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SUMMARY

This paper proposes an empirical likelihood confidence region for the regression coeffi-
cients in linear regression models when the regression coefficients are subjected to some
equality constraints. The shape of the confidence set does not depend on the reparametriza-
tion of the regression model induced by the equality constraint. It is shown that the asymp-
totic coverage rate attains the nominal confidence level and the Bartlett correction can suc-
cessfully reduce the coverage error rate from O(n−1) to O(n−2), where n denotes the
sample size. Simulation studies are conducted to evaluate the finite sample performance
of the proposed empirical likelihood empirical confidence estimation procedure. Finally, a
comparison study is conducted to compare the finite sample performance of the proposed
and the classical ellipsoidal confidence sets based on normal theory.
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1 Introduction

A classical statistical inference in linear regression models is to construct confidence regions for the
regression coefficients. In a parametric setup, the random error is often assumed to obey a normal
law. As a result, a t-type or F -type confidence region can be built from the distributions of least
square estimate or MLE of the regression coefficients. If the distribution of the random error is
unknown, we may seek some large sample confidence regions based on the asymptotic distributions
of some estimates of the regression coefficient, or construct some bootstrap confidence regions. But
a main drawback of the large sample confidence regions and the bootstrap ones is that the shapes and
orientations of the confidence region are predetermined by the large sample theory or the bootstrap
procedure itself.
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As a nonparametric alternative to the bootstrap procedure for constructing the confidence re-
gions, the empirical likelihood (EL) procedure, introduced by Owen (1988, 1990, 1991), have gained
much popularity during the past two decades. Unlike the bootstrap procedure, the EL does not re-
sample the data with equal probability, instead, a set of constraints on the resampling probabilities
enable the EL procedure to be able to collect the important features of the data, which in turn im-
plies that the EL uses only the data to determine the shape and orientation of the confidence regions.
Compared to the large sample confidence intervals, the EL procedure does not need to explicitly
estimate the asymptotic covariance of the estimate of the regression coefficients, since an embedded
studentization will be carried out in the optimization process. More importantly, under some regular-
ity conditions, it has been already shown that in many statistical models, the EL confidence interval
is Bartlett correctable, meaning that the coverage error can be reduced from O(1/n) to O(1/n2) by
a simple adjustment on the χ2-critical value used in the EL procedure, but in general, the bootstrap
confidence intervals are not Bartlett correctable. The application of the EL procedure on the lin-
ear regression model was started with Owen (1991), then inspired by the Bartlett correction theory
in DiCiccio et al. (1991), Chen (1993, 1994) further investigated the higher order property of the
EL procedure in the linear regression models, and established the formula for the correction factor.
Recent years also see the application of the EL methodology to other important statistical models
where the data are either randomly censored, measured with errors, or missing. See Wang (2000),
Wang and Rao (2002), Cui and Chen (2002), and the references therein.

Usually, we do not impose any restrictions on the regression coefficients in the linear regression
models, they are free parameters. But in real applications, sometimes we have to build such a linear
regression model in which the regression coefficients are subject to some restriction, often expressed
by an equality or inequality. For example, in ANOVA or ANCOVA models, the fixed or interaction
effects are often assumed to have sum 0 for the sake of model identifiability.

To be specific, the following linear regression model would be used to fit the data

Y = X ′β + ε, Rβ = b, (1.1)

where Y is a scalar response, X is a p × 1 observable design covariate, either fixed or random, β
is the p × 1 unknown regression coefficients, and the random error ε has mean 0 and variance σ2.
The equality restriction on β is Rβ = b, where R is an r × p known constant matrix, r ≤ p, and
b is an r × 1 known constant vector. In fact, without loss of generality, b is often assumed to be
0 by a reparametrization, but we will not do so since the reparametrization does not bring much
simplification in the subsequent discussion.

The purpose of this paper is to develop confidence regions for β in model 1.1 using three dif-
ferent procedures, the classical Wald-type confidence region, the bootstrap confidence region and
the empirical likelihood confidence region, with focus on the latter. The paper will be organized as
follows. Section 2 provides the formula of Wald-type and the algorithms of bootstrap confidence
intervals; the empirical likelihood confidence interval will be constructed in Section 4, together with
the theory on Bartlett correction. Comparison studies on the finite sample performance among these
procedures will be made through simulation studies in Section 5. Finally, the proofs of the main
results will be presented in Section 6.
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2 Wald-type and Bootstrap Confidence Regions

Let (X ′i, Yi), i = 1, 2, . . . , n be a sample from (1.1), EXX ′ > 0, εi’s are independent and identi-
cally distributed. Denote X the n × p matrix with i-th row being X ′i , Y = (Y1, . . . , Yn). Further
assume that rank(X) = p, rank(R) = r, and β̂LS = (X′X)−1X′Y, the LS estimate of β. It is well
known that the restricted LS estimate of β has the form of

β̂RLS = β̂LS − (X′X)−1R′(R(X′X)−1R′)−1(Rβ̂LS − b).

If we assume that ε ∼ N(0, σ2), ε and X are independent when X is random, T = X′X + R′R,
then one can show that given X,

β̂RLS ∼ Np(β0, σ2Ω), Ω = T−1 − T−1R′(RT−1R′)−1RT−1.

Although feasible, it would be a little tedious to construct a confidence region of β based on the
above normality result, since the covariance matrix Ω is a singular p×pmatrix, and rank(Ω) = p−r.
Instead, we will proceed by rewriting model (1.1) with restricted parameter space as a model without
any restriction. For this purpose, let R = [R1, R2], where R1 is an r × r and R2 is an r × (p − r)
matrix. Without loss of generality, assume that R1 is nonsingular. Accordingly, decompose β into
two blocks [β′1, β

′
2]′ with β1 being r × 1. Then from Rβ = b we obtain R1β1 + R2β2 = b and

β1 = R−11 (b−R2β2). Thus, model (1.1) can be written as

Yi = X ′i

R−11 b−R−11 R2β2

β2

+ ei = X ′i

R−11 b

0

+X ′i

−R−11 R2

I

β2 + ei. (2.1)

Define

A =

R−11 b

0

 , B =

−R−11 R2

I

 , Ỹi = Yi −X ′iA, X̃ ′i = X ′iB.

One can see that (X̃ ′i, Ỹi)
′, i = 1, 2, . . . , n are i.i.d. random vectors. With this definition, (2.1) can

be concisely written as a typical linear regression model

Ỹi = X̃ ′iβ2 + εi. (2.2)

Therefore, to construct a confidence region of β, we can construct one for β2 based on model (2.2),
then combine the relationship β1 = R−11 (b−R2β2), we can build a confidence region of β.

2.1 Wald-type Confidence Region

Note that rank(XB) = p − r, so B′X′XB is nonsingular, and the least square estimate of β2 in
model (2.2) can be written as

β̂2 = (B′X′XB)−1B′X′(Y −XA).
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If εi i.i.d.∼ N(0, σ2), then it is easily seen that, given X,

β̂2 ∼ N(β2, σ
2(B′X′XB)−1).

Denote β̂1 = R−11 (b−R2β̂2), and β̂ = (β̂′1, β̂
′
2)′, an unbiased estimate of σ2 can be taken as

σ̂2 =
(Y −Xβ̂)′(Y −Xβ̂)

n− (p− r)
, (2.3)

which, together with the facts that [n − (p − r)]σ̂2/σ2 ∼ χ2
n−(p−r) and β̂ is independent of σ̂2,

imply

(β̂2 − β2)′B′X′XB(β̂2 − β2)

(p− r)σ̂2
∼ Fp−r,n−(p−r).

Therefore, an F -type confidence region of β2 with confidence level 1− α can be constructed as

CF,β2
=

{
β2 :

(β̂2 − β2)′B′X′XB(β̂2 − β2)

(p− r)σ̂2
≤ F1−α,p−r,n−(p−r)

}
,

which is clearly an ellipsoid in Rp−r. Accordingly, a confidence region of β with confidence level
1− α can be defined as

CF,β =
{
β = (β′1, β

′
2)′ : β1 = R−1(b−R2β2), β2 ∈ CF,β2

}
.

If ε is not normally distributed, then one can find a confidence interval of β either by large sample
theory or by bootstrap algorithm. Under some mild regularity conditions, central limit theorem
implies that

(B′X′XB)1/2(β̂2 − β2) =⇒ N(0, σ2I)

and law of large number implies that σ̂2 defined in (2.3) is a consistent estimator of σ2. Therefore,

(β̂2 − β2)′B′X′XB(β̂2 − β2)

σ̂2
=⇒ χ2

p−r.

Hence, a χ2-type confidence region of β2 can be constructed as

Cχ2,β2
=

{
β2 :

(β̂2 − β2)′B′X′XB(β̂2 − β2)

σ̂2
≤ χ2

1−α,p−r

}
,

which is also an ellipsoid in Rp−r. Accordingly, a confidence region of β with confidence level
1− α can be defined as

Cχ2,β =
{
β = (β′1, β

′
2)′ : β1 = R−1(b−R2β2), β2 ∈ Cχ2,β2

}
.
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2.2 Bootstrap Confidence Region

Generally there are two bootstrap algorithms in regression models. The case resampling treats the
predictors as random, and model based resampling views the predictor as fixed. Sometimes, the pre-
dictor will be treated as fixed even if they are generated randomly. An attractive advantage of doing
so is that the standard error of the bootstrap estimate of the regression coefficients reflects the preci-
sion associated with the sample of predictors actually observed. See Efron and Tibshirani (1993) for
more discussion on this issue. The case bootstrap procedure for constructing the confidence interval
of β consists of the following steps.

(1) Estimate β2 from the sample (X̃ ′i, Ỹi)
′, i = 1, 2, . . . , n, using least square procedure, de-

note the estimate as β̂2, and calculate the fitted value and residual for each observation Ŷi =

X̃ ′iβ̂2, ei = Ỹi − Ŷi.
(2) Select b bootstrap samples of the residuals, e∗j,i, i = 1, 2, . . . , n, and calculate the bootstrapped

Y -values using Y ∗j,i = Ŷi + e∗j,i, j = 1, 2, . . . , b.

(3) For each bootstrap sample, regress Y ∗j,i on X̂i, i = 1, 2, . . . , n to obtain the bootstrap estimates
of β̂∗j,2.

(4) For each j, calculate

T ∗j =
(β̂∗j,2 − β̂2)′B′X′XB(β̂∗j,2 − β̂2)

σ̂2∗
j

,

where

σ̂2∗
j =

∑n
i=1(Y ∗j,i − X̃iβ̂

∗
2,j)
′(Y ∗j,i − X̃iβ̂

∗
2,j)

n− (p− r)
,

and the 100(1− α)th percentile, denoted by T ∗[(1−α)b], of T ∗j , j = 1, 2, . . . , b.

(5) The 1− α confidence region of β2 can be constructed as

CB,β2 =

{
β2 :

(β̂2 − β2)′B′X′XB(β̂2 − β2)

σ̂2
≤ T ∗[(1−α)b]

}
,

which is an ellipsoid in Rp−r. Accordingly, a bootstrap confidence region of β with confi-
dence level 1− α can be defined as

CB,β =
{
β = (β′1, β

′
2)′ : β1 = R−1(b−R2β2), β2 ∈ CB,β2

}
.

If the model-based bootstrap procedure is preferred, then steps (1), (2) and (3) should be modi-
fied as follows:

(1) Estimate β2 from the original sample (X̃ ′i, Ỹi)
′, i = 1, 2, . . . , n, using least square procedure,

denote the estimate as β̂2.

(2) Select b bootstrap samples from (X̃ ′i, Ỹi)
′, i = 1, 2, . . . , n, denote them as (X∗

′

j,i, Yj,i)
′, j =

1, 2, . . . , b.

(3) For each bootstrap sample, regress Y ∗j,i on Xj,i, i = 1, 2, . . . , n, to obtain the bootstrap esti-
mates of β̂∗j,2.
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3 Empirical Likelihood Confidence Interval

The motivation, theoretical development and computational consideration of the empirical likeli-
hood methodology can be found in Owen (2001). Denote Zi(β2) = X̃i(Ỹi − X̃ ′iβ2). The empirical
likelihood ratio function of β2 is defined as

Rn(β2) = max

{
n∏
i=1

nwi :

n∑
i=1

wiZi(β2) = 0, wi ≥ 0,

n∑
i=1

wi = 1

}
.

Based on the theory of empirical likelihood inference, the empirical likelihood confidence inter-
val for β2 with confidence level 1− α should have the form

CEL,β2 = {β2 : −2 logRn(β2) ≤ c1−α} ,

where c1−α is the 1− α percentile of the asymptotic distribution of −2 logRn(β20) assuming that
β20 is the true value of the regression parameter β2. Therefore, the empirical likelihood confidence
interval for β with confidence level 1− α can be defined as

CEL,β = {β = (β′1, β
′
2)′ : β1 = R−11 (b−R2β2),−2 logRn(β2) ≤ c1−α}. (3.1)

The following result shows that asymptotically, the confidence region defined in (3.1) has the right
coverage rate.

Theorem 3.1. Suppose theta E‖X‖2 + Eε2 <∞, then

lim
n→∞

P (β0 ∈ CEL,β) = 1− α.

In the above discussion, we have assumed that R1, the matrix consisting of the first r columns
of R, is nonsingular. It is likely that there are other r columns of R form a nonsingular matrix, we
denote this matrix as Q1 and the corresponding parameters as γ1, the rest p− r columns of R as Q2,
and the corresponding parameters as γ2, then we will have another linear model and can construct
another empirical confidence region using exactly the same argument. This brings up an interesting
question, are these two confidence regions same?

To be specific, let T be the elementary matrix which permute the locations of the elements in β
so that the after the permutation, the first r elements forms the vector γ1, and the rest p− r elements
forms the vector γ2. Then the new linear regression model with restriction can be written as

Yi = X ′iT
′Tβ + εi, RT ′Tβ = b, (3.2)

Thus

Tβ =

γ1
γ2

 , RT ′ = [Q1, Q2].
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With these new notations, we have

Yi = X ′iT
′

Q−11 b−Q−11 Q2γ2

γ2

+ ei (3.3)

= X ′iT
′

Q−11 b

0

+X ′iT
′

−Q−11 Q2

I

 γ2 + ei.

Define

Ŷi = Yi −X ′iT ′
Q−11 b

0

 , X̂ ′i = X ′iT
′

−Q−11 Q2

I

 ,

then, (3.2) can be concisely written as a typical linear regression model

Ŷi = X̂ ′iγ2 + εi. (3.4)

Denote Wi = X̂i(Ŷi − X̂ ′iγ2). The empirical likelihood ratio function of γ2 is defined as

Rn(γ2) = max

{
n∏
i=1

nui :

n∑
i=1

uiWi(β2) = 0, ui ≥ 0,

n∑
i=1

ui = 1

}
.

and the empirical confidence interval for γ, or β with confidence level 1− α can be defined as

CEL,γ(γ) = {γ = (γ′1, γ
′
2)′ : γ1 = Q−11 (b−Q2γ2),−2 logRn(γ2) ≤ c1−α}.

The following result claims that CEL,β and CEL,γ are just the permutation of each other. More
precisely, we have

Theorem 3.2. Assume the conditions in Theorem 3.1 holds. Then

T (CEL,β) = CEL,γ ,

where T (CEL,β) denotes {Tβ : β ∈ CEL,β}.
Imposing some stronger conditions on the distribution of X and ε, we can derive an asymptotic

expansion of the coverage probability of the proposed empirical confidence region. This expansion
also makes it possible to increase the coverage accuracy by a Bartlett correction on the original
empirical confidence region.

A simple computation shows that Cov(Z̃i) = Cov(X̃i(Ỹi − X̃ ′iβ)) = σ2EXX ′ = Σ > 0.

Define Vi = Σ−1/2Z̃i, i = 1, 2, . . . , n. Then we have the following result

Theorem 3.3. Assume that E|ε|15 + E‖X‖15 < ∞, and the characteristic function ψ(t) of Xiεi
satisfies the Cramér condition sup‖t‖>b |ψ(t)| < 1, then

P [β2 ∈ CEL,β2
] = 1− α− ac1−αgp−r(c1−α)

n
+O(n−3/2),

where gp−r is the density function of χ2
p−r, and

a =
1

p− r

[
1

2
E(V ′1V1)2 − 1

3
E(V ′1V2)3

]
.
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Theorem 3.3 implies that the true coverage rate and the nominal coverage rate differs in an order
of O(n−1). Similar arguments as in the proof of Theorem 3.1 in Chen (1993), we can obtain the
following result

Corollary 3.1. Assume the conditions in Theorem 3.3 hold. Then

P (−2 logR(β20) ≤ (1 + ξ/n)χ2
1−α) = 1− α+O(n−2),

where ξ is either a or a
√
n-consistent estimator of a.

Now let β̂2n be any
√
n-consistent estimate of β2, and let Ẑi = X̃i(Ỹi − X̃iβ̂2n) and Σ̂n = S2

n,
the sample covariance matrix of Ẑi, i = 1, 2, . . . , n, then it is easy to check that

â =
1

p− r

 1

2n

n∑
i=1

(Ẑ ′iΣ̂
−1
n Ẑi)

2 − 1

3n(n− 1)

∑
i 6=j

(Ẑ ′iΣ̂
−1
n Ẑj)

3


is a
√
n-consistent estimator of a. Thus, a Bartlett confidence region of β2 can be defined as

CBCEL,β2 = {β2 : −2 logR(β2) < c1−α(1 + â/n)},

and the corresponding Bartlett confidence region of β will be

CBCEL,β = {β = (β′1, β
′
2)′ : β1 = R−11 (b−R2β2),−2 logR(β2) < c1−α(1 + â/n)}.

4 Simulation Studies
In this section, we will evaluate the performance of the proposed empirical likelihood procedure
through a simulation study. The comparison will also be made among all the procedures discussed
in the previous sections. The linear model used in the simulation is Y = β0 + β1X1 + β2X2 + ε,
with true parameter values β0 = 1, β1 = 2β2 and β2 = 1, the restriction imposed on the regression
coefficients is β1 = 2β2. The random design variable X follows standard normal distribution,
while the random error ε is chosen to have standard normal distribution and uniform distribution on
[−1, 1]. Two sample sizes, n = 100, 200, will be used in the simulation. The empirical coverage
rates based on 500 replications of each simulation will be report to see if the proposed confidence
regions maintain the nominal confidence level 0.95, and a plot will display the volumes of each
confidence regions.

If ε follows the standard normal distribution, the coverage rate of the F -Type confidence region
is exactly the nominal confidence level. Table 1 reports the empirical coverage rates from all the
procedures when ε ∼ N(0, 1). It is not surprising to notice that the empirical coverage rates from
the F -Type procedure for both sample sizes are very close to 0.95. The empirical coverage rates
from empirical likelihood and Bartlett corrected empirical likelihood procedures are less than the
nominal level when the sample size is small, but they approach to the nominal level when sample
size gets bigger. Other methods also work well.

The simulation results for ε ∼ U(−1, 1) are reported in Table 2. One may expect that the F -
Type confidence region have a poor coverage rate. To our surprise, the F -Type confidence region
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Table 1: ε ∼ N(0, 1)

n F -Type χ2-Type EL BCEL Boot(data) Boot(residual)

100 0.940 0.930 0.922 0.928 0.948 0.932

200 0.956 0.950 0.950 0.952 0.956 0.952

maintains the nominal level very well. Similar for the χ2-Type, the empirical likelihood and the
Bartlett corrected empirical likelihood procedures, but the empirical coverage rates seem bigger
than the nominal coverage rate. Both bootstrap procedures work very well.

Table 2: ε ∼ U(−1, 1)

n F -Type χ2-Type EL BCEL Boot(data) Boot(residual)

100 0.940 0.946 0.948 0.954 0.948 0.946

200 0.956 0.952 0.958 0.960 0.954 0.948

5 Proof of Main Results
For the sake of brevity, Zi(β2) will be denoted as Zi.
Proof of Theorem 3.1: A straightforward argument based on Lagrangian multiplier shows that

R(β2) =

n∏
i=1

1

1 + λ′Zi
, (5.1)

and λ is uniquely determined by
n∑
i=1

Zi
n[1 + λ′Zi]

= 0. (5.2)

In the following, we would like to argue that λ = Op(n
−1/2). For this purpose, let Z̄n =

∑n
i=1 Zi,

Z∗ = max1≤i≤n ‖Zi‖, and λ = ρθ with ρ > 0, ‖θ‖ = 1. Here ‖ · ‖ denotes the Euclidean norm of
a vector. From (5.1), we have

0 =
1

n
θ′

n∑
i=1

Zi
1 + ρθ′Zi

=
1

n

[
θ′

n∑
i=1

Zi − ρθ′
n∑
i=1

ZiZ
′
iθ
′

1 + ρθ′Zi

]
= θ′Z̄ − ρθ′Ṽnθ, (5.3)

where Ṽn = n−1
∑n
i=1 Z

′
iZi/(1 + ρθ′Zi). If we denote Vn = n−1

∑n
i=1 Z

′
iZi, then from 0 ≤

1 + ρθ′Zi ≤ 1 + ρmax1≤i≤n ‖Zi‖, we have

ρθ′Vnθ = ρθ′

(
1

n

n∑
i=1

Z ′iZi

)
θ = ρθ′

(
1

n

n∑
i=1

Z ′iZi
1 + ρθ′Zi

(1 + ρθ′Zi)

)
θ ≤ ρθ′Ṽnθ[1 + ρ max

1≤i≤n
‖Zi‖].
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By (5.3), we have ρθ′Vnθ ≤ θ′Z̄n[1 + ρ], and

ρ[θ′Vnθ − θ′Z̄n max
1≤i≤n

‖Zi‖] ≤ θ′Z̄n.

Denote η1 and ηp−r are the largest and the smallest eigenvalues of Cov(Z), and

Σ0 = E(XX ′), B =

−R−11 R2

I

 .

Note that Σ0 > 0, rank(B) = p− r, so Cov(Z) = σ2B′Σ0B > 0, therefore, η1 ≥ ηp−r > 0. Law
of large numbers implies that ηp−r + op(1) ≤ θ′Vnθ ≤ η1 + op(1). Central limit theorem implies
that
√
nZ̄n =⇒ N(0,Cov(Z)). The finiteness of E‖Z‖2 implies that max1≤i≤n ‖Zi‖ = op(n

1/2).
It follows that

ρ[θ′Vnθ + op(1)] = Op(n
−1/2)

and ρ = Op(n
−1/2). This also implies

max
1≤i≤n

|ρθ′Zi| ≤ ρ max
1≤i≤n

‖Zi‖ = Op(n
−1/2)op(n

1/2) = op(1). (5.4)

Note that

0 =
1

n

n∑
i=1

Zi
1 + λ′Zi

=
1

n

n∑
i=1

Zi

[
1− λ′Zi +

λ′ZiZ
′
iλ

1 + λ′Zi

]
(5.5)

= Z̄n − Vnλ+
1

n

n∑
i=1

(λ′Zi)
2Zi

1 + λ′Zi
.

Note that E|ε|2 <∞, E‖X‖2 <∞ implies

1

n

n∑
i=1

‖X̃i(Ỹi − X̃ ′iβ2)‖3 = op(n
1/2),

the third term is bounded by

‖λ‖2

n

n∑
i=1

‖X̃i(Ỹi − X̃ ′iβ2)‖3[1 + λ′X̃i(Ỹi − X̃ ′iβ2)]−1 = Op(n
−1)op(n

1/2)Op(1) = op(n
−1/2).

Therefore, we have
λ = V −1n Z̄n + δn, (5.6)

and δn = op(n
−1/2). By (5.4), we have the following Taylor expansion

log[1 + λ′Zi] = λ′Zi −
1

2
(λ′Zi)

2 + µi
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where, for some c > 0, P (|µi| ≤ c‖λ′Zi‖3, 1 ≤ i ≤ n)→ 1 as n→∞. From (5.6), we can write

−2 logR(β2) = −2 log

n∏
i=1

nwi = 2

n∑
i=1

log[1 + λ′Zi]

= 2nλ′Z̄n − nλ′Vnλ+ 2

n∑
i=1

µi

= 2n[V −1n Z̄n + δn]′Z̄n − n[V −1n Z̄n + δn]′Vn[V −1n Z̄n + δn] + 2

n∑
i=1

µi

= nZ̄ ′nV
−1
n Z̄n − nδ′nV −1n δn + 2

n∑
i=1

µi.

Central limit theorem and Slutsky theorem imply that nZ̄ ′nV
−1
n Z̄n =⇒ χ2

p−r in distribution, and
the fact δn = op(n

−1/2) implies that nδ′nV
−1
n δn = op(1). Also∣∣∣∣∣

n∑
i=1

µi

∣∣∣∣∣ = c

n∑
i=1

|λ′Zi|3 ≤ c‖λ‖3 ·
n∑
i=1

‖Zi‖2 · max
1≤i≤n

‖Zi‖ = Op(n
−3/2)Op(n)op(n

1/2) = op(1).

Finally, we obtain −2 logR(β2) =⇒ χ2
p−r. �

Proof of Theorem 3.2: For any β ∈ CEL,β , let γ = Tβ, we will show that γ ∈ Cn,1−α(γ).
Note that β1 = R−11 (b − R2β2), equivalently, Rβ = b, so RT ′Tβ = Qγ = b, which is

equivalent to γ1 = Q−11 (b−Q2γ2).
Let

C = T ′

−Q−11 Q2

I

 , B =

−R−11 R2

I

 .

It is easily seen that C and B are full rank, that is, rank(C) = rank(B) = p − r. Now suppose β2
satisfies −2 logR(β2) < c1−α. Then there exists a λ such that

−2 logR(β2) = −2 log

n∏
i=1

1

1 + λ′Zi
= −2 log

n∏
i=1

1

1 + (Bλ)′Xiεi
< c1−α.

and λ is a solution to the following equation
n∑
i=1

Zi
n[1 + λ′Zi]

= 0 ⇐⇒
n∑
i=1

B′Xiεi
n[1 + (Bλ)′Xiεi]

= 0.

Since C and B are full rank, so for the above λ, there exist a vector τ and a matrix G such that
Cτ = Bλ, and C = BG. For such a τ and G, we have

n∑
i=1

Wi

n[1 + τ ′Wi]
=

n∑
i=1

C ′Xiεi
n[1 + (Cτ)′Xiεi]

=

n∑
i=1

G′B′Xiεi
n[1 + (Bλ)′Xiεi]

= G′
n∑
i=1

B′Xiεi
n[1 + (Bλ)′Xiεi]

= 0



126 Bai& Song

and

−2 logR(γ2) = −2 log

n∏
i=1

1

1 + τ ′Wi
= −2 log

n∏
i=1

1

1 + (Cτ)′Xiεi

= −2 log

n∏
i=1

1

1 + (Bλ)′Xiεi
= −2 logR(β2) < c1−α.

Therefore, we have shown that γ ∈ Cn,1−α(γ) or TCn,1−α(β) ⊂ Cn,1−α(γ).
Using similar arguments, we can also show that TCn,1−α(β) ⊃ Cn,1−α(γ). This completes the

proof. �

Proof of Theorem 3.3: Note that Cov(X̃i(Ỹi − X̃ ′iβ)) = σ2EXX ′ = Σ > 0, and Vi = Σ−1/2Z̃i,
we have E(Vi) = 0 and Cov(Vi) = I . It is easy to see that

R(β2) = max

{
n∏
i=1

wiVi :
n∑
i=1

wiVi = 0, wi ≥ 0,
n∑
i=1

wi = 1

}
.

Denote Vij the j-th component of Vi. Under the moment condition in the theorem, we have the
following Taylor expansion for −2 logR(β2),

−2 logR(β2) = AjAj −AjkAjAk +

(
2

3
ᾱjkl +

2

3
Ajkl − 2ᾱjkmAlm

)
AjAkAl

+(ᾱjkqᾱlmq − 1

2
ᾱjklm)AjAkAlAm +AjlAklAjAk +Op(n

−5/2),

where

ᾱj1···jk =
1

n

n∑
i=1

E[Vij1 · · ·Vijk ], Aj1···jk =
1

n

n∑
i=1

[Vij1 · · ·Vijk − ᾱj1···jk ].

Here we use the convention that terms with repeated super indices are to be summed over. We
further denote R = R1 +R2 +R3, the j-th components of R1, R2 and R3 are defined as

R1j = Aj , R2j = −1

2
AjkA

k +
1

3
ᾱjkmAkAm,

and

R3j =
3

8
AjmAkmAk +

1

3
AjkmAkAl − 5

12
ᾱjkmAlmAkAl − 5

12
ᾱklmAjmAkAl

+
4

9
ᾱjkqᾱlmqAmAkAl − 1

4
ᾱjklmAmAkAl,

respectively. Then we can show that Rj = Op(n
−j/2), j = 1, 2, 3, and

−2 logR(β2) = −(
√
nR)′(

√
nR) +OP (n−5/2).

Applying Theorem 20.6 of Bhattacharya and Rao (1976) and Theorem 3.2, Remarks 3.3 and 3.4 of
Skovgaard (1981), and using a similar argument as in the proof of Theorem 2.1 of Chen (1993), we
can develop an Edgeworth expansion for the distribution function of

√
nR, which in turn enables us

to obtain the probability statement in Theorem 3.3. �
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