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SUMMARY

A new semi-nonparametric method for modeling data with Normal variance-mean mix-
tures (NVMM) is presented. This new method is based on the least-squares programming
routine, UNMIX. Density estimates based on random samples of size n from two, three,
and four components of NVMM are found using UNMIX. Graphical comparisons of the
UNMIX fit found by the EM Algorithm and the Bayesian approaches are done using three
real life examples. A quantitative comparison using the AIC and Chi-Square is done for
one of the most commonly used examples, the Galaxy Data. The results are promising and
the method has great potential for improvement.
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1 Introduction
Normal variance-mean mixtures, NVMM, are used to study data in a variety of applications. Envi-
ronmental applications include sedimentology, biometrics, ecology, and agriculture (Gomex, et al.,
2007; Bhattacharya, 1967; Chen, et al., 2004; Ling, et al., 2010; and Holling, 1992). In economics,
NVMM are often used in representing uncertain volatility (Alexander, 2004). These distributions
are also used in image processing through remote sensing and signal detection (Permuter, et al.,
2003; Titterington, 1985).

Estimating the NVMM involves three sets of parameters (means, variances, and weights) besides
the number of components. Determining and assessing the number of components in a mixture is
very important but it is a difficult problem; some of the recent relevant works can be found in Kasa-
hara and Shimotsu (2013). They developed a procedure to estimate a lower bound on the number
of components of a k-variate mixture. The bound is based on the rank of a matrix constructed from
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the distribution function of the observed variable. Kasahara and Shimotsu (2014) extended the EM
approach of Li et al. (2009) to test the null hypothesis of m0 components against the alternative of
m0+1 components. Belomestny and Panov (2018) provided a method for estimating the mean of the
underlying normal density and then non-parametrically recovering the density of the corresponding
mixing distribution.

A more general overview of the available literature and published results can be found in Oliveira-
Brochado and Martins (2005). They divided the published criteria into five groups depending on
their theoretical backgrounds. The five groups are criteria based on hypothesis test, information cri-
teria, classification criteria, minimum-information ratio, and other criteria. The other criteria group
covers approaches such as graphical diagnosis tools and cross-validation.

McLachlan and Peel (2000) discussed the number of components and the progress made up to
that time. Although the number of modes does not necessarily determine the number of mixture
components, it can be a good start when they are present. See Titterington et al. (1985), for a
thorough discussion of the modality and the number of components of a mixture.

The motivation for our approach is providing an alternative, easy to use, fitting tool or fitting
algorithm similar to the FMM SAS procedure, that relies on the EM (Expectation-Maximization)
algorithm. There are two main approaches for estimating the NVMM densities and each has its own
limitations. The first and most commonly used approach is the EM. In spite of all the research that
has been done in this area, there are still two issues. The first one is that when a few parameter
values are close (e.g two means are close to each other or two variances are close to each other),
the algorithm may identify a local maximum as a global maximum and the likelihood function will
converge to the wrong value. The second problem is that the initialization step is still somewhat
arbitrary. A far as we know, there is still no clear answer yet on how to initialize the values. The
second approach is the Bayesian approach which also has some limitations. The prior selection is
still somewhat arbitrary (See the Eyes example below), the predictive density is not easy to use, and
the popularity of this approach is still limited, which sometimes makes it difficult to communicate
and disseminate.

The proposed approach estimates the weights of the components assuming that the parameters of
the individual components are known. These known parameters are called the µ-grid and the σ-grid.
Therefore, if the size of the µ-grid is q and that of the σ-grid is m, the total number of unknown
parameters is qm− 1 since the total weight must be 1. More details will be shown on Section 2.

This paper focuses only on the univariate variance-mean mixtures of normals assuming that the
mean and variance are independent. The multivariate variance-mean mixtures is more involved and
should be treated separately, even with a simple dependent structure such as the one presented in
Barndorff-Nielsen, et al. (1982). The latter example shows how quickly the size of the parameter
space can grow and how fast it can become computationally difficult.

The rest of this paper is organized as follows: The next section introduces normal variance-mean
mixtures and presents a few examples and classes. Then, a new method for estimating the NVMM
density is introduced, along with a brief overview of the two existing estimation methods. In Section
4, the new method of estimating the NVMM is applied to a few simulated examples with varying
sample sizes. A comparison and analysis of the new method for estimating NVMM versus the



Variance-mean mixtures of normals 131

Bayesian estimates and the EM estimates with real life data are found in Section 5. Section 6 shows
how to estimate the standard error using the bootstrap samples. Finally, in Section 7, the conclusion
and some recommendations are provided. All programs in this study are written in R.

2 Normal Variance-Mean Mixtures
The following is a general definition of normal variance-mean mixtures.

Definition 2.1. A random variableX is said to be a normal variance-mean mixture or NVMM when
its probability density function is given by fX(x), where

fX(x) =

∫ ∞
−∞

∫ ∞
0

φ (x, µ, σ)π1(dσ)π2(dµ), (2.1)

where φ() is a normal density with mean µ ∈ R, standard deviation σ > 0, and π1 and π2 are
independent mixing measures over σ and µ respectively. Equivalently, X d

= AZ + µ, where A > 0

is a positive random variable with distribution π1, Z is the standard normal random variable, and µ
is a continuous random variable with distribution π2 defined on the real line. Furthermore, A, Z,
and µ are independent.

The following are general classes of this type of mixture.

Example 2.1. (The Z Distribution). The Z distribution has four parameters α, β, σ and µ. Its
density with respect to the Lebesgue measure is given by

fX(x) =

(
exp(x−µ)/σ

)α
σB(α, β)

(
1 +

(
exp(x−µ)/σ

))α+β ,
where x, µ ∈ R, α, β, σ > 0, and B is the Beta constant. The Z distribution appeared for the first
time in Fisher 1921 and Fisher 1935. Much later, Barndorff-Nielsen et al. (1982) showed that the
Z distributions are normal variance-mean mixtures and specified their mixing distributions. If X is
Beta with parameters α and β then log(Z/(1 − X)) is Z(α, β, 1, 0). Therefore, if X is F with
degrees of freedom f1 and f2, then log(X) is Z( 12f1,

1
2f2, 1, log(f2/f1)).

Example 2.2. (Pearson Type VII Distribution). In equation (2.1), if the scale parameter has a square
root of inverse gamma distribution with parameters α and β, and µ is a constant, that is if π1 is the
square root of a reciprocal of a gamma r.v. and π2 is degenerate at one point, say µ = µ0, then X is
a Pearson Type VII distribution.

Pearson distributions are a class of 12 curves generated by the solutions of the differential equa-
tion d ln(f(x))

dx = x+a
b+cx+dx2 , where a, b, c,and d are constants. Pearson Type VII contains all variance

mixtures of normals with possible shifts such as the Cauchy and the t distribution. See Johnson,
Kotz, and Balakrishnan(1994, pp.15-25) and Johnson, Kotz, and Balakrishnan(1995, p.396). Be-
cause of the size and the importance of this class of mixtures, we will present it in detail in the
following example.
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Example 2.3. (Scale Mixtures of Normals). This is a special case of Example 2.2 i.e the scale
parameter has a square root of inverse gamma distribution with parameters α and β, and µ is known
to be 0. In this case, the general formula for an infinite normal scale mixture is

f(x) =

∫ ∞
0

1√
2πσ

exp
(
− x2/2σ2

)
π(dσ)

=

∫ ∞
0

φ(x, 0, σ)π(dσ)

=

∫ ∞
0

1

σ
φ(x/σ, 0, 1)π(dσ), (2.2)

where φ(x) is the standard normal density and π is the mixing distribution (or the weighting distri-
bution).

There are many common examples of scale mixtures of normals. Some of them are finite, such
as the contaminated normal; others are infinite, like the t distribution and the Laplace distribution.
For more examples, see Hamdan and Nolan (2004). Yao and Taimre (2016) presented an algorithm
for estimating tail probabilities of these distributions. Their algorithm combines the importance
sampling and conditional Monto Carlo methods.

When the mean is a constant, as mentioned in Example 2.2, the scale mixture is a generalized t
distribution. The discretized (or approximated) version of (2.2) is given by

f(x) =

m∑
i=1

πiφ(x, 0, σi). (2.3)

Scale mixtures can be used to model heavy-tailed data. They can be used as good alternatives to
symmetric stable distributions which are often used in finance. A commonly used example of (2.3)
is the contaminated normal, with m = 2 and σ2 > σ1. Similarly, the discretized version of (2.1) is
denoted by f?X(x), where

f?X(x) =

q∑
a=1

m∑
b=1

πabφ (x, µa, σb). (2.4)

Also in the general case, f?X(x) is more practically useful compared to fX(x). In modeling
data with f?X(x), like in any other modeling question, a random sample of size n is available and
the goal is to estimate the parameters: µa, σb, and πab, where a = 1, . . . , q, and b = 1, . . . ,m.
That means a total of q +m + qm − 1 parameters are to be estimated (assuming that q and m are
known, which is not usually the case) and it is one less than the total number of parameters because∑q
a=1

∑m
b=1 πab = 1. Therefore and since q and m are also unknown, there are q +m + qm + 1

parameters that need to be estimated. However, in our case the µa, σb, q, and m are assumed and
only the πab need to be estimated. That means the total of unknown parameters is (qm− 1).

3 Estimating the NVMM Model using UNMIX
In Section 1, it was mentioned that there are many useful methods for estimating the parameters and
the most common one is the EM (Expectation-Maximization) algorithm. Another method used here
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is the Bayesian method, which basically treats the parameters as random variables with a certain
probability distribution called the prior distribution. The prior is updated based on the observed
sample. The new updated prior is called the posterior, and is used to find the predictive distribution.
The predictive distribution summarizes the information concerning the likely value of a new obser-
vation given the likelihood, the prior, and the data that have been observed. For more details on this
method, refer to Carlin and Louis (2009).

The EM algorithm is a maximum-likelihood based algorithm. It started with the initial work of
Larid and Dempester (1977). Their work was based on the idea that each data point is missing a
label that indicates which component it belongs to. Since then, the EM has become the subject of
research for many years because of its solid theoretical basis and optimal convergence properties (in
most cases). However, there are still unresolved computational issues. In particular, the initialization
of the parameters is still somewhat arbitrary, occasionally the maximization step might be stuck in
a local maximum. Most importantly, it does not do well when the parameters are close in value.
Obviously, all three issues are related. Also, deciding the number of components is still a difficult
problem.

The Bayesian approach has gained some momentum in recent years because of advances made
in computational power and the availability of software programs such as WinBUGS, the CRAN
packages like RBugs and Dpdensity, and many others that use the MCMC efficiently. However, the
prior selection is somewhat arbitrary (see the Eyes example in section 5), the predictive density is
not easy to use for predicting new values, and the popularity of this approach is still limited, which
sometimes makes it difficult to communicate and disseminate.

In this paper, estimating f?X(x) is based on finding a least-squares estimate of the density, as
will be shown later. The approximated density is found by discretizing the mixing measures π1 and
π2. Then, the sample is used to estimate the approximated mixture density using kernel smoothing
techniques. The first step should be treated separately because it requires building a µ-sequence and
a σ-sequence similar to that in Hamdan and Nolan (2004) and Hamdan (2006) (i.e. approximating
the infinite mixture with a finite mixture based on discretizing the corresponding mixing measures).
That is, how to make f?X(x) close to fX(x). Here, we will show a new approach for estimating
f?X(x) with f̂X(x) over specified grids of x values, µ values and σ values over the range of the data.
Then, we will use this method to fit simulated data from two, three, and four NVMM respectively.

We will compare the empirical density found by using this approach with that found using the
EM and the Bayesian approaches in two ways: graphically by eye-balling the density fits, and
quantitatively in one of the examples. The inputs of the UNMIX program (Hamdan et al., 2004),used
for estimating scale mixtures, are manipulated to be applied to the NVMM case.

The proposed way of estimating NVMM is based on the least-squares minimization method,
which gives it the advantage of accessibility (since least squares methods are well developed, well
known to most interdisciplinary researchers, and available in all statistics software). Most impor-
tantly, this method has great research potential as will be discussed later. Finally, this method can be
used to improve the performance of the EM by selecting good initial points.
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3.1 Developing UNMIX for Scale Mixtures

Given a sample of size n from the mixture, fix a grid of r1, r2, . . . , rm of potential σ values called
r-grid, as stated in Hamdan and Nolan in (2004), and a grid of x1, . . . , xk values called x-grid,
where k ≥ m (the number of knowns should be more than the number of unknowns). Then, we can
use the r-grid to approximate f(x)

f(x) =

∫ ∞
0

1

r
φ(
x

r
, 0, 1)π(r)dr '

m∑
j=1

1

rj
φ(
x

rj
, 0, 1)πj .

For each xi in the x-grid, f(xi) can be evaluated by f̂(xi) using a kernel smoother. In our case, we
use the default empirical density with the Gaussian kernel provided by the R- software package. If
yi = f̂(xi), then

yi = f̂(xi) =
m∑
j=1

1

rj
φ(
xi
rj
, 0, 1)πj + εi.

Assuming the εi’s are independent with mean 0, we can solve for πj by minimizing S(π), where
πT = (π1, . . . , πm),

S(π) =

k∑
i=1

{
wi

(
yi −

m∑
j=1

φijπj

)}2

,

φij = (1/rj)φ(xi/rj , 0, 1), and wi are preassigned weights. In our case, wi = 1 for 1 ≤ i ≤ k.
However, if the data are heavy-tailed, one can try different weights until a good fit is found (a good
strategy might be to give less weight to the points that are close to the mean of the x-grid and more
weight to those that are far from the mean of the x-grid). We initially tried to use a regression
approach to solve for π by writing the expansion of S(π) in matrix format and defining H = CTC,

where C is a k by m matrix with entries wiφij . Unfortunately, C is found to be singular although φ
is highly nonlinear, especially when m ≥ 7.

Therefore, instead of using the standard regression techniques, we considered the problem as a
quadratic programming problem with two constraints:

∑
πj = 1 and πj ≥ 0 for all j. In particular,

if we let g be the m by 1 vector defined as

g =
(
−

k∑
i=1

wiyiφi1, . . . ,−
k∑
i=1

wiyiφim

)T
,

then S(π) = 2
[
c + gTπ + (1/2)πTHπ

]
, where c = 2

∑k
i=1 w

2
i y

2
i is constant . Hence, π can

be found by minimizing
[
gTπ+ 1

2π
THπ

]
, subject to

∑m
j=1 πj = 1 and Aπ ≥ b, where A = Im

is an identity matrix of order m and bT = (0, . . . , 0) of order m. The quadratic programming
routine, QPROG, from the International Mathematics and Statistics Library, IMSL, is employed and
modified to fit the current problem. This program is called UNMIX. The program requires a grid of
x points, which is called the x-grid, an estimate of the density at each element of the x-grid, a grid
of R points called σ-grid (or r-grid), and a vector of weights with the same length as the length of
the x-grid. The density estimate is found using a Gaussian kernel smoother. The default weights,
wi = 1 are all made equal to 1, where 1 ≤ i ≤ k. The output is the vector π that minimizes S(π).
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3.2 The Sum of Squares Function in the NVMM Model

The following terms are needed for introducing the NVMM, the normal variance-mean mixtures
model. Let the x-grid be x = (x1, x2, . . . , xk)

T , where k ≥ q ·m, σ-grid be σ = (σ1, σ2, . . . , σm)T ,
and µ-grid be µ = (µ1, µ2, . . . , µq)

T . The NVMM model is defined as

yi =

q∑
a=1

m∑
b=1

φ(xi, µa, σb)πab + εi,

where φ(xi, µa, σb) now is the normal p.d.f. with mean µa and standard deviation σb, evaluated
at xi in the x-grid, and εi is an error term assumed to be independent with mean 0 and a constant
variance.

The estimated mixture at xi is

yi =

q∑
a=1

m∑
b=1

φ(xi, µa, σb)π̂ab,

where π̂ minimizes

S(π) =

k∑
i=1

(wi(yi −
q∑
a=1

m∑
b=1

φ(xi, µa, σb)πab))
2. (3.1)

It is assumed that all terms in (3.2), (3.2), and (3.1) are known except π, where

π = (π11, π12, . . . , π1m, π21, . . . , π2m, . . . , πq1, . . . , πqm)T ,

yi is the empirical estimate at xi or simply f̂(xi), and wi is the weight at xi. In this study, we use
the default wi = 1 for all i, but one can use any weighted square distance based on the presence or
absence of extremes (i.e. one can select a set of weights that minimize the effect of outliers on the
empirical density). One way of simplifying (3.1) is rewriting the two-vector array as a one-vector
array. That is, the subtracted term in (3.1) can be expressed as follows

q∑
a=1

m∑
b=1

φ(xi, µa, σb)πab =

q·m∑
j=1

φ(xi, zj)πj , (3.2)

where 0 < j ≤ q ·m and φ(xi, zj)πj is the jth term of
∑q
a=1

∑m
b=1 φ(xi, µa, σb)πab. Hence,

z = {(µ1, σ1), . . . , (µ1, σm), (µ2, σ1), . . . , (µ2, σm), . . . , (µq, σ1), . . . , (µq, σm)}.

By substituting (3.2) into (3.1),

S(π) =

k∑
i=1

(wi(yi −
q·m∑
j=1

φ(xi, zj)πj))
2. (3.3)

Therefore, equation (3.3) is now in the form that can be minimized using one of the least-square
scale mixture routines, and specifically we will use a programming routine called UNMIX. That is
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when equation (3.6) is used instead of equation (3.5). In what follows, the details of the UNIMX
scale-mixture of normals routine is shown.

In our case, the C matrix is extended to account for µ grid and can be easily seen to be


φ(x1, µ1, σ1) · · · φ(x1, µ1, σm) φ(x1, µ2, σ1) · · · φ(x1, µ2, σm) · · · φ(x1, µq, σm)

...
...

...
...

...
...

...
...

φ(xk, µ1, σ1) · · · φ(xk, µ1, σm) φ(xk, µ2, σ1) · · · φ(xk, µ2, σm) · · · φ(xk, µq, σm)


or equivalently,

C =


φ(x1, z1) φ(x1, z2) · · · φ(x1, zqm)

...
...

...
...

φ(xk, z1) φ(xk, z2) · · · φ(xk, zqm)


3.3 Identifiability Issues

In theory, since the recovered or estimated density depends on the grids chosen, the solution will
not be unique. However, the Triangular Inequality can make the estimation fairly accurate and
minimize the impact identifiable issue. To illustrate this, let the true density be denoted by f(x), the
approximated density be denoted by f∗(x), and the empirical density be denoted by f̂(x). Hamdan
and Nolan (2006) showed theoretically that one can find a σ-grid such that |f∗(x) − f(x)| < ε

for all x and ε > 0 . Now, since∣∣f∗(x)− f̂(x)∣∣ ≤ ∣∣f∗(x)− f(x)∣∣+ ∣∣f(x)− f̂(x)∣∣,
and the empirical density under certain conditions can be made very close to the true density
(i.e.|f(x)− f̂(x)| ≤ ε), the approximated density can be found with high accuracy.

Therefore, the job in UNMIX becomes modeling the approximated density, f∗(x), using the
empirical density, f̂(x). A logical question that arises is about the real gain of using this method
when modeling with it compared to, or in relative to, using the empirical estimate provided by any
software, or when comparing it with estimates that are based on kernel smoothing techniques or
any other techniques. With this method, the answer is that we get the functional form of the model.
And that is in general, why parameters are estimated, whether this method is used or the EM or any
estimation method.

To estimate the scale mixture of normals using UNMIX, three inputs are required: a pre-specified
x-grid of size k, a y-grid that has the same size as that of the x-grid, and a σ-grid of size r. The points
in the y-grid are the empirical density evaluated at each point in the x-grid values i.e. yi = f̂(xi),
where f̂ is the empirical density. The variance-mean extension of UNMIX, which will be called
NVMM, requires one additional input which is a µ-grid of size m. These inputs are all required
for the least-squares minimization routine described. The output vector, denoted by the π vector,
consists of all, r×m, weights that correspond to all possible points in the cross product of the σ-grid
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and µ-grid. Therefore, the resulting matrix of all possible combinations of σ’s, µ’s and the estimated
weights or π’s form an approximated mixture with r×m components over the selected x-grid. In the
next subsection, a description of how to select these grids is provided.

To limit the number of terms in the estimate, components with small weights are ignored and the
remaining are normalized. In most cases, the majority of the weights are less than .01. The choice of
eliminating the terms with πi ≤ .01 is subjective and based on simulation and observations. Further
implications of this limit are discussed later in Section 7.

3.4 x-Grid, σ-Grid, and µ-Grid

x-Grid In general, capturing the tails of the probability density requires having an x-grid that
extends a little beyond the range of the data. Just like the traditional modeling is a delicate balance
between capturing the details of the density in regions with high data concentration and capturing
the extreme values. A basic and natural way to form an x-grid is to construct an equally-spaced
sequence of k x-values starting at a point that is a little bit below the minimum sample value and
ending at a value that is a little bit over the maximum sample value. If we go far beyond the range of
the data, we may miss some major features of the main density. So far, based on empirical evidence,
extending the range of the x-grid by about 15% of the range of the data when we have k= 100 seems
to work well.

σ-Grid The σ-grid is selected to capture the tails of the mixture density. It can be an equally-
spaced grid starting at a small positive point, which is equal to a small fraction of the sample stan-
dard deviation, and ending at a large point, which is equal to a constant times the sample standard
deviation. For example, if S is the sample standard deviation then the σ-grid could be a set of
equally-spaced k points between .01S and 5S (assuming the case where the scale has square root of
inverse gamma, the range of possible standard deviations is almost 100% covered by this interval).
We can also select these points interactively until we get a suitable or satisfactory fit of the empirical
density.

µ-Grid This is a sequence of potential estimates of the µ values. We only use equally-spaced grids
that include the peaks of the empirical density of the sample.

4 Simulation Study

A set of simulated examples are used to evaluate the method. In each example, the mixture was
estimated using the default empirical density provided by the R software. Another estimate was
based on the approximated density and using UNMIX.
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4.1 Examples
4.1.1 Two-Component Mixture

This is a simulated example of two variance-mean normal components with parameter values µ1 =

−2, σ1 = 10 and µ2 = 5, σ2 = 15 with weights of 0.833 and 0.167, respectively.
The µ-grid in this case was 21 equally spaced points between -10 and 10. The σ-grid consists

of 11 points starting at .1 and ending at 20 i.e. { 0.10, 2.09, 4.08, 6.07, 8.06, 10.05, 12.04, 14.03,
16.02, 18.01, 20.00 }. Therefore, the initial number of terms is 231 (11× 21). The density estimate
used here is based on the 17 top-weighted components with a total weight of 0.995. The remaining
214 components contribute only to 0.005 of the total weight in the mixture density. Therefore,
ignoring these 214 terms, then using the top normalized 17 terms (i.e. divide the 17 remaining
weights by .995, so that the density is a valid one) provided an excellent fit to the true mixture.
Alternatively, we can update the µ-grid and the σ-grid to include only the terms that have significant
weights. However, 17 terms is still a large number to work with. Fortunately, retaining 11 terms
after deleting the terms that have weights of 2% or less still does a good job in fitting the density as
shown in Figure 1. Further cuts can still be made: when the terms with weights of 3% or less are
deleted, only 4 terms remain and the new density fits the data reasonably well (in terms of capturing
the overall shape). What is even more promising is that when the size of the σ-grid is increased from
11 to 15 and when the terms with weights of 3% or less are ignored, only three terms remain. The
estimated density with these three terms is really close to the exact density.

−40 −20 0 20 40

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

X

De
nsi

ty

Empirical Density
NVMunmix Density

Figure 1: Graph of f(x) = 0.833φ(x,−2, 10) + 0.167φ(x, 5, 15) and the estimated density. The fit
is based on n = 120.

Of course, fitting a two-component variance-mean mixture with 11 components is not a real gain
no matter how good the fit is. On the other hand, since the search was done with only one µ-grid and
one σ-grid, it can be improved with larger grids. In fact, the selected grid provided one of the worst
possible scenario. In most cases, only three to five terms contribute to the top 95% of the weights.
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The same pattern continued when the sample size was reduced from 120 to 60. The shape of the
density was captured reasonably well with four terms when the weights of 4% or less are deleted.

4.1.2 Three-Component Mixture

In this simulated example, a three-component variance-mean mixtures of normals is fitted with two
different samples. The first sample has 250 observations and the second has 125 observations. The
parameters of this mixture are µ1 = −2, σ1 = 10, µ2 = 20, σ2 = 20, and µ3 = 10, σ3 = 15 with
weights of 0.4, 0.2, and 0.4, respectively.

The µ-grid consists of the following 12 equally-spaced points {-2, 0 ,2, 4 , 6, 8, 10, 12, 14, 16,
18, 20} and the σ-grid consists of the following 11 equally-spaced points {0.10, 2.09, 4.08, 6.07,
8.06, 10.05, 12.04, 14.03, 16.02, 18.01, 20.00 }. The selection was merely based on programming
convenience. However, as discussed later in this paper, the selection should be done interactively by
investigating the empirical density found using kernel smoothing techniques.

The first observation made, which is not surprising, is that when all 132 terms are used, the
density fit as seen in Figure 2 is captured almost perfectly. It has the same shape as the original
density and does a great job in terms of capturing the details of the empirical density. Now, to
reduce the number of terms to few, two scenarios are tried. In the first scenario, the terms that make
up the smallest 1% of the weights are ignored, and only the seven terms that make up the top 99 % of
the weights are retained. The fit, as shown in Figure 3, is somewhat compromised around the peak
of the density. The same thing happens with the second try when 8 terms are retained with a total
weight of 0.9669317. In particular, the estimated density is shifted to the left but, as seen in Figure
3, the general shape is captured very well. The trade off from reducing the number of terms from
132 to 8 is definitely worth it. Of course that doesn’t say anything about the parameter estimates.
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Figure 2: Graph of f(x) = .4φ(x,−2, 10) + .2φ(x, 20, 20) + .4φ(x, 10, 15) and the estimated
density. The fit is based on n = 250.
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Figure 3: Graph of f(x) = .4φ(x,−2, 10) + .2φ(x, 20, 20) + .4φ(x, 10, 15) and the estimated
density without the terms with weights of 1% or less. The fit is based on n = 250.

Figure 4 shows the fitted density with 5 terms only. That is when 126 terms are ignored since
these terms have weights of 3% or less. The sample size in this case is 125.

Table 1 shows the terms of the selected mixture for the fit with 5 components (when weights
with 3% or less are ignored ). Notice that in terms of estimating the parameters, the third component
is totally missed but the fit is very good.
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Figure 4: Graph of f(x) = .4φ(x,−2, 10) + .2φ(x, 20, 20) + .4φ(x, 10, 15) and the estimated
density without the terms with weights of 3% or less. The fit is based on n = 125.
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Table 1: Three component mixture fit with five components

term µ σ π

006 -2 10.05 0.25611511

007 -2 12.04 0.31738999

127 20 10.05 0.05702863

128 20 12.04 0.08807759

130 20 16.02 0.28138868

4.1.3 Four-Component Mixture

In this simulated example, the density of a four-component normal mixture is estimated. The weights
of this mixture are .4, .25, .15, and .2; the means are -2, 8, 12, and 20; and the standard deviations
are 10, 25, 15, and 20, respectively.

The σ-grid used is a sequence of 16 equally spaced points between 0.1 and 30, and the µ-grid
is a sequence of 18 equally spaced points between -4 and 30. Therefore, the grid size used in
the estimation is 288 (16 × 18). When the terms with weights of .02 or less are ignored, only 6
terms remain. These 6 terms make up about 94% of the total weights. The density fit with the
6 normalized terms looks great in terms of capturing the overall shape. It is also worthwhile to
mention that finding this estimate is done with only a few tries of different combinations of µ-grids
and σ-grids. See Figure 5 for details.
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Figure 5: Graph of f(x) = .4φ(x,−2, 10) + .25φ(x, 8, 25) + .15φ(x, 12, 15) + .2φ(x, 20, 20) and
the estimated density without the terms with weights of 2% or less. The fit is based on n = 200.
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5 Comparing the NVMM, EM, and Bayesian Fits

In this section, the UNMIX fit of the NVMM and the fit based on the EM are compared over a grid
of equally spaced x-values. The comparison is done using three real life examples and two simulated
examples. The criteria used for comparison in the first example are the chi-square goodness of fit
and the Akaike Information Criterion (AIC) while the remaining examples of the comparison are
done graphically. The goal of the UNMIX fit of the NVMM is to fit a model containing a small
number of parameters that captures the main shape. That is, the new NVMM fit is intended to be
similar to the SAS FMM, Finite Mixture Model, procedure. The FMM procedure is built to fit the
density based on either the Bayesian approach or the EM.

5.1 Galaxy Data

Roeder (1990) and Escobar and West (1995) studied data from the Corona Borealis sky survey with
the velocities of 82 galaxies in a narrow slice of the sky. Cosmological theory suggests that the
observed velocity of each galaxy is proportional to its distance from the observer. Thus, the pres-
ence of multiple modes in the density of these velocities could indicate a clustering of the galaxies
at different distances. The computed variable v represents the measured velocity in thousands of
kilometers per second. Roeder(1990) modeled the density with a five-component normal mixture
after exploring all models with a number of components ranging from 3 to 7 and restricting the scale
parameter at 0.9025 mixture. Lunn et al. (2013) fit a Dirichlet process mixture of normals. In Figure
6, the new NVMM fit is compared with the Bayesian fit while the next table compares the SAS
experimental mixture modeling procedure, known as FMM, NVMM, and Roeder’s fit using the AIC
criteria and the Chi-square goodness of fit.

Table 2: Comparing the NVMM fit using UNMIX with EM and Roeder’s method for modeling the
Galxy data

Method AIC Pearson

Reoder’s 430.2 82.5549

EM (Using SAS FMM) 422.96 82.00

NVMM 851.72 8.374

It is very clear that the NVMM fit using UNMIX has a much better fit than the FMM and Roeder,
but the AIC is more than double now. So, a better balance between the number of components and
the fit can be reached by trying for a new combination of µ-grids and σ-grids.

5.2 Eyes Data

The data set consists of 48 measurements on the peak sensitivity wavelengths for individual mi-
crospectrophot records on the eyes of monkeys. Modeling these can also be found in Lunn et al.
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Figure 6: Comparing the estimated density of the Galaxy data using the Bayesian approach and
UNMIX without the terms with weights of 2% or less.

(2013) and Carlin and Louis (2009). The density of the data is modeled using a two-component
mixture of normals and compared to the kernel density estimate. In particular, they both use

yi ∼ φ (λTi
, τ) , Ti ∼ Categorical(p),

where i = 1, 2 and the distribution of Ti is Bernoulli(p). Further, to better identify the components
of the mixture, they both assumed that λ2 = λ1 + θ and θ > 0. However, Carlin and Louis (2009)
assumed a truncated normal prior for θ and a normal prior for λ1 while Lunn et al. (2013) assumed
a uniform prior for θ between 0 and 1000 and a uniform prior for λ1 between −1000 and +1000.
See Figure 7.

5.3 Boreal Forest Birds

Holling (1992) studied the body mass of 101 Boreal forest birds found east of the Manitoba-Ontario
border in pure or mixed conifer stands. Holling’s results suggest that there are four or more body
size clumps for the body mass distribution. Xu et al. (2010) showed that there are 2 or 3 components
for the body mass distribution. See Figure 8.
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Figure 7: Comparing the estimated density of the Eyes data using the Bayesian approach and UN-
MIX without the terms with weights of 2% or less.
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Figure 8: Comparing the estimated density of the birds of Boreal Forest data using the Bayesian
approach and UNMIX without the terms with weights of 2% or less.

5.4 Simulated Data with Two Components

In this example, 400 observations are simulated from a two-component mixture with means µ1 = 10

and µ2 = 20, standard deviations σ1 = 15 and σ2 = 6, and a mixing weight of π = 0.25.
The estimated values of (π, µ1, µ2, σ1, σ2) using the EM with 500 iterations are (0.339, 8.465,
21.723,14.914, 6.695).

On the other hand, when UNMIX with a µ-grid of (0,4, 8,12,16,20) and a σ-grid of 20 equally
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spaced points between .1 and 20 is used, after ignoring the terms with weights of 10% or less, there
are only three terms remain. The three terms are given in table 3.

Table 3: The retained terms for the simulated 2-component normal mixture

µ σ π

0 12.04 0.3388810

20 8.06 0.2603132

20 10.05 0.4008058
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Figure 9: Comparing the estimated density of .25N(20, 6) + .75N(10, 15) using the EM and the
NVMM without the terms with weights of 10% or less.

The estimated density using the UNMIX method and the fit based on the EM estimates are
compared with the empirical density in Figure 9. Overall, both fits seem to be reasonably good but
the UNMIX fit outperforms the EM near the main peak.

It is very clear that for recovering or estimating the parameters the EM performs better than the
UNMIX even when the µ-grid and σ-grid contain the true values. These methods work on different
principles: one is based on finding the best fit and the other is based on updating the parameter
estimates until convergence.

6 Finding the Standard Error
In this section, we talk about the variability in estimating the weights or the π′s. There are three
sources of variations. The first and most significant source is the sampling variability. The second
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is due to the selection of the µ-grid and the σ-grid. The third is the variability due to the density
estimation.

First, recall that the point of using the UNMIX program is to find the π′s that minimize the
squared distance between the empirical density and the approximated one over a fixed µ-grid and a
fixed σ-grid. In the case of scale mixture UNMIX, this was done only for a fixed σ-grid which was
found by approximating the true infinite mixture or density, usually unknown, by a finite mixture in
the sense of Hamdan and Nolan (2006). The good news is that there is so much literature on em-
pirical densities. The variability associated with using empirical densities is either due to sampling
variability or due to choices of the smoothing parameters (size of the window, kernel smoother, etc.).
Here, we will estimate the sampling variability using bootstrap samples, i.e. by fixing the σ-grid and
the µ-grid then bootstrapping the sample.

Example 6.1. The three-component variance-mean mixture of normals is revisited. The sample size
n =250, and the parameters of this mixture are µ1 = −2 and σ1 = 10, µ2 = 20 and σ2 = 20, and
µ3 = 10 and σ3 = 15 with weights of 0.4, 0.2, and 0.4, respectively.

In this case, the µ-grid and σ-grid are modified slightly. In particular, the µ-grid consists of the
following 6 equally spaced points {−2, 2, 6, 10, 14, 18} and the σ-grid consists of the following 11
equally spaced points between .01 and 20.00:
{0.10, 2.09, 4.08, 6.07, 8.06, 10.05, 12.04, 14.03, 16.02, 18.01, 20.00}.

Table 4: Bootstrapping the standard error of the π’s

Term µ σ π σ̂ (π)

6 -2 10.05 0.25195790 0.17532474

7 -2 12.04 0.24164040 0.18291332

9 -2 16.02 0.08757814 0.07734820

59 18 6.07 0.05082034 0.03306025

66 18 20.00 0.36800322 0.12943057

Figure 10 and the previous table show the size of the sampling variability relative to the actual
weights (or estimated π’s ). There are many possible causes of this huge sampling variability. The
main cause of this is that the weight concentration shifts quickly at nearby points in the µ-grid and
nearby points in the σ-grid. That happens because the objective function varies with the sample,
i.e. the squared distance between the empirical density and the approximated one changes slightly
each time a new bootstrap sample is selected. Of course this variability can always be controlled by
starting with a large µ-grid and a large σ-grid. Also, one factor found to be very significant in terms
of controlling this variability is including the modes of the empirical density in the µ-grid.
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Figure 10: The standard error is large near and at the selected terms

7 Conclusion

A new approach for estimating the density of finite variance-mean mixture of normals is introduced.
The main idea is based on estimating the weights of the components of the mixture over specified
grids of x-values, σ-values, and µ-values.

As shown in many simulated and real life examples, when the objective of the study is fitting the
data, UNMIX fits the empirical density and the true density very well. In fact, in all studied cases
UNMIX outperforms the fits provided by the EM, SAS-FMM procedure, and Bayesian approach.
Besides its ease of use, initially, there is no need to worry about the number of components. One
can start with the number of components as large as possible and then can reduce that number
significantly by accelerating the terms that have small weights.

A good modeling strategy is to start with the largest possible µ-grid and σ-grid and reduce them
systematically and interactively until a satisfactory fit with a reasonable number of components is
found. Based on the examples we have done, the best working strategy seems to be making the
x-grid larger than the µ-grid, equally spaced and covering the range of the data. If the empirical
density is multimodal, including points that are close to these modes in the µ-grid can speed up the
search for a grid that provides good fit. Usually, the interactive search takes at most 4 or 5 tries.

The only drawback to this method of fitting mixtures is that the solution is not identifiable and not
unique. Changing the grid will change the estimated parameter values. Also, sometimes reducing
the number of components by eliminating the terms that make up the lowest 1 or 2 percent of
the weights doesn’t reduce the number of terms significantly, which might cause some over-fitting
problems.

Our future plans are to study this method with more examples and find out the most effective
way of selecting the grids as well as most effective way of weighting the sample. We plan to explore
how one can work with the EM and other existing techniques to improve their performance close
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under the conditions that don’t perform well. For example, when the parameter values are close.
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