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SUMMARY

Burr type X distribution is one of the members of the Burr family which was originally
derived by Burr (1942) and can be used quite effectively in modelling strength data and
also general lifetime data. In this article, we consider efficient estimation of the proba-
bility density function (PDF) and cumulative distribution function (CDF) of Burr X dis-
tribution. Eight different estimation methods namely maximum likelihood estimation,
uniformly minimum variance unbiased estimation, least square estimation, weighted least
square estimation, percentile estimation, maximum product estimation, Cremér-von-Mises
estimation and Anderson-Darling estimation are considered. Analytic expressions for bias
and mean squared error are derived. Monte Carlo simulations are performed to compare
the performances of the proposed methods of estimation for both small and large samples.
Finally, a real data set has been analyzed for illustrative purposes.

Keywords and phrases: Maximum likelihood estimator, Uniformly minimum variance un-
biased estimator.

AMS Classification: 62F10

1 Introduction
Burr (1942) introduced twelve different forms of cumulative distribution functions for modeling
lifetime data or survival data. Of these twelve distribution functions, Burr type X and Burr type
XII were extensively used by the researchers. The cumulative distribution function of a Burr X
distribution as proposed by Surles and Padgett (2001) is given by

F (x;α, γ) =
(
1− e−(γx)2

)α
, x > 0, α > 0, γ > 0, (1.1)
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and corresponding probability density function is given by

f(x;α, γ) = 2αγ2x e−(γx)2
(
1− e−(γx)2

)α−1
, x > 0, α > 0, γ > 0 (1.2)

where α and γ denote the shape and the scale parameters respectively. This distribution is also
known as exponentiated Rayleigh or generalized Rayleigh distribution. We denote this distribu-
tion as BurrX(α, γ) through out this article. It is observed that the two-parameter BurrX(α, γ)

distribution has several properties which are quite common to the two-parameter gamma, Weibull
and generalized exponential (GE) distributions. The one parameter Burr X distribution (with γ=1)
received maximum attention in manay works (Sartawi and Abu-Salih, 1991; Ahmad et al., 1997;
Raqab, 1998; Surles and Padgett, 1998, 2001). In the recent past, Raqab and Kundu (2006) ob-
served several interesting properties of Burr X distribution in their study and established relations
with gamma, Weibull, exponentiated exponential and exponentiated Weibull distributions. The dis-
tribution function and the density function of BurrX(α, γ) distribution have closed form. Due
to this feature, it can be used very conveniently even for censored data. Unlike, gamma, Weibull
and GE distributions it can have non-monotone hazard function, which can be very useful in many
practical applications.

Raqab and Kundu (2006) observed that for α ≤ 1/2 Burr type X density is a decreasing function
and it is a right skewed unimodal function for α > 1/2. They also observed that failure rates have
the different shapes depending on the value of α. For α ≤ 1/2 , it has increasing failure rate and
for α > 1/2, it is bathtub shaped. For more detailed properties of the Burr type X distribution (see
Surles and Padgett, 2005).

It is a common practice with statisticians to focus on inferring the parameter(s) involved in the
model. However, one would find it more useful to study the efficient estimation of the PDF and
CDF instead of inferring the parameter(s) involved in the model. The problem of estimation of the
PDF and the CDF is significant for many reasons. For example, PDF can be used for estimation of
differential entropy, Renyi entropy, Kullback-Leibler divergence and Fisher information. For exam-
ple, Nilsson and Kleijn (2007) considered the problem of estimating differential entropy using the
data located on embedded manifolds. Authors mentioned that such studies have found widespread
applications in various areas of signal processing such as source coding, pattern recognition and
blind source separation, among others. Hampel (2008) discussed applications of entropy estimation
in neuroscience. The concept of differential entropy can be used to infer random changes in neuron
behavior under various experimental scenarios. Recently Mielniczuk and Wojtys (2010) considered
estimation of Fisher information for a probability density supported on finite interval. These applica-
tions suggest that estimation of density function is an important problem in literature. Similarly CDF
can be used for estimation of cumulative residual entropy, the quantile function, Bonferroni curve,
Lorenz curve and both pdf and cdf can be used for estimation of probability weighted moments,
hazard rate function, mean deviation about mean etc. For instance, Bratpvrbajgyran (2012) consid-
ered the problem of estimating cumulative residual entropy for the Rayleigh distribution. Aucoin
et al. (2012) considered estimation of quantile of a two-parameter kappa distribution using different
methods. A flood data set is analyzed in support of proposed statistical procedures and useful dis-
cussions are presented based on this numerical study. Longford (2012) further derived estimators
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of quantiles of normal, log-normal and Pareto distributions. The author studied a financial data on
monthly returns and concluded that proposed estimators work quite well in such situations. In this
paper, our focus is to obtain biased and unbiased estimators of the PDF and CDF using different
classical methods of estimation.

Numerous statistical developments and applications of the BurrX(α, γ) distribution has gen-
erated great interest among applied statisticians to study the efficient estimation of the PDF and
the CDF of the BurrX(α, γ) distribution. We consider several estimation methods: maximum
likelihood estimation (MLE), uniformly minimum variance unbiased estimation (UMVUE), least
square (LS) estimation and weighted least square (WLS) estimation, percentile estimation (PC),
maximum product spacing estimation (MPS) , Cramér-von-Mises (CVM) method of estimation and
Anderson-Darling (AD) method of estimation and thereby aim to develop a guideline to choose the
best estimation method for the BurrX(α, γ) distribution. Similar kind of studies has appeared in
the recent literature for other distributions (see Asrabadi, 1990; Dixit and Jabbari Nooghabi, 2010;
Jabbari Nooghabi and Jabbari Nooghabi, 2010; Dixit and Jabbari Nooghabi, 2011; Bagheri et al.,
2014, 2016, and the references cited therein).

Throughout this paper (except for Section 3), we assume α is unknown, but γ is known. A future
work is to extend the results of the paper to the case that all two parameters are unknown. In the
literature one would find several papers where the PDF and the CDF have been estimated when all
their parameters are unknown. For example, Duval (2013) investigated the nonparametric estimation
of the jump density of a compound Poisson process from the discrete observation, Durot et al. (2013)
obtained least-squares estimator of a convex discrete distribution, Er (1998) evaluated the unknown
parameters in the polynomial using weighted residual method, Dattner and Reiser (2013) considered
the estimation of distribution functions when data contains measurement errors and Przybilla et al.
(2013) used maximum likelihood estimator to estimate the cumulative distribution function for the
three-parameter Weibull CDF in presence of concurrent flaw populations.

Our present work is different from the existing work because we have considered eight methods
of estimation for estimating pdf and cdf whereas in existing literature only five methods of estimation
is considered to the best of our knowledge.

We have organized the rest of the content of this paper as follows. In Sections 2.1 and 2.2
we have derived MLEs and UMVUEs of density function and distribution function with their mean
squared errors (MSEs) respectively. The LSEs and WLSEs are obtained in Section 2.3 and percentile
estimation is discussed in Section 2.4. The other suggested methods of estimation are described in
sections 2.5, 2.6 and 2.7 respectively. We have conducted a simulation study in Section 3 to assess
the behavior of all estimators. We have analyzed a real data set for illustrative purpose in Section 4.
Finally, in Section 5, we conclude the paper.
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2 Methods of Estimation

2.1 Maximum Likelihood Estimation

In this section, we obtain MLEs of the PDF and the CDF of a BurrX(α, γ) distribution. Suppose
X1, X2, ..., Xn denote independent and identically distributed random samples from theBurrX(α, γ)

distribution with known scale parameter γ. The likelihood function of α can be written as

L(α, x) =

n∏
i=1

2αγ2xie
−(γxi)

2(
1− e−(γxi)

2)α−1
, (2.1)

and the corresponding log-likelihood function is

l = lnL(x, α) ∝ nln(α) +

n∑
i=1

ln(xi)− γ2
n∑
i=1

x2
i + (α− 1)

n∑
i=1

ln(1− e−(γxi)
2

). (2.2)

Considering the log likelihood function, we find the MLE of α as

α̂ = − n∑n
i=1 ln(1− e−(γxi)2)

=
n

T
, (2.3)

where T = −
∑n
i=1 ln(1− e−(γxi)

2

). Now consider the transformation

Yi = g(Xi) = −ln
(
1− e−(γXi)

2)
with g−1(yi) = (1/γ)

[
− ln

(
1− eyi

)]1/2
.

Then it is seen that probability density of Yi turns out to be,

fYi(yi) = fXi(g
−1(x))

∣∣∣d−1g(xi)

dyi

∣∣∣ = αe−αyi , yi > 0, α > 0.

Thus, we see that if X has a BurrX(α, γ) distribution then Yi = −ln(1 − e−(γxi)
2

) has an
exponential distribution with rate α, i.e. Yi ∼ exp(α). As we know that the sum of indepen-
dently and identically distributed exponential distribution follows a gamma distribution. Thus T =

−
∑n
i=1 ln(1− e−(γxi)

2

) follows gamma G(n, α) distribution having density function as

fT (t) =
αn

Γn
tn−1e−αt, t > 0. (2.4)

Further, we find that the MLE α̂ = (n/T ) = W has an inverse gamma IG(n, αn) distribution
having density function as

fW (w) =
(nα)n

Γn
(1/w)n+1 e−αn/w, w > 0. (2.5)

Note that E(α̂) = nα/(n− 1) and thus the MLE α̂ is a biased but consistent estimator of the
parameter α. The invariance property of maximum likelihood method is applied and the desired
estimators of PDF and CDF are then obtained as

f̂(x) = 2α̂γ2xe−(γx)2
(
1− e−(γx)2

)α̂−1
and F̂ (x) =

(
1− e−(γx)2

)α̂
. (2.6)
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Here we show that the estimators f̂(x) and F̂ (x) are biased for the PDF f(x) and the CDF F (x)

respectively and also obtain their mean square errors. For presentation and calculation simplicity,
we rewrite f̂(x) and F̂ (x) as

f̂(x) = 2wxη(ξ)w−1 and F̂ (x) = (ξ)w, (2.7)

where η = γ2e−(γx)2 and ξ = 1−e−(γx)2 . Before we obtain the mean squared errors, the following
expectations are required. We have

E(f̂(x))m =

∫ ∞
0

[
2wxη(ξ)w−1

]m (nα)n

Γn
(1/w)

n+1
e−

nα
w dw

=
(
2xη/ξ

)m (nα)n

Γn

∫ ∞
0

wm−n−1e−wmln(1/ξ)−nαw dw

= 2
(
2xη/ξ

)m (nα)(m+n)/2

Γn

[
mln

(
1/ξ
)]−(m−n)/2

Km−n

(
2
√
mnαln (1/ξ)

)
,

E
(
F̂ (x)

)m
=

∫ ∞
0

(ξw)
m (nα)n

Γn
(1/w)

n+1
e−

nα
w dw

=
(nα)n

Γn

∫ ∞
0

w−n−1e−w(mln(1/ξ))−nαw dw

=
2(nα)

n
2

Γn

[
mln

(
1/ξ
)]n/2

K−n

(
2
√
mnαln (1/ξ)

)
.

The last equality follows from the following identity∫ ∞
0

xν−1e−
µ
x−ηx dx = 2

(
µ/η

) ν
2 Kν(2

√
µη),

where Kν(·) is modified Bessel function of the second kind of order ν (see also, Bagheri et al.,
2014).

Theorem 1. Desired expectations are

E
[(
f̂(x)

)m]
= 2
(
2xη/ξ

)m (nα)(m+n)/2

Γn

[
mln (1/ξ)

]−(m−n)/2

Km−n

(
2
√
mnαln (1/ξ)

)
and

E
[(
F̂ (x)

)m]
= 2

(nα)n/2

Γn

[
mln (1/ξ)

]n/2
K−n

(
2
√
mnαln (1/ξ)

)
.

Theorem 2. The mean squared errors of f̂(x) and F̂ (x) respectively are

MSE
(
f̂(x)

)
= 8x2

(
η

ξ

)2
(nα)(n+2)/2

Γn

[
2ln (1/ξ)

]−(2−n)/2

K2−n

(
2
√

2nαln (1/ξ)
)
− 8xf(x)

×
(
η

ξ

)
(nα)(n+1)/2

Γn

[
ln (1/ξ)

]−(1−n)/2

K1−n

(
2
√
nαln (1/ξ)

)
+ f2(x),
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and

MSE(F̂ (x)) = 2
(nα)n/2

Γn

[
2ln (1/ξ)

]n/2
K−n

(
2
√

2nαln (1/ξ)
)
− 4F (x)

(nα)n/2

Γn

[
ln (1/ξ)

]n/2
×K−n

(
2
√
nαln (1/ξ)

)
+ F 2(x).

Proof. We have

MSE(f̂(x)) = E(f̂(x)− f(x))2 = E(f̂(x))2 − 2f(x)E(f̂(x)) + f2(x).

The required expectations in the above expression can be obtained easily by substituting appropriate
choice of m in Theorem 2 to obtain the desired MSE. Similarly we can obtain MSE(F̂ (x)).

2.2 Uniformly Minimum Variance Unbiased Estimation

In this section, our aim is to obtain UMVUEs of the PDF and the CDF of the specified distribution.
We see that T = −

∑n
i=1 ln(1 − e−(γxi)

2

) is complete and sufficient for estimating α for given
γ and T follows a gamma G(n, α) distribution. One may refer to Ferguson (1967) for this useful
result. Following Lehmann-Scheffé theorem if g(x1 | t) = h?(t) is the conditional PDF ofX1 given
T = t. Then we have (see also, Bagheri et al., 2014),

E [h?(T )] =

∫
g(x1 | t)f(t)dt =

∫
g(x1, t)dt = f(x1),

where g(x1, t) denotes the joint PDF of (X1, T ). Thus h?(T ) is the UMVUE of f(x).

Lemma 2.1. The conditional distribution of V given that T = t is obtained as

fV |T=t(v | t) =
(n− 1)(t− v)n−2

tn−1
, v < t <∞

where V = −ln(1− e−(γx1)2).

Proof. We have

fV |T=t(v | t) =
f(t, v)

f(t)

=
f
(
v,−

∑n
i=2 ln(1− e−(γxi)

2

) = t− v
)

fT (t)

=
αe−αv αn−1

Γ(n−1) (t− v)n−2e−α(t−v)

αn

Γn t
n−1e−αt

=
(n− 1)(t− v)n−2

tn−1
, v < t <∞.

In the theorem stated below we give UMVUEs of f(x) and F (x).
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Theorem 3. The expression

f̂(x) =
(n− 1)(t+ ln(1− e−(γx)2))n−2

tn−1
× 2xγ2e−(γx)2(

1− e−(γx)2
)

for −ln(1− e−(γx)2) < t <∞ is the UMVUE of f(x) and also the UMVUE of F (x) is as

F̂ (x) =
{

1 + (1/t) ln
(
1− e−(γx)2

)}n−1
.

Proof. The estimator f̂(x) is the UMVUE of f(x) follows from the Lehmann-Scheffé theorem and
the previous lemma. Also F̂ (x) is the UMVUE of F (x) follows from the fact that

dF̂ (x)

dx
=

d

dx

[{
1 + (1/t) ln

(
1− e−(γx)2

)}n−1
]

= f̂(x).

Further we proceed to obtain MSEs of these UMVUE estimators. For notational simplicity, we
take Ω = −ln(1− e−(γx)2). First we obtain the following two expectations:

E(f̂(x))m =

∫ ∞
Ω

(
(n− 1)

[
t+ ln(1− e−(γx)2)

]n−2

tn−1
× 2xγ2e−(γx)2(

1− e−(γx)2
))m αn

Γn
tn−1e−αtdt

=
[
(n− 1)2xη/ξ

]m αn

Γn

∫ ∞
Ω

tn−m−1e−αt
n∑
i=0

(
m(n− 2)

i

)[
(1/t) lnξ

]i
dt

=
[
(n− 1)2xη/ξ

]m αn

Γn

n∑
i=0

(
m(n− 2)

i

)
(lnξ)i

∫ ∞
Ω

tn−m−i−1e−αtdt

=
[
(n− 1)2xη/ξ

]m αn

Γn

n∑
i=0

(
m(n− 2)

i

)
(lnξ)i Γ ((n−m− i), αΩ) . (2.8)

We know F̂ (x) =
{

1 + (1/t) ln
(
1− e−(γx)2

)}n−1
, Ω < u <∞ and so we have

E
[
F̂ (x)

]m
=

∫ ∞
Ω

[{
1 + (1/t) lnξ

}n−1
]m αn

Γn
tn−1e−αtdt

=
αn

Γn

∫ ∞
Ω

m(n−1)∑
i=0

(
m(n− 1)

i

)(
lnξ
t

)i
tn−1e−αtdt

=
αn

Γn

m(n−1)∑
i=0

(
m(n− 1)

i

)
(lnξ)i

∫ ∞
Ω

tn−i−1e−αtdt

=
αn

Γn

m(n−1)∑
i=0

(
m(n− 1)

i

)
(lnξ)i Γ (n− i, αΩ) , (2.9)

where Γ(s, αx) =
∫∞
x
ts−1e−αtdt denotes the upper incomplete gamma function.
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Theorem 4. The mean squared error of estimator f̂(x) is given as

MSE(f̂(x)) =

(
(n− 1)2xη

ξ

)2
αn

Γn

n∑
i=0

(
2(n− 2)

i

)
(lnξ)i Γ ((n− 2− i), αΩ)− f2(x)

and the mean square error of estimator F̂ (x) is given as

MSE(F̂ (x)) =
αn

Γn

2(n−1)∑
i=0

(
2(n− 1)

i

)
(lnξ)i Γ (n− i, αΩ)− F 2(x).

Proof. MSEs of estimators f̂(x) and F̂ (x) are defined as

MSE(f̂(x)) = E(f̂(x))2 − 2f(x)f̂(x) + f2(x) = E(f̂(x))2 − f2(x) (2.10)

and

MSE(F̂ (x)) = E(F̂ (x))2 − 2F (x)F̂ (x) + F 2(x) = E(F̂ (x))2 − F 2(x), (2.11)

respectively. Using equation (2.8) with m = 2, we get the required MSE for f̂(x). Similarly we can
obtain MSE of F̂ (x) using equation (2.9) with m = 2.

2.3 Least Squares and Weighted Least Squares Estimators

This section discusses about regression based estimators of unknown parameters. Swain et al. (1988)
first suggested this method to estimate the parameters of beta distributions. Further many authors
discussed and used this method for different distributions. Consider a random sample X1, . . . , Xn

of sample size n from a CDF F (·). Then we observe that

E(F (Xi)) =
i

n+ 1
, V (F (Xi)) =

i(n− i+ 1)

(n+ 1)2(n+ 2)
, and cov [F (Xi), F (Xj)] =

i(n− j − 1)

(n+ 1)2(n+ 2)

for i < j, i, j = 1, 2, . . . , n (see, Johnson et al., 1994). Further we discuss two variants of this
method namely least square and weighted least square estimators.

2.3.1 Least Square Estimators (LSEs)

In this method
n∑
i=1

[
F (Xi)−

i

n+ 1

]2

is minimized with respect to the unknown parameters. For Burr X distribution, the expression

n∑
i=1

[(
1− e−(γxi)

2
)α
− i

n+ 1

]2
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is minimized with respect to the unknown shape parameter α (when γ is known) and the least square
estimator for α is denoted as α̂ls.

Then we have

f̂ls(x) = 2α̂lsγ
2xe−(γx)2(1− e−(γx)2)α̂ls−1 and F̂ls(x) = (1− e−(γx)2)α̂ls

as the least square estimators of the f(x) and the F (x), respectively. Further, simulation study is
conducted to calculate the desired expectations and MSE values.

2.3.2 Weighted Least Square Estimators (WLSEs)

To obtain WLSE of the unknown parameters, we minimize the expression

n∑
i=1

wi

[
F (xi)−

i

n+ 1

]2

with respect to the unknown parameters. Here wi = 1
Var[FX(xi)]

= (n+1)2(n+2)
i(n−i+1) is defined as the

weight function (see, Johnson et al., 1994). Note that the least square estimator is obtained under
the consideration of constant variance. If such assumption does not hold true then weighted least
square estimation may be considered with inverse of variance as weight. Under such scaling the
corresponding error remains finite. For the Burr X distribution, the expression

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[(
1− e−(γxi)

2
)α
− i

n+ 1

]2

is minimized with respect to the unknown shape parameter α (when γ is known). Suppose α̂wls
denotes the WLSE of α. Then we obtain the weighted LSEs of f(x) and F (x) as

f̂wls(x) = 2α̂wlsγ
2xe−(γx)2)

(
1− e−(γx)2

)α̂wls−1

and F̂wls(x) =
(

1− e−(γx)2
)α̂wls

,

respectively. Further we have conducted a simulation study to obtain the required expectations and
MSE values.

2.4 Estimators based on Percentiles

This method was originally suggested by Kao (1958, 1959). A well explained explanations, on this
topic, can be found in Mann et al. (1974); Johnson et al. (1994). Burr X distribution has closed form
CDF and this method is based on inverting the CDF. So, estimation of parameters of this distribution
can be done using this method.

Suppose X1, . . . , Xn denotes an ordered random sample from Burr X distribution and F (Xi) as
the ordered distribution of the sample. Let pi = i/(n+ 1) then percentiles estimator of α denoted
by α̂p is the one which minimizes the expression

n∑
i=1

[
pi − (1− e−(γxi)

2

)α
]2

or equivalently
n∑
i=1

[
lnpi − αln(1− e−(γxi)

2

)
]2
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with respect to α. Then

f̂p(x) = 2α̂pγ
2xe−(γx)2

(
1− e−(γx)2

)α̂p−1

and F̂p(x) =
(

1− e−(γx)2
)α̂p

are the required percentile estimators of f(x) and F (x) respectively. Since it is difficult to find
the expectations and the MSE values for these estimators analytically, so these can be obtained by
means of simulations.

2.5 Method of Maximum Product of Spacing

The maximum product spacing (MPS) method has been introduced by Cheng and Amin (1979,
1983) as an alternative to MLE for the estimation of the unknown parameters parameters of contin-
uous univariate distributions. Consider a sample of size n be taken from a Burr X distribution. Then
the corresponding uniform spacing is defined as

Dj = F (xj)− F (xj−1), j = 1, 2, . . . , n,

where F (x0:n) = 0, F (xn+1) = 1 and
∑n+1
j=1 Dj = 1. The MPS estimate of α denoted by α̂m is

obtained by maximizing

D(α, γ) =

n+1∏
j=1

Dj

 1
n+1

with respect to the unknown shape parameter α. Equivalently, the expression

D∗(α, γ) =
1

n+ 1

n+1∑
j=1

lnDj

can be maximized to obtain the estimate of α as desired. It can be shown that α̂m satisfies

1

n+ 1

n+1∑
j=1

1

Dj
(D0(xj)−D0(xj−1)) = 0,

where D0(xj) =
(

1− e−(γxj)
2
)αm

ln
(

1− e−(γxj)
2
)

. This has been shown by Cheng and Amin
(1983) that the efficiency of MPS method of estimation is very close to the ML estimation method.
Then f̂m(x) and F̂m(x) are the MPS estimators of f(x) and F (x) respectively and are given by

f̂m(x) = 2α̂mγ
2xe−(γx)2

(
1− e−(γx)2

)α̂m−1

and F̂m(x) =
(

1− e−(γx)2
)α̂m

,

respectively. The expectations and the MSE of these estimators can be calculated using simulations.
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2.6 Cramér-von-Mises Method of Estimation

To motivate our choice of Cramér-von-Mises type minimum distance estimators, MacDonald (1971)
provided empirical evidence that the bias of the estimator is smaller than the other minimum distance
estimators. The value of α for which the function

C(α, λ) =
1

12n
+

n∑
j=1

(
F (xj)−

2j − 1

2n

)2

.

is minimized is defined as the Cramér-von-Mises estimator of α denoted by α̂c. Equivalently, solu-
tion of the equation

n∑
j=1

(
F (xj)−

2j − 1

2n

)
D0(xj) = 0

gives the desired estimator α̂c. Therefore Cramér-von-Mises estimators of f(x) and F (x) are f̂c(x)

and F̂c(x) respectively and are given by

f̂c(x) = 2α̂cγ
2xe−(γx)2

(
1− e−(γx)2

)α̂c−1

and F̂c(x) =
(

1− e−(γx)2
)α̂c

,

respectively. Simulations are used to obtain the expectations and the MSE values due to having
difficulties in finding analytic solutions.

2.7 Anderson-Darling Method of Estimation

The Anderson-Darling test (Anderson and Darling, 1952) is as an alternative to other statistical tests
for detecting sample distributions departure from normality. Specifically, the AD test converge very
quickly towards the asymptote (Anderson and Darling, 1954; Pettitt, 1976; Stephens, 1974). The
AD estimator α̂a of the unknown parameter α is obtained from the function

A(α, γ) = −n− 1

n

n∑
j=1

(2j − 1)
(
lnF (xj) + lnF̄ (xn+1−j)

)
,

by minimizing with respect to α. Equivalently, the solution of the equation

n∑
j=1

(2j − 1)

(
D0(xj)

F (xj)
− D0(xn+1−j)

F̄ (xn+1−j)

)
= 0,

provides the desired estimator α̂a with D0(·) being defined earlier. The Anderson- Darling estima-
tors for f(x) and F (x) are presented as

f̂a(x) = 2α̂aγ
2xe−(γx)2

(
1− e−(γx)2

)α̂a−1

and F̂a(x) =
(

1− e−(γx)2
)α̂a

,

respectively. The desired expectations and the MSE values of these estimators is difficult to find
analytically. So simulations can be used.
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3 Simulation Study

We perform simulation study to compare the different estimators discussed here. We have arbitrar-
ily considered four different sets parameter values, namely (α, γ) = (1, 1), (1, 2), (2, 1), (2, 2) to
compare the performance of proposed methods. We mention that samples are generated from the
Burr X distribution using the probability integral transformation method. We have computed results
for arbitrarily selected sample sizes such as n = 10, 20, 30, 40, 50. In fact deviation in MSEs of
different estimators of PDF and CDF from the MSEs of corresponding ML estimator of PDF and
CDF are obtained. Thus deviation of MSEs represent the difference between MSE of an estimator
from the MSE of maximum likelihood estimator. We have computed these values for an arbitrary
value x = 1. The deviations of MSEs of different estimators are presented in Tables 1–2, from
which we can easily say that MLEs are the most efficient estimators of the PDF and the CDF of a
Burr X distribution and UMVUEs are the second most efficient estimators for the same. Since vari-
ous deviations are positive hence we observe that ML estimators are having the lowest MSE values.
Further visual analysis suggests that UMVUE has the second lowest MSE values for the PDF and
CDF.

Table 1: Deviations of MSEs of the PDF for various methods from the MSEs of the PDF for MLE
Deviations of MSEs of f(x)

Para. n UMVUE LSE WLSE PCE MPS CVM ADM

(1,1) 10 0.00392 0.03284 0.01164 0.07164 0.00064 0.06621 0.01544

20 0.00093 0.02971 0.01365 0.07635 0.00318 0.07387 0.01673

30 0.00040 0.02707 0.01382 0.07767 0.00371 0.07389 0.01743

40 0.00022 0.02409 0.01266 0.07927 0.00370 0.05940 0.01703

50 0.00014 0.02121 0.01225 0.07518 0.00429 0.04295 0.01634

(1,2) 10 7.75× 10−04 0.08296 0.00319 0.00222 0.00239 0.43243 0.00075

20 1.67× 10−04 0.03673 0.00123 0.00406 0.00154 0.30042 0.00067

30 7.09× 10−05 0.01386 0.00072 0.00471 0.00143 0.24801 0.00106

40 3.89× 10−05 0.00156 0.00051 0.00473 0.00127 0.19083 0.00117

50 2.46× 10−05 0.00154 0.00039 0.00488 0.00125 0.13852 0.00123

(2,1) 10 8.94× 10−04 0.02566 0.04031 0.05968 0.00575 0.02778 0.00674

20 2.04× 10−04 0.01529 0.03726 0.05318 0.00180 0.01617 0.00700

30 6.94× 10−05 0.01198 0.03409 0.05142 0.00100 0.01218 0.00713

40 3.11× 10−05 0.00945 0.03184 0.04974 0.00048 0.00954 0.00582

50 1.65× 10−05 0.00868 0.03010 0.04664 0.00042 0.00874 0.00577

(2,2) 10 2.67× 10−03 0.00472 0.01155 0.00765 0.01240 0.02978 0.00262

20 5.79× 10−04 0.00617 0.00445 0.01568 0.00605 0.00848 0.00228

30 2.43× 10−04 0.00596 0.00268 0.01711 0.00510 0.00603 0.00375

40 1.33× 10−04 0.00632 0.00188 0.01813 0.00426 0.00636 0.00442

50 8.57× 10−05 0.00608 0.00139 0.01904 0.00401 0.00609 0.00506
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Table 2: Deviations of MSEs of the CDF for various methods from the MSEs of the CDF for MLE
Deviations of MSEs of F (x)

Para. n UMVUE LSE WLSE PCE MPS CVM ADM

(1,1) 10 6.1× 10−04 0.01866 0.01402 0.01784 0.00436 0.06226 0.00129

20 1.8× 10−04 0.01333 0.01611 0.02329 0.00469 0.05774 0.00464

30 8.4× 10−05 0.01107 0.01576 0.02495 0.00422 0.05217 0.00579

40 4.8× 10−05 0.00927 0.01422 0.02613 0.00363 0.03885 0.00609

50 3.1× 10−05 0.00774 0.01355 0.02520 0.00392 0.02616 0.00606

(1,2) 10 1.3× 10−05 1.2× 10−02 8.0× 10−05 3.3× 10−05 3.9× 10−05 0.05264 1.3× 10−05

20 2.8× 10−06 7.1× 10−03 5.7× 10−05 6.4× 10−05 2.5× 10−05 0.05896 1.0× 10−05

30 1.2× 10−06 4.4× 10−03 7.1× 10−05 7.7× 10−05 2.3× 10−05 0.06069 1.7× 10−05

40 6.4× 10−07 9.9× 10−04 5.4× 10−05 7.8× 10−05 2.1× 10−05 0.04678 1.8× 10−05

50 4.1× 10−07 2.4× 10−05 4.8× 10−05 7.7× 10−05 2.0× 10−05 0.03215 1.9× 10−05

(2,1) 10 1.1× 10−03 0.02161 0.03350 0.04983 0.00552 0.02177 0.00898

20 2.3× 10−04 0.01860 0.03204 0.05160 0.00531 0.01879 0.01025

30 9.5× 10−05 0.01765 0.03029 0.05409 0.00452 0.01781 0.01225

40 5.1× 10−05 0.01569 0.02888 0.05484 0.00449 0.01578 0.01171

50 3.2× 10−05 0.01563 0.02768 0.05391 0.00461 0.01569 0.01230

(2,2) 10 4.7× 10−05 1.0× 10−03 0.00022 0.00011 2.2× 10−04 2.5× 10−03 5.0× 10−05

20 1.0× 10−05 9.9× 10−05 0.00026 0.00025 1.0× 10−04 1.5× 10−04 3.5× 10−05

30 4.4× 10−06 9.6× 10−05 0.00023 0.00027 8.7× 10−05 9.7× 10−05 6.0× 10−05

40 2.4× 10−06 1.0× 10−04 0.00022 0.00029 7.2× 10−05 1.0× 10−04 7.1× 10−05

50 1.5× 10−06 9.9× 10−05 0.00026 0.00031 6.8× 10−05 9.9× 10−05 8.2× 10−05

4 Data Analysis

In this section, we use a real data set to compare the performance of the suggested estimators of the
PDF and CDF of BurrX(α, γ) distribution. The data set represent the number of cycles to failure
for a group of 60 electrical items in a life test. The data was obtained from Lawless (2003, page
112).

Here, for computational ease, we have divided the whole data set by 1000. The data set is fitted
to Burr X distribution, generalized exponential distribution and generalized logistic distribution and
for all these three distributions the estimates for parameters α and γ together with Kolmogrov-
Smirnov values and the p-values are calculated and presented in Table 3. It can be easily observed
from the Kolmogrov-Simirnov and p-values that Burr X distribution fits the data better than the two
competitors. Looking at the tabulated values in Table 4, we can conclude that the most efficient
estimation method for fitting the data is the ML estimation method. Further different model section
criteria namely maximum likelihood, Akaike information criterion, corrected Akaike information
criterion, Bayes information criterion and Hannan-Quinn criterion defined by
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Table 3: Goodness of fit tests for proposed models in the real data set
Distribution α γ KS p-value

Burr X 0.362115 0.237414 0.062001 0.9642

Generalized Logistic 3.660288 0.809312 0.090870 0.6708

Generalized Exponential 0.915937 0.431173 0.092127 0.6544

Table 4: Estimation of parameters and the model selection criteria for the real data set
Estimator Estimate of α Estimate of γ ML AIC AICc BIC HQC

MLE 0.362115 0.237414 210.3249 214.3249 214.5354 218.5136 215.9633

LSE 0.360121 0.229670 210.4142 214.4142 214.6247 218.6028 216.0526

WLSE 0.357896 0.232810 210.3522 214.3522 214.5627 218.5408 215.9906

PCE 0.321556 0.203874 211.8409 215.8409 216.0514 220.0296 217.4793

MPS 0.335072 0.219541 210.7966 214.7966 215.0072 218.9853 216.4351

CVM 0.371616 0.236671 210.3723 214.3723 214.5828 218.5610 216.0107

AD 0.359541 0.234239 210.3379 214.3379 214.5484 218.5266 215.9763

maximum likelihood = −2lnL(θ),

Akaike information criterion = −2lnL(θ) + 2np

Corrected Akaike information criterion = −2lnL(θ) + 2np

(
n

n−np−1

)
Bayes information criterion = −2lnL(θ) + npln(n) and

Hannan-Quinn criterion = −2lnL(θ) + 2npln(ln(n)),

respectively are used for assessing the behavior of the suggested methods of estimation. Here lnL(θ)

denotes the log-likelihood, n denotes the number of observations in the data set, and np denotes the
number of parameters of the distribution. The smaller values of these model selection criteria leads
to the better fit. It can easily be seen from Table 4 that the values of all the model selection criteria for
ML estimation method are smaller than others. Thus the maximum likelihood method of estimation
is preferred to use in practice.

5 Conclusion

In this article, we have considered eight methods of estimation of the probability density function
and the cumulative distribution function for the BurrX(α, γ) distribution and comparisons are
performed. Such comparisons can be useful to find the best estimators for the PDF and the CDF
which can be used to estimate functionals like differential entropy, Rényi entropy, Kullback-Leibler
divergence, Fisher information, cumulative residual entropy, the quantile function, Bonferroni curve,
Lorenz curve, probability weighted moments, hazard rate function, mean deviation about mean etc.
From both simulation study and real data analysis, we observed that MLE performs better than their
counter part. The performance of AD is fairly reasonable and competitive. Also, evidence based on
the MSEs in the simulation study, the log-likelihood values, and the model selection criteria show
that the ML estimators for the pdf and the CDF are the best. We hope our results and methods of
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estimation might attract wider sets of applications in the above mentioned functionals. As suggested
by an anonymous reviewer, it would be interesting to investigate properties of different estimation
methods of PDF and CDF under some censoring techniques as well, possibly using some different
data sets. To the best of our knowledge, not much work has been done on this particular problem in
literature. Also we have obtained results for considered estimation problem based on finite sample
situations. More work is required to study the asymptotic behavior of such estimators. We will try
to work on these aspects in near future.
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