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SUMMARY

The power Lomax distribution due to Rady et al. (2016) is an alternative to and provides
better fits for bladder cancer data (Lee and Wang, 2003) than the Lomax, exponential Lo-
max, Weibull Lomax, extended Poisson Lomax and beta Lomax distributions. Exact ex-
plicit expressions as well as recurrence relations for the single and double (product) mo-
ments have been derived from the power Lomax distribution. These recurrence relations
enable computation of the mean, variance, skewness and kurtosis of all order statistics for
all sample sizes in a simple and efficient manner. By using these relation, the mean, vari-
ance, skewness and kurtosis of order statistics for sample sizes up to 5 for various values of
shape and scale parameters are tabulated. Finally, remission times (in months) of bladder
cancer patients have been analyzed to show how the proposed relations work in practice
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1 Introduction
Order statistics and its functions are of great significance in reliability theory, the life-length of the r-out-of-n
system made up of n identical components with independent life-lengths which is the (n − r + 1)th order
statistic in a sample of size n, Xn−r+1:n. When r = 1, it is known as the parallel system. System will function
as long as any of the n components survives. However, if r = n, it is known as a series system. It has wide
applicability in practical problems such as characterization of probability distributions and goodness-of-fit tests,
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entropy estimation, analysis of censored samples, reliability analysis, quality control and strength of materials;
see Arnold et al. (1992), David and Nagaraja (2003), and the references therein for more details.

The usage of moments of order statistics can be especially observed in areas such as quality control testing,
reliability theory where a practitioner needs to predict the failure of future items based on the times of a few
early failures. These predictions are often based on moments of order statistics. In recent times, the moments
of order statistics have been tabulated quite extensively for several distributions (Arnold et al., 1992; David,
1981; Joshi, 1978; Balakrishnan and Joshi, 1982; Balakrishnan and Malik, 1985; Balakrishnan et al., 1988;
Malik et al., 1988; Mohie El-Din et al., 1991; Kumar et al., 2016; Kumar and Dey, 2017; and Kumar, 2017).
Balakrishnan and Malik (1986) established exact and explicit expressions for the means and product moments
of order statistics from the linear-exponential distribution; also they established some recurrence relations for
both single and product moments of order statistics for the same model. Several papers dealing with character-
ization of distribution through properties of order statistics are appeared in the literature see Lin (1988), Kamps
(1991) and Mohie El-Din et al. (1991).

The recurrence relations of order statistics and its identities are quite useful in reducing the number of
operations necessary to obtain a general form for the function as they reduce the amount of direct computation,
time and labor. This feature has been well documented in the statistical literature (Arnold and Balakrishnan,
1989). Besides, they are used in characterizing the distributions, which play in integral role for the identification
of population distribution from the properties of the sample. The computation of moments of order statistics is
a challenging task for many distributions. For this reason, recursive computational methods are often sought.

Rady et al. (2016) introduced three parameter power Lomax (POLO) distribution and obtained some sta-
tistical and reliability properties, and also estimated its parameters by maximum likelihood method. A random
variable X has the POLO distribution with parameters α, β and λ if its cumulative distribution function (cdf)
is

F (x;α, β, λ) = 1 −
( λ

xβ + λ

)α
, x > 0, α, β, λ > 0 (1.1)

and corresponding probability density function (pdf) is

f(x;α, β, λ) = αβλαxβ−1(xβ + λ
)−α−1

, x > 0, α, β, λ > 0 (1.2)

The hazard function of the POLO distribution is given by

h(x) =
αβxβ−1

xβ + λ
, x > 0, α, β, λ > 0

where α and β are the shape parameter and λ is the scale parameter of the distribution. Note that Lomax
distribution is a member of POLO distribution if β = 1.

In this paper, recurrence relations for all single and product moments of order statistics are derived in
a simple recursive manner. The so-obtained relationships enables computation of all the moments of order
statistics using some mathematical software (Mathematica, Maple). The rest of the paper is organized as
follows. In Section 2, two lemmas are derived for obtaining single moments of order statistics. In Section
3, single and double moments of order statistics are derived. In Section 4, recurrence relations for the single
moments and double moments of order statistics are obtained. Tabulations of mean, variance, skewness and
kurtosis of order statistics are given in Section 5. The analysis of one real data set has been presented in Section
6. Some concluding remarks are addressed in Section 7.
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2 Technical Lemmas
Two technical lemmas are illustrated below:

Lemma 2.1. Let F (x) and f(x) be given by (1.1) and (1.2), respectively. For a > 0, b > 0 let

I(a, b) =

∫ ∞
0

xa[1 − F (x)]bf(x) dx

then

I(a, b) = αλ
a
β

Γ(a+β
β

) Γ(1 + α(b+ 1) − a+β
β

)

Γ(α(b+ 1) + 1)
.

Proof. We can write

I(a, b) =

∫ ∞
0

xa[1 − F (x)]bf(x) dx

=

∫ ∞
0

xa
[

λ

(xβ + λ)

]αb
αβλαxβ−1(xβ + λ)−α−1 dx

= αβλα(b+1)

∫ ∞
0

xa+β−1(xβ + λ)−α(b+1)−1 dx. (2.1)

The result follows by using equation (3.241) in Gradshteyn and Ryzhik (2014) to calculate the integral in (2.1).
The proof is complete.

Lemma 2.2. Let F (x) and f(x) be given by (1.1) and (1.2), respectively. For a > 0, b > 0, p > 0 and q > 0,
let

K(p, q, a, b) =

∫ ∞
0

∫ ∞
x

xpyq[1 − F (x)]a[1 − F (y)]bf(x)f(y) dydx

then

K(p, q, a, b) = α2λ
q+p
β

q
β∑
i=0

(
q
β

i

)
(−1)i

cβ
×

Γ( p+β
β

)Γ(1 + α(a+ c+ 1) − p+β
β

)

Γ(α(a+ c+ 1) + 1)
,

where c = (1/β)[α(b+ 1) + i− (q/β)],

Proof. Here

K(p, q, a, b) =

∫ ∞
0

∫ ∞
x

xpyq[1 − F (x)]a[1 − F (y)]bf(x)f(y) dydx

=

∫ ∞
0

xp[1 − F (x)]af(x)I(x) dx

where

I(x) =

∫ ∞
x

yq[1 − F (y)]bf(y) dy = α

∫ [F̄ (x)]
1
β

0

λ
q
β (1 − z)

q
β z

α(b+1)−1− q
β dz.
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By using binomial expansion, the following expression can be obtained:

I(x) = αλ
q
β

q
β∑
i=0

(
q
β

i

)
(−1)i

∫ [F̄ (x)]
1
β

0

zcβ dz = αλ
q
β

q
β∑
i=0

(
q
β

i

)
(−1)i

cβ

[
F̄ (x)

]c
.

Hence,

K(p, q, a, b) = αλ
q
β

q
β∑
i=0

(
q
β

i

)
(−1)i

cβ

∫ ∞
0

xp[1 − F (x)](a+c)f(x) dx. (2.2)

The result follows by using lemma (2.2) to calculate the integral in (2.2). The proof is complete.

3 Moment of Order Statistics
In this section, the exact explicit forms for the single and double moments of order statistics from the POLO
distribution are derived.

3.1 Single Moments

The single moments of order statistics are very important to calculate the variance and draw the inferential tech-
niques for the underlying distribution. In the following, the single moments of order statistics from the POLO
distribution are derived. Let X(1) ≤ · · · ≤ X(n) denote the order statistics corresponding to X1, . . . , Xn from
the POLO distribution given in Equation (2) with its cdf in Equation (1). Then pdf of the rth order statistic is

fX(r)
(x) = Cr:n

[
F (x)

]r−1[
1 − F (x)

]n−r
f(x), x > 0, r = 1, . . . , n, (3.1)

where

Cr:n =
n!

(r − 1)!(n− r)!
.

Using binomial expansion, (3.1) can be rewritten as

fX(r)
(x) = Cr:n

r−1∑
`=0

(−1)`[1 − F (x)]`+n−rf(x)dx.

The jth moment of the rth-order statistic µ(j)
r:n = E

(
X

(j)
r

)
is given by

µ(j)
r:n = Cr:n

r−1∑
`=0

(
r − 1

`

)
(−1)`

∫ ∞
0

xj [1 − F (x)]n−r+`f(x)dx. (3.2)

Using (3.2), Lemma 2.1, the moments of the rth order statistic can be written as:

µ(j)
r:n = Cr:n

r−1∑
`=0

(
r − 1

`

)
(−1)` I(j, n− r + `). (3.3)
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The validity of the single moments of order statistics in Equation (3.3) can be checked by using Arnold et al.
(1992)

n∑
r=1

µr:n = nE(X).

In particular, the mean order statistic and the variance of order statistic are

µ(1)
r:n = Cr:n

r−1∑
`=0

(
r − 1

`

)
(−1)` I(1, n− r + `)

= αλ
1
βCr:n

r−1∑
`=0

(
r − 1

`

)
(−1)`Γ( 1+β

β
) Γ(1 + α(n− r + `+ 1) − 1+β

β
)

Γ(α(n− r + `+ 1) + 1)

σ(2)
r:n = µ(2)

r:n −
[
µ(1)
r:n

]2
= αλ

2
βCr:n

r−1∑
`=0

(
r − 1

`

)
(−1)`Γ( 2+β

β
) Γ(1 + α(n− r + `+ 1) − 2+β

β
)

Γ(α(n− r + `+ 1) + 1)
−
[
µ(1)
r:n

]2
.

Remark 1. If β = 1 in (3.3), the explicit expression of order statistics for Lomax distribution can be obtained.

3.2 Double Moments
The double moments of order statistics are very important to calculate the variance and draw the inferential
techniques for the underlying distribution. In the following, the double moments of order statistics from the
POLO distribution are derived.

Let X(1) ≤ · · · ≤ X(n) denote the order statistics corresponding to X1, . . . , Xn from the POLO distribu-
tion given in (1.2) with its cdf in (1.1). The joint pdf of the rth and sth order statistics is

fX(r),X(s)
(x, y) = Cr,s:n [F (x)]r−1[F (y) − F (x)

]s−1−r[
1 − F (y)

]n−s
f(x)f(y) (3.4)

for r, s = 1, 2 . . . , n, r < s, 0 < x < y, where

Cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!
.

Using binomial expansion,(3.4) can be rewritten as

fX(r),X(s)
(x, y) = Cr,s:n

r−1∑
`1=0

s−r−1∑
`2=0

(
r − 1

`1

)(
s− r − 1

`2

)
(−1)`1+`2

×
∫ ∞

0

∫ ∞
x

xpyq[1 − F (x)]s−r−1−`1+`2 [1 − F (y)]n−s+`1f(x)f(y)dydx,

for 0 < x < y. Then, the double (product) moments of order statistics

µ(p,q)
r,s:n = E

(
X(p)
r:nX

(q)
s:n

)
is given by

µ(p,q)
r,s:n = Cr,s:n

r−1∑
`1=0

s−r−1∑
`2=0

(
r − 1

`1

)(
s− r − 1

`2

)
(−1)`1+`2

×K
(
p, q, (s− r − 1 − `1 + `2), (n− s+ `1)

)
. (3.5)
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The validity of the double moments of order statistics in Equation (3.5) can be checked by using Arnold et al.
(1992)

n−1∑
r=1

n∑
s=r+1

µr,s:n =

(
n

2

)[
E(X)

]2
.

In particular, the covariance of order statistics is

µ(1,1)
r,s:n = Cr,s:n

r−1∑
`1=0

s−r−1∑
`2=0

(
r − 1

`1

)(
s− r − 1

`2

)
(−1)`1+`2

×K(1, 1, (s− r − 1 − `1 + `2), (n− s+ `1))

= α2λ
2
βCr,s:n

r−1∑
`1=0

s−r−1∑
`2=0

1
β∑
i=0

(
r − 1

`1

)(
s− r − 1

`2

)
(−1)`1+`2+i

(α(n− s+ `1 + 1) + i− 1
β

)

×
Γ( 1+β

β
)Γ(1 + α(s− r − `1 + `2 + 1

β
(α(n− s+ `1 + 1) + i− 1

β
)) − 1+β

β
)

Γ(α(s− r − `1 + `2 + 1
β

(α(n− s+ `1 + 1) + i− 1
β

)) + 1)
.

Remark 2. Put β = 1 in (3.5), the explicit expression of product moment of order statistics for Lomax
distribution can be obtained.

4 Recurrence Relations of Order Statistics
Here, the recurrence relation for the single and double moments of order statistics from the POLO distribution
are derived.

4.1 Recurrence Relation for Single Moments

Theorem 1. For the distribution given in (1.2) and for 1 ≤ r ≤ n and j = 1, 2, . . . then

µ(j)
r:n =

αβ(n− r + 1)

λ(j + β)

(
µ(j+β)
r:n − µ

(j+β)
r−1:n

)
− 1

λ
µ(j+β)
r:n .

Proof. Clearly (1.1) and (1.2) gives(xβ
λ

+ 1
)
f(x) =

αβxβ−1

λ
F̄ (x).

Therefore, for j = 1, 2, . . .

µ(j)
r:n +

1

λ
µ(j+β)
r:n = Cr:n

∫ ∞
0

(
xj +

xj+β

λ

)
[F (x)]r−1[1 − F (x)]n−rf(x) dx

= Cr:n

∫ ∞
0

xj
(

1 +
xβ

λ

)
[F (x)]r−1[1 − F (x)]n−rf(x) dx

= Cr:n
αβ

λ

∫ ∞
0

xj+β−1[F (x)]r−1[1 − F (x)]n−r+1 dx.
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Integrating by parts, the above expression can be written as

µ(j)
r:n +

1

λ
µ(j+β)
r:n = Cr:n

αβ

λ

[
n− r + 1

j + β

∫ ∞
0

xj+β [F (x)]r−1[1 − F (x)]n−rf(x) dx

− r − 1

j + β

∫ ∞
0

xj+β [F (x)]r−2[1 − F (x)]n−r+1f(x) dx

]

=
αβ

λ

[
n− r + 1

j + β
Cr:n

∫ ∞
0

xj+β [F (x)]r−1[1 − F (x)]n−rf(x) dx

− r − 1

j + iβ
Cr:n

∫ ∞
0

xj+β [F (x)]r−2[1 − F (x)]n−r+1f(x) dx

]

=
αβ

λ

[(
n− r + 1

j + β

)
µ(j+β)
r:n −

(
r − 1

j + β

)
Cr:n
Cr−1:n

µ
(j+β)
r−1:n

]
.

The result follows.

In particular, upon setting r = 1 in Theorem 1, the following result can be deduced.

Corollary 4.1. For the POLO distribution given in (1.2),

µ
(j)
1:n =

1

λ
µ

(j+β)
1:n

(
αβn

j + β
− 1

)
. (4.1)

4.2 Recurrence Relation for Double Moments

Theorem 2. For the distribution given in (1.2) and for 1 ≤ r < s ≤ n and i, j = 1, 2, . . .

µ(i,j)
r,s:n = α2β2

∞∑
i1=0

∞∑
i2=0

(−1)i1+i2−2

λ(i1+i2)

[
n− s+ 1

j + i2β
(I1 − I2) − s− r − 1

j + i2β
(I3 − I4)

]
,

where

I1 = − n

i+ i1β
µ

(i+i1β,j+i2β)
r−1,s−1;n−1 +

n

i+ i1β
µ

(i+i1β,j+i2β)
r,s−1;n−1 ,

I2 = − r

i+ i1β
µ(i+i1β,j+i2β)
r,s;n +

nr

i+ i1β
µ

(i+i1β,j+i2β)
r+1,s;n ,

I3 = − n

(s− r − 1)(i+ i1β)
µ

(i+i1β,j+i2β)
r−1,s−2;n−1 +

n(n− s+ 1)

(s− r − 2)(i+ i1β)
µ

(i+i1β,j+i2β)
r,s−2;n−1 ,

I4 = − r(n− s+ 1)

(s− r − 1)(i+ i1β)
µ

(i+i1β,j+i2β)
r,s−1;n +

r(n− s+ 1)

(s− r − 1)(i+ i1β)
µ

(i+i1β,j+i2β)
r+1,s−1;n .

Proof. Clearly (1.1) and (1.2) gives

f(x) = αβ

∞∑
i=0

(−1)i−1xβi−1F̄ (x)

λi
.
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Therefore, for i, j = 1, 2, . . .

µ(i,j)
r,s:n =

α2β2Cr,s:n
λ2

∫ ∞
0

∫ ∞
x

xi+β−1yj+β−1(
1 + xβ

λ

) (
1 + yβ

λ

)F ?x,y(r − 1, s− r − 1, n− s+ 1, 1) dy dx

= α2β2Cr,s:n

∞∑
i1=0

∞∑
i2=0

(−1)i1+i2−2

λ(i1+i2)

∫ ∞
0

∫ ∞
x

xi+i1β−1yj+i2β−1

× F ?x,y(r − 1, s− r − 1, n− s+ 1, 1) dy dx

= α2β2Cr,s:n

∞∑
i1=0

∞∑
i2=0

(−1)i1+i2−2

λ(i1+i2)

∫ ∞
0

∫ ∞
x

xi+i1β−1yj+i2β−1

×
[
F ?x,y(r − 1, s− r − 1, n− s+ 1, 1) − F ?x,y(r, s− r − 1, n− s+ 1, 1)

]
dy dx

where

F ?x,y(k, l,m, r) = [F (x)]k[F (y) − F (x)]l[1 − F (y)]m[1 − F (x)]r.

Integrating by parts with respect to y, the following expression can be obtained

µ(i,j)
r,s:n =

∞∑
i1=0

∞∑
i2=0

α2β2(−1)i1+i2−2Cr,s:n
λ(i1+i2)

[
(n− s+ 1)(I1 − I2)

(j + i2β)
− (s− r − 1)(I3 − I4)

(j + i2β)

]
, (4.2)

where

I1 =

∫ ∞
0

∫ ∞
x

xi+i1β−1yj+i2βF ?x,y(r − 1, s− r − 1, n− s, 0) dy dx

I2 =

∫ ∞
0

∫ ∞
x

xi+i1β−1yj+i2βF ?x,y(r, s− r − 1, n− s, 0) dy dx

I3 =

∫ ∞
0

∫ ∞
x

xi+i1β−1yj+i2βF ?x,y(r − 1, s− r − 2, n− s+ 1, 0) dy dx

I4 =

∫ ∞
0

∫ ∞
x

xi+i1β−1yj+i2βF ?x,y(r, s− r − 2, n− s+ 1, 0) dy dx.

Integrating by parts with respect to x, the following results can be obtained

I1 = − (r − 1)J1

i+ i1β
+

(s− r − 1)J2

i+ i1β
, I2 = − rJ3

i+ i1β
+

(s− r − 1)J4

i+ i1β

I3 = − (r − 1)J5

i+ i1β
+

(s− r − 2)J6

i+ i1β
, I4 = − rJ7

i+ i1β
+

(s− r − 2)J8

i+ i1β
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where

J1 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 2, s− r + 1, n− s, 0)

y−(j+i2β)
dF (x) dF (y) =

µ
(i+i1β,j+i2β)
r−1,s−1;n−1

Cr−1,s−1:n−1

J2 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 1, s− r − 2, n− s, 0)

y−(j+i2β)
dF (x) dF (y) =

µ
(i+i1β,j+i2β)
r,s−1;n−1

Cr,s−1:n−1

J3 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 1, s− r − 1, n− s, 0)

y−(j+i2β)
dF (x) dF (y) =

µ
(i+i1β,j+i2β)
r,s;n

Cr,s:n

J4 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 1, s− r − 2, n− s, 0)

y−(j+i2β)
dF (x)dF (y) =

µ
(i+i1β,j+i2β)
r+1,s;n

Cr+1,s:n−1

J5 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 2,s− r − 2,n− s+ 1,0)

y−(j+i2β)
dF (x)dF (y) =

µ
(i+i1β,j+i2β)
r−1,s−2;n−1

Cr−1,s−2:n−1

J6 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 1,s− r − 3,n− s+ 1,0)

y−(j+i2β)
dF (x)dF (y) =

µ
(i+i1β,j+i2β)
r,s−2;n−1

Cr,s−2,n−1

J7 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 1,s− r − 2,n− s+ 1,0)

y−(j+i2β)
dF (x)dF (y) =

µ
(i+i1β,j+i2β)
r,s−1;n

Cr,s−1:n

J8 =

∫ ∞
0

∫ ∞
x

xi+i1βF ?x,y(r − 1,s− r − 3,n− s+ 1,0)

y−(j+i2β)
dF (x)dF (y) =

µ
(i+i1β,j+i2β)
r+1,s−1;n

Cr+1,s−1:n

The result follows by combining (10), (11) − (14) and (15) − (22).
In particular, upon setting s = r + 1 in Theorem 2, the following result can be deduced.

Corollary 4.2. For the POLO distribution given in (1.2) and for 1 ≤ r ≤ n

µ
(i,j)
r,r+1:n = α2β2

∞∑
i1=0

∞∑
i2=0

(−1)i1+i2−2 λ−(i1+i2)

(
n− r

j + i2β
I1 − n− r

j + i2β
I2

)
, (4.3)

where

I1 = − n

i+ i1β
µ

(i+i1β,j+i2β)
r−1,r;n−1 +

n

i+ i1β
µ

(i+i1β,j+i2β)
r,r;n−1 ,

I2 = − r

i+ i1β
µ

(i+i1β,j+i2β)
r,r+1;n +

nr

i+ i1β
µ

(i+i1β,j+i2β)
r+1,r+1;n .

5 Tabulations of Mean, Variance, Skewness and Kurtosis
The recurrence relations obtained in the preceding sections allow us to evaluate the mean, variance, skewness
and kurtosis of all order statistics for all sample sizes in a simple recursive manner. In Tables 2 and 3, the
mean values for α = 0.5(0.5)3 and β = 5 and 10 and λ = 1 and 2 are reported. Tables 2 and 3 show
that the mean of order statistics decreases as α increases. In Tables 4 and 5, the variances of order statistics for
different values of r, s and n for α = 0.5(0.5)3 and β = 5 and 10 and λ = 1 and 2 are computed. From
Tables 4 and 5, one can observe that as α increases, variances of order statistics decreases. Similar conclusion
can be drawn for skewness and kurtosis displayed in Tables 6-9, except some cases. Tabular values of mean,
variance, skewness and kurtosis are presented in Appendix. Figures 1-4 present the mean, variance, skewness
and kurtosis of the first and the last order statistics for n = 3, 4 and 5 for different values of α and β = 5 and
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λ = 1. From these Figures, one can observe that the mean, variance and skewness of the first and the last order
statistics decreases as α increases, except the kurtosis of the last order statistics which increase then decrease
as α increases.

Figure 1: Mean of order statistics for β = 5, λ = 1 and different values of α.

6 Data Analysis
In this section, we analyse a real data set corresponding to remission times (in months) of a random sample
of 128 bladder cancer patients given in Lee and Wang (2003). Rady et al. (2016) showed that the POLO dis-
tribution provides a better fit to this data than Lomax, MCLomax , BLomax and KW Lomax by Lemonte and
Cordeiro (2013), exponential Lomax (El-Bassiouny et al., 2015), gamma Lomax (Cordeiro et al., 2013), trans-
muted exponentiated Lomax (Ashour and Eltehiwy, 2013), Weibull Lomax (Tahir et al., 2015), extended Pois-
son Lomax (Al-Zahrani, 2015) and exponentiated Lomax (Abdul-Moniem, 2012). They obtained the MLEs of
the unknown parameters as: α̂ = 2.070, β̂ = 1.428 and λ̂ = 34.863.

The above estimates can be used to know how the minimum and maximum remission times (in months)
occur on average in every n patients. These remission times can be estimated by µ(1)

1:n and µ(1)
n:n, respectively.

Table 1 displays the ML predictions of µ(1)
1:n and µ(1)

n:n for n = 20(20)140. Also, the values of variance,
skewness and kurtosis for these predictions are presented in Table 1. From Table 1, it is to be noted that the
values of µ(1)

1:n decreases when the sample size increases while the corresponding variance decreases as the
sample size increases. On the other hand, the values of µ(1)

n:n and the corresponding variance increase as the
sample size increase, while the corresponding skewness and kurtosis decreases with the increasing in the sample
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Figure 2: Variance of order statistics for β = 5, λ = 1 and different values of α.

Figure 3: Skewness of order statistics for β = 5, λ = 1 and different values of α.
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Figure 4: Kurtosis of order statistics for β = 5, λ = 1 and different values of α.

size. Finally, from Table 1, it can be concluded that the minimum expected remission time is 0.21 months and
maximum remission time is 83.49 months, respectively.

7 Conclusion

In this paper, recurrence relations for single and product moments of order statistics from POLO distribution
have been derived. The recurrence relations for moments of order statistics are important because they can be
helpful in reducing the amount of direct calculations needed to calculate the moments, and they can be used in a
simple recursive manner to express the unknown higher order moments in terms of order statistics thus making
the evaluation of higher moments easy. Also they can be used to characterize the distributions. The work is in
progress on inferential issues and it will be reported later.

Acknowledgements

The authors would like to thank the the editor and the referee for their comments which helped improve the
paper.



The recurrence relations of order statistics . . . 87

Table 1: Estimates of µ(1)
1:n and µ(1)

n:n and the corresponding variance, skewness and kurtosis for real
data

µ
(1)
1:n µ

(1)
n:n

n MLE Variance Skewness Kurtosis MLE Variance Skewness Kurtosis

20 0.817 0.350 1.245 5.111 40.178 1039.429 2.948 22.334

40 0.499 0.128 0.062 0.458 52.581 1643.598 2.327 14.512

60 0.375 0.072 0.317 0.205 61.237 2151.711 1.986 11.014

80 0.306 0.048 1.330 1.440 68.110 2606.208 1.755 8.948

100 0.262 0.035 2.733 4.116 73.906 3024.651 1.583 7.558

120 0.230 0.027 4.050 7.717 78.967 3416.468 1.448 6.549

140 0.207 0.022 4.974 11.364 83.490 3787.462 1.338 5.778
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A Appendix
Table A1: Mean of order statistics for different values of α, β and λ

β = 5, λ = 1 β = 10, λ = 2

n r α = 0.5 α = 1.5 α = 3 α = 0.5 α = 1.5 α = 3

1 1 1.5497 0.9298 0.7697 1.2760 1.0208 0.9316
2 1 1.0689 0.7697 0.6551 1.0896 0.9316 0.8605

2 2.0304 1.0899 0.8842 1.4624 1.1100 1.0027
3 1 0.9298 0.6990 0.5998 1.0208 0.8885 0.8236

2 1.3472 0.9109 0.7658 1.2272 1.0178 0.9342
3 2.3720 1.1795 0.9434 1.5801 1.1562 1.0370

4 1 0.8552 0.6551 0.5643 0.9806 0.8605 0.7990
2 1.1538 0.8307 0.7063 1.1413 0.9726 0.8975
3 1.5407 0.9912 0.8251 1.3129 1.0629 0.9709
4 2.6491 1.2423 0.9828 1.6691 1.1872 1.0590

Table A2: Variance of order statistics for different values of α, β and λ

β = 5, λ = 1 β = 10, λ = 2

n r α = 0.5 α = 1.5 α = 3 α = 0.5 α = 1.5 α = 3

1 1 2.3608 0.0879 0.0419 0.1519 0.0259 0.0162
2 1 0.1786 0.0419 0.0259 0.0407 0.0162 0.0121

2 4.0807 0.0826 0.0316 0.1936 0.0198 0.0102
3 1 0.0879 0.0310 0.0207 0.0259 0.0135 0.0106

2 0.2439 0.0336 0.0180 0.0416 0.0105 0.0069
3 5.6489 0.0831 0.0278 0.2280 0.0182 0.0083

4 1 0.0615 0.0259 0.0179 0.0206 0.0121 0.0098
2 0.1003 0.0232 0.0139 0.0226 0.0081 0.0058
3 0.3127 0.0309 0.0150 0.0459 0.0088 0.0052
4 7.1206 0.0848 0.0259 0.2571 0.0175 0.0073
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Table A3: Skewness of order statistics for different values of α, β and λ

β = 5, λ = 1 β = 10, λ = 2

n r α = 0.5 α = 1.5 α = 3 α = 0.5 α = 1.5 α = 3

1 1 30.658 1.1818 0.0768 11.7334 0.1025 0.0437
2 1 6.1766 0.0768 0.0002 0.8776 0.0437 0.1897

2 31.1178 2.1342 0.2609 13.4439 0.5748 0.0183
3 1 1.1818 0.0059 0.0097 0.1025 0.1304 0.2547

2 8.9202 0.2536 0.0145 1.9846 0.0172 0.0319
3 30.8511 2.6949 0.4273 13.5957 0.9108 0.1003

4 1 0.4034 0.0002 0.0193 0.0020 0.1897 0.2913
2 2.3007 0.0597 0.00 0.6335 0.0054 0.0786
3 9.8308 0.4111 0.0486 2.4017 0.0934 0.0010
4 30.5981 3.0554 0.5605 13.5387 1.1386 0.1894

Table A4: Kurtosis of order statistics for different values of α, β and λ

β = 5, λ = 1 β = 10, λ = 2

n r α = 0.5 α = 1.5 α = 3 α = 0.5 α = 1.5 α = 3

1 1 14.7921 7.16626 3.4837 48.2997 4.1793 3.4336
2 1 29.5560 3.4837 3.0095 6.5101 3.4336 3.4209

2 14.8156 9.2913 3.9993 51.7441 5.0312 3.5012
3 1 7.16625 3.1178 2.9378 4.1793 3.3855 3.4513

2 37.1271 3.9743 3.2038 8.1988 3.4671 3.3094
3 14.6321 10.4404 4.3370 51.7369 5.5669 3.6625

4 1 4.6305 3.0095 2.9151 3.6337 3.4209 3.4894
2 9.4917 3.3785 3.0952 5.0530 3.2772 3.2661
3 39.2805 4.2729 3.3013 8.7362 3.6075 3.2771
4 14.4867 11.1683 4.5789 51.3831 5.9166 3.6969


