the
two characteristics y1 and y2 are correlated (estimated correlation coefficient is 0.3904).

2.3.3 Comparing Performance of Methods

In order to compare our extended conditional Cook’s distance to that of the unconditional (original)
Cook’s distance, we repeated the simulation 1,000 times. Accordingly, we generated 1,000 datasets
using the model in Equation 2.4, and then use our method to detect a “known” influential observation
in the 1,000 datasets. For each of the 1,000 datasets, a bivariate linear mixed effect model was fitted,
and the model parameters and variance-covariance matrices were calculated. The average of the
1,000 estimated model parameters, random effect variance-covariance matrix (G matrix) and the
residual variance-covariance matrix (Σ matrix) are listed below. Table 1 shows the average estimates
of the fixed effect parameters and the standard deviations for 1000 simulations.
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Table 1: The average estimates of the fixed effect parameters for 1000 simulations

Parameters Estimated value Standard Deviation

β̂10 1.0021 0.0341

β̂11 0.9992 0.0257

β̂12 1.0164 0.0100

β̂20 0.9922 0.0448

β̂21 0.8018 0.0326

β̂22 0.9998 0.0110

The estimated G matrix and its associated correlation matrix, G are:

Ĝ =

( b1 b2

b1 0.8996 0.1925

b2 0.1925 1.3020

)
Ĝ =

( b1 b2

b1 1.0000 0.1778

b2 0.1778 1.0000

)
We can see that the estimated ρ̂G = 0.1778 and the true value ρG = 0.20. The model fits well for
the 1,000 simulations.

The estimated Σ matrix averaged over the 1,000 simulations and the associated correlation ma-
trix are:

Σ̂ =

( y1 y2

y1 1.2171 0.4976

y2 0.4976 0.9962

)
Σ̂ =

( y1 y2

y1 1.0000 0.4519

y2 0.4519 1.0000

)
We can see the estimated ρ̂R = 0.4519 and the true value ρR = 0.50. The model fits well.

Table 2: Number of detections for conditional and original Cook’s distance

Conditional Original Cook’s D

Cook’s D No Yes Total

No 75 0 75

Yes 663 262 925

Total 738 262 1000

Our multivariate conditional Cook’s distance successfully detected the “known” influential ob-
servation in 925 of the 1,000 datasets. The original Cook’s distance only detected the “known”
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influential observation in 262 of the 1,000 datasets. In Table 2, a contingency table for the multi-
variate conditional Cook’s distance and the original Cook’s distance summarizes the result from the
1,000 simulations.

2.4 Application

We applied our method to clinical data obtained from a study in patients with glaucoma. In this
study, the patients’ eyes were repeatedly measured resulting in multiple responses. Specifically,
we jointly modeled the thicknesses of the retinal nerve fiber layer (RNFL) and the retinal ganglion
cells complex (GCC), which had been repeatedly measured, to find out if there were abnormal
observations. The dataset is from the Eye Center at the University of Pittsburgh Medical Center
(UPMC).

Our dataset was derived from information on 487 eyes from 256 patients. Because the two
eyes from each patient are typically correlated, we randomly chose one eye from each of 256 pa-
tients (which is a common practice in the opthalmology literature). Hence, for demonstrating our
method, we have 256 eyes, each having the two measurements described above at each time point.
The follow-up duration varied from 1.3 to 6.4 years. All eyes were divided into three diagnostic
groups: healthy(H), glaucoma suspect(GS) and glaucoma(G). In the complete dataset, there were
97 healthy eyes, 279 glaucoma suspect eyes and 111 glaucoma eyes. Patient baseline age (in years)
and diagnostic group were included as covariates.

2.4.1 The Model

We fitted the following bivariate linear mixed effect model:

YRNFL = (β10 + β11GS + β12G+ b10) + (β13 + β14GS + β15G+ b11)Fu+ β16Age+ εRNFL

YGCC = (β20 + β21GS + β22G+ b20) + (β23 + β24GS + β25G+ b21)Fu+ β26Age+ εGCC

where Age indicates baseline age; and Fu indicates the time of Follow-up (in years). We assume
that

b = [b10, b20, b11, b21]
T ∼ N(0,G) and ε = [εRNFL, εGCC ]

T ∼ N(0,Σ2×2)

Table 3: The estimated fixed effects parameters

β10 β11 β12 β13 β14 β15 β16

111.60 −6.32 −0.185 −0.059 −0.616 −0.705 −17.22

β20 β21 β22 β23 β24 β25 β26

107.70 −5.22 −0.221 −0.972 0.380 0.497 −12.74
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Table 3 shows the estimated parameters of the fixed effects. As can be seen from the parameter
estimates, RNFL and GCC both have similar relationships with the age of the patient but demonstrate
different trajectories within the groups.

The estimated variance-covariance matrix of the random effects, (G), is

Ĝ =


b10 b20 b11 b21

b10 95.797 51.865 −0.964 −0.281
b20 51.865 52.309 −0.0696 −0.271
b11 −0.964 −0.0696 0.882 0.108

b21 −0.281 −0.271 0.108 0.753


The correlation matrix of G is:

Ĝ =


b10 b20 b11 b21

b10 1.000 0.733 −0.105 −0.0331
b20 0.733 1.000 −0.0103 −0.0433
b11 −0.105 −0.0103 1.000 0.132

b21 −0.0331 −0.0433 0.132 1.000


The estimated Residual Variance-Covariance Matrix is:

Σ̂ =

(YRNFL YGCC

YRNFL 13.842 0.184

YGCC 0.184 8.459

)
Its associated correlation matrix is

Σ̂ =

(YRNFL YGCC

YRNFL 1.0000 0.0169

YGCC 0.0169 1.0000

)
, indicating a nearly independent structure in the RNFL and GCC residuals.

2.4.2 The Influential Observations (Observation Level)

Using our method, we calculated the observation level conditional Cook’s distance and the decom-
posed CA1, CA2 and CA3. “Observation level” means that the subset A to be removed is the whole
observation of the ith subject at jth time point. That is, A contains both RNFL and GCC values
measured at the jth time point for the ith subject.

Figure 5 illustrates the bivariate observations for 10 eyes, and Table 4 lists the 10 observations
with largest values of the conditional Cook’s distance. Note that the diamonds and thick dashed lines
indicate the observed RNFL values and individual fitted regression lines for RNFL, respectively. The
light dashed lines indicate the marginal fitted regression lines for RNFL. Similarly, the small solid
circles, thick solid lines and light solid lines are for the GCC measurements.
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RNFL avg & GCC avg vs. follow−up(year), obs level
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Figure 5: Bivariate observations with largest conditional Cook’s Distance in 10 eyes

Table 4 shows the values of the three decomposition terms of the multivariate conditional Cook’s
distance. We notice that for most observations, the distance measurement of the random effects are
much greater than the distance measurement of the fixed effects, that is, CA2 � CA1. This is
obvious because the subject-specific effects are much more sensitive to the influential observation
than the marginal effects. Also, the covariance between the distance measurements of fixed and
random effects, that is, CA3, is very small. This is similar to the conclusion by Tan et al. (2001)
made for the univariate case.

2.4.3 The Influential Observations (Component Level)

Using our method, we also calculated the component level conditional Cook’s distance and the
decomposed CA1, CA2 and CA3. “Component level” means that the subset A to be removed is only
one component of the whole observation of the ith subject at jth time point. That is, A contains
only one of the two components, either the RNFL or GCC value measured at the jth time point for
the ith subject. Figure 6 illustrates 10 components in 10 eyes, and Table 5 shows the list of the 10
components with the largest values of conditional Cook’s distance.

3 Concluding Remarks
Case-deletion methods are an effective diagnostic algorithm to detect influential observations and
outliers. We have developed a method for identifying outliers for multivariate longitudinal observa-
tions by extending the conditional Cook’s distance proposed by Tan et al. (2001). Our method takes
into account both the serial (within-characteristic) correlation and the inter-characteristic correlation.
We use random effects to dominate the within-characteristic correlations among different time
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Table 4: Decomposition of the Conditional Cook’s Distance for the 10 observations with largest
conditional cook’s distance

Eye ID Follow-up Follow-up Diagnostic Conditional
(in years) (in days) group Cook’s D CA1 CA2 CA3

2:204:OS 0.5448 199 GS 0.003597 0.000022 0.003577 −0.000002

2:103:OD 2.0205 738 GS 0.002645 0.000036 0.002615 −0.000006

2:102:OS 2.0205 738 GS 0.002321 0.000033 0.002294 −0.000006

3:170:OS 2.9103 1063 G 0.002292 0.000101 0.002240 −0.000048

4:174:OS 1.5387 562 G 0.002151 0.000059 0.002102 −0.000010

2:191:OS 0.9391 343 G 0.001932 0.000035 0.001905 −0.000009

4:91:OS 0.8487 310 GS 0.001921 0.000013 0.001908 0.000000

4:92:OD 4.8953 1788 G 0.001848 0.000027 0.001811 0.000010

2:72:OD 5.5633 2032 GS 0.001822 0.000008 0.001807 0.000007

2:194:OD 0.9391 343 G 0.001767 0.000031 0.001743 −0.000007

RNFL avg & GCC avg vs. follow−up(year), obs level
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Figure 6: 10 components with the largest conditional cook’s distance in 10 eyes
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Table 5: Decomposition of Conditional Cook’s Distances (CCDs) for the Ten Components with the
Largest CCDs

Eye ID Type Follow-up Follow-up Diagnostic Conditional
(in years) (in days) group Cook’s D CA1 CA2 CA3

2:204:OS RNFL 0.5448 199 GS 0.003488 0.000022 0.003471 −0.000002

4:174:OD RNFL 1.5387 562 G 0.002157 0.000059 0.002118 −0.000010

2:103:OD RNFL 2.0205 738 GS 0.002074 0.000029 0.002054 −0.000005

4:91:OS GCC 0.8487 310 GS 0.001888 0.000013 0.001875 0.000000

4:92:OD GCC 4.8953 1788 G 0.001857 0.000027 0.001811 0.000010

2:72:OD GCC 5.5633 2032 GS 0.001830 0.000008 0.001808 0.000008

2:191:OS RNFL 0.9391 343 G 0.001828 0.000031 0.001812 −0.000008

2:102:OS GCC 2.0205 738 GS 0.001803 0.000027 0.001786 −0.000005

3:170:OS RNFL 2.9103 1063 G 0.001782 0.000084 0.001777 −0.000039

2:194:OD RNFL 0.9391 343 G 0.001763 0.000029 0.001748 −0.000007

points, and the residual variance-covariance matrix to handle the correlations among different char-
acteristics.

We also explored the three parts of the multivariate conditional Cook’s distance : (1) influences
on the estimated average profile (fixed effect parameters), (2) on the individual-specific parameters,
and (3) on the covariance between the average profile and individual profiles. We show that for each
component, the measurement of the influence is a combination of the influence measurements on all
characteristics. If the characteristics are independent from each other, then the measurement of the
influence is simply the summation of the influence measurements on all characteristics.

Our simulation results show that, similar to the finding by Tan et al. (2001) for one observation
per time point, the conditional Cook’s distance is superior to the unconditional Cook’s distance in
a multivariate longitudinal data analysis. We also showed in our simulation study that our method
successfully detected the influential vector component for a large percentage (92.5%) of datasets
whereas the unconditional Cook’s distance only detected that component in a relatively small per-
centage (26.2%) of the datasets.
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