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SUMMARY

Here we introduce a new class of skew normal distribution as a generalization of the ex-
tended skew curved normal distribution of Kumar and Anusree (J. Statist. Res., 2017) and
investigate some of its important statistical properties. The location-scale extension of the
proposed class of distribution is also defined and discussed the estimation of its parameters
by method of maximum likelihood. Further, a real life data set is considered for illustrat-
ing the usefulness of the model and a brief simulation study is attempted for assessing the
performance of the estimators.
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1 Introduction
The literature related to skew-normal distributions has grown rapidly in recent years but at the

moment few applications concern the description of natural phenomena with this type of probability
models, as well as the interpretation of their parameters. The family of skew-normal distributions
represents an extension of the family of normal distribution to which a parameter (λ) has been
inserted to regulate the skewness. The skew normal distribution was first introduced by Azzalini
(1985) through the following probability density function (p.d.f):

g(x;λ) = 2φ(x)Φ(λx). (1.1)

Here φ(·) and Φ(·) be the p.d.f and cumulative distribution function (c.d.f) of a standard normal
variate and λ ∈ R = (−∞,∞) and x ∈ R = (−∞,∞). A distribution with p.d.f. (1.1) hereafter
we denoted as SND(λ). The SND(λ) has been studied by several authors such as Azzalini (1986),
Henze (1986), Azzalini and Dalla Valle (1996), Branco and Dey (2001), Kumar and Anusree (2011),
Kumar and Anusree (2014a), Kumar and Anusree (2014b) and Kumar and Anila (2018).

Arellano-Valle et al. (2004) introduced a skew-curved normal distribution as follows:

g1(x;λ) = 2φ(x)Φ

(
λx√

1 + λ2x2

)
. (1.2)
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in which x ∈ R, λ ∈ R. A distribution with pdf (1.2) we denoted as SCND(λ).
The SCND(λ) of Arellano-Valle et al. (2004) is log concave. Therefore it is not suitable for

plurimodal data. To overcome this drawback, Kumar and Anusree (2017) considered an extended
version of SCND(λ) through the following p.d.f,

g2(x;λ, α) =
2

α+ 2
φ(x)

[
1 + αΦ

(
λx√

1 + λ2x2

)]
, (1.3)

in which x ∈ R, λ ∈ R and α ≥ −1. The distribution given in (1.3) they termed as “extended
skew curved normal distribution (ESCND(λ, α))”. Through the present work we propose a mod-
ification to the ESCND(λ, α) and named it as “Asymmetric curved normal distribution(ACND)”.
We investigate several important statistical properties of the distribution in Section 2. In section 3
the characteristic function and the expression for the moments are presented. In Section 4 certain
reliability measures such as reliability function, mean residual life function are derived and the con-
dition for unimodal and plurimodal situations are obtained. In Section 5 a location scale extension of
the ACND is presented and obtained its characteristic function, reliability measures etc. In section
6 maximum likelihood estimation of the parameters of ACND is discussed.The procedure for the
generalized likelihood ratio test (GLRT) is discussed in Section 7 and a real life data applications
are presented in Section 8. Further a brief simulation study is presented in Section 9.

2 Definition and Properties
Here first we present the definition of the ACND and derive some of its important distributional
properties.

Definition 2.1. A random variable X is said to have asymmetric curved normal distribution if its
p.d.f is of the following form, in which x ∈ R, λ ∈ R, β ∈ R and α ≥ −1.

f(x;λ, α, β) =
φ(x)

α+ 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
λx√

1 + λ2x2

)]
, (2.1)

where φ(.) and Φ(.) are the p.d.f and c.d.f of a standard normal variate. A distribution with p.d.f
(2.1) hereafter we denoted as ACND(λ, α, β).

For some particular choices ofα, λ and β, the p.d.f. f(x;λ, α, β) given in (2.1) ofACND(λ, α, β)

is plotted as given in Figure 1.

Result 2.1. If X has ACND(λ, α, β), then Y1 = −X has ACND(−λ, α, β)

Proof. The p.d.f f1(y) of Y1 is the following, for y ∈ R, λ ∈ R, β ∈ R and α ≥ −1.

f1(y) = f(−y;λ, α, β)
∣∣∣dx
dy

∣∣∣
=
φ(−y)

α+ 2
φ(−y)

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
λ(−y)√
1 + λ2y2

)]
= f(y;−λ, α, β)
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Figure 1: Probability plots of ACND(λ, α, β) for fixed values of α, λ and various values of β

Result 2.2. If X has ACND(λ, α, β) then Y2 = |X| has the p.d.f (2.2), in which

∆(y) = Φ

(
β
√

1 + λ2 +
λy√

1 + λ2y2

)
+ Φ

(
β
√

1 + λ2 +
−λy√

1 + λ2y2

)
.

Proof. The p.d.f. f2(y) of Y2 = |X| is the following, for y > 0.

f2(y) = f(y;λ, α, β)
∣∣∣dx
dy

∣∣∣+ f(−y;λ, α, β)
∣∣∣dx
dy

∣∣∣
= f(y;λ, α, β) + f(y;−λ, α, β)

=
φ(y)

α+ 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
λy√

1 + λ2y2

)]
+

φ(y)

α+ 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
−λy√

1 + λ2y2

)]
=

φ(y)

α+ 2

[
4 + α[Φ(β)]−1

{
Φ
(
β
√

1 + λ2 +
λy√

1 + λ2y2

)
+ Φ

(
β
√

1 + λ2 +
−λy√

1 + λ2y2

)}]
=

φ(y)

α+ 2

[
4 + α[Φ(β)]−1∆(y)

]
(2.2)

Result 2.3. If X has ACND(λ, α, β), then Y3 = X2 has pdf (2.3), in which ∆(y) is as defined in
Result 2.2.
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Proof. For y > 0, the p.d.f of g3(y) of Y3 is

f3(y) = f(
√
y;λ, α, β)

∣∣dx
dy

∣∣+ f(−√y;λ, α, β)
∣∣dx
dy

∣∣
=
φ(
√
y)

α+ 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
λ
√
y√

1 + λ2y

)]
1

2
√
y

+
φ(−√y)

α+ 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
−λ√y√
1 + λ2y

)]
1

2
√
y

=
φ(
√
y)

(α+ 2)2
√
y

[
4 + α[Φ(β)]−1∆(

√
y)
]

(2.3)

Result 2.4. The c.d.f of ACND(λ, α, β) with p.d.f (2.1) is the following, for x ∈ R.

F (x) =
Φ(x)

α+ 2

[
2 + α

[Φ(β)]−1

2

]
− α[Φ(β)]−1

α+ 2
ξβ

(
x,

λt√
1 + λ2t2

)
, (2.4)

where

ξβ(x, λ) =

∫ ∞
x

∫ β
√

1+λ2+ λt√
1+λ2t2

0

φ (t)φ (u) dudt

can be easily computed using the mathematical softwares such as MATHCAD, MATHEMATICA,
etc.

Proof.

F (x) =

∫ x

−∞
f(t;λ, α, β)dt

=
2

α+ 2
Φ(x) +

α[Φ(β)]−1

α+ 2

∫ x

−∞
φ(t)Φ

(
β
√

1 + λ2 +
λt√

1 + λ2t2

)
dt

=
2Φ(x)

α+ 2
+
α[Φ(β)]−1

α+ 2

[
1

2
Φ(x)− ξβ

(
x,

λt√
1 + λ2t2

)]
=

Φ(x)

α+ 2

[
2 +

α[Φ(β)]−1

2

]
− α[Φ(β)]−1

α+ 2
ξβ

(
x,

λt√
1 + λ2t2

)

3 Characteristic Function and Moments
Result 3.1. The characteristic function ψX(t) of ACND(λ, α, β) with p.d.f (2.1) is the following,
for any t ∈ R and i =

√
−1.

ψX(t) =
e
−t2
2

α+ 2

{
2 + α[Φ(β)]−1E

[
Φ

(
β
√

1 + λ2 +
λ(u+ it)√

1 + λ2(u+ it)2

)]}
, (3.1)



Asymmetric curved normal distribution 177

Proof. Let X follows ACND(λ, α, β) with p.d.f (2.1). Then by the definition of characteristic func-
tion we have the following, for any t ∈ R and i =

√
−1.

ψX(t) = E(eitX)

=
2

α+ 2

∫ ∞
−∞

eitxφ(x)dx+
α[Φ(β)]−1

α+ 2

∫ ∞
−∞

eitxφ(x)Φ

(
β
√

1 + λ2 +
λx√

1 + λ2x2

)
dx

=
e
−t2
2

α+ 2

{
2 + α[Φ(β)]−1

∫ ∞
−∞

1√
2π
e
−(x−it)2

2 Φ(β
√

1 + λ2 +
λx√

1 + λ2x2
)dx

}
(3.2)

On substituting x− it = u, in (3.2) we obtain

ψX(t) =
e−t

2/2

α+ 2

{
2 + α[Φ(β)]−1E

[
Φ

(
β
√

1 + λ2 +
λ(u+ it)√

1 + λ2(u+ it)2

)]}
, (3.3)

which implies (3.1).

The expression for even moments and odd moments ofACND(λ, α, β) is given in the following
results.

Result 3.2. If X follows ACND(λ, α, β) then for any k = 1, 2, . . .

E(X2k) =
2k+ 1

2

(α+ 2)
√

2π
Γ(k +

1

2
) +

α[Φ(β)]−1

2(α+ 2)
Ak(β, λ), (3.4)

in which

Ak =

∫ ∞
0

uk−
1
2φ(u)Φ

(
β
√

1 + λ2 +
λ
√
u√

1 + λ2u

)
du,

for λ ∈ R, β ∈ R which can be easily evaluated by using the softwares such as MATHCAD,
MATHEMATICA, etc.

Proof. By the definition of raw moments

E(X2k) =

∫ ∞
−∞

x2kf(x;λ, α, β)dx. (3.5)

On substituting x2 = u in (3.5) to obtain,

E(X2k) =

∫ ∞
0

ukφ(
√
u)

1√
u
du+

α[Φ(β)]−1

2(α+ 2)

∫ ∞
0

ukφ(
√
u)Φ

(
β
√

1 + λ2 +
λ
√
u√

(1 + λ2u)

) 1√
u
du

=
1

(α+ 2)

∫ ∞
0

[
uk−

1
2 f(
√
u)du+

α[Φ(β)]−1

2
uk−

1
2φ(
√
u)Φ

(
β
√

1 + λ2 +
λ
√
u√

1 + λ2u

)]
du,

which leads to (3.4).
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Result 3.3. If X follows ACND(λ, α, β) then for any k=0,1,2,...

E(X2k+1) =
2k+1

(α+ 2)
√

2π
Γ(k + 1) +

α[Φ(β)]−1

2(α+ 2)
Bk(β, λ) (3.6)

in which

Bk =

∫ ∞
0

ukφ(u)Φ

(
β
√

1 + λ2 +
λ
√
u√

1 + λ2u

)
du,

for λ ∈ R, β ∈ R, which can be easily evaluated by using the softwares such as MATHCAD,
MATHEMATICA, etc.

Proof. By the definition of raw moments

E(X2k+1) =

∫ ∞
−∞

x2k+1f(x;α, β, λ)dx. (3.7)

On substituting x2 = u in (3.5) we get,

E(X2k+1) =

∫ ∞
0

uk+ 1
2φ(
√
u)

1√
u

[
1 +

α[Φ(β)]−1

α+ 2
Φ
(
β
√

1 + λ2 +
λ
√
u√

(1 + λ2u)

)]
du

=
1

(α+ 2)

[∫ ∞
0

ukf(
√
u)du+

α[Φ(β)]−1

2(α+ 2)
ukφ(

√
u)Φ

(
β
√

1 + λ2 +
λ
√
u√

1 + λ2u

)]
du,

which implies (3.6).

4 Reliability Measures and Mode
In this section we obtain some properties of ACND(λ, α, β) with p.d.f. (2.1) useful in reliability
studies. Let X follows ACND(λ, α, β) with p.d.f (2.1). Now, from the definition of reliability
function R(t), failure rate r(t) and mean residual life function µ(t) of X , we obtain the following
results.

Result 4.1. The reliability functionR(t) ofX is the following, in which ξβ(t, λx√
1+λ2x2

) is as defined
in Result 2.4.

R (t) =
[1− Φ(t)]

α+ 2

{
2 +

α[Φ(β)]−1

2

}
+
α[Φ(β)]−1

α+ 2
ξβ

(
t,

λx√
1 + λ2x2

)
Result 4.2. The failure rate r(t) of X is given by

r (t) =
φ(t)[2 + α[Φ(β)]−1Φ(β

√
1 + λ2 + λx√

1+λ2x2
)]

(1− Φ(t))[2 + α[Φ(β)]−1

2 ] + α[Φ(β)]−1ξβ(t, λx√
1+λ2x2

)
.

Result 4.3. The mean residual life function of ACND(λ, α, β) is

M (t) =
2φ(t)

(α+ 2)R(t)
+

α[Φ(β)]−1

(α+ 2)R(t)

[
Φ
(
β
√

1 + λ2 +
λt√

1 + λ2t2

)
φ(t) + ξ∗β(t;λ)

]
− t, (4.1)
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where

ξ∗β(t;λ) =

∫ ∞
t

φ(x)

[
d

dx

(∫ β
√

1+λ2+ λx√
1+λ2x2

0

φ(u)du

)]
dx

Proof. By definition, the mean residual life function (MRLF) of X is given by

M(t) = E(X − t |X > t) = E(X |X > t)− t, (4.2)

where

E(X |X > t) =
2

R(t)(α+ 2)

∫ ∞
t

xφ(x)dx+
α[Φ(β)]−1

R(t)

∫ ∞
t

xφ(x)Φ

(
β
√

1 + λ2 +
λx√

1 + λ2x2

)
dx

=
2

(α+ 2)R(t)

∫ ∞
t

−φ
′
(x)dx+

α[Φ(β)]−1

(α+ 2)R(t)

∫ ∞
t

−φ
′
(x)Φ

(
β
√

1 + λ2 +
λx√

1 + λ2x2

)
dx

=
2

(α+ 2)R(t)
φ(t) +

α[Φ(β)]−1

(α+ 2)R(t)

(
−Φ(λx+ β

√
1 + λ2)φ(x)

)∞
t

− α[Φ(β)]−1

R(t)(α+ 2)

∞∫
t

−φ(x)

[
d

dx

(∫ β
√

1+λ2+ λx√
1+λ2x2

−∞
φ(u)du

)]
dx (4.3)

On solving (4.3) and substituting in (4.2), we get (4.1). The functions R(t), r(t) and M(t) are
equivalent in the sense that if one of them is given the other two can be uniquely determined.

Result 4.4. Case 1: For x > 0, the p.d.f of ACND(λ, α, β) is log concave

(i) if λ < 0, provided for all α > 0 and β > 0 and

(ii) if λ > 0, provided
∣∣∣ 3λ5x3

(1+λ2x2)
5
2

∣∣∣ < ∣∣∣ 3λ3x

(1+λ2x2)
3
2

∣∣∣
Case 2: For x < 0, the p.d.f of ACND(λ, α, β) is log concave

(i) if λ > 0, provided for all α > 0 and β > 0 and

(i) if λ < 0, provided
∣∣∣ 3λ5x3

(1+λ2x2)
5
2

∣∣∣ > ∣∣∣ 3λ3x

(1+λ2x2)
3
2

∣∣∣.
To establish log[f(x;λ, α, β)] is a concave function of x, it is enough to show that its second deriva-
tive is negative for all x. Thus,

d

dx
log[f(x;λ, α, β)] = −x+

α[F (β)]−1f(h)h
′

2 + α[F (β)]−1F (h)
and

d2

dx2
log[f(x;λ, α, β)] = −1−B1 −B2 +B3

in which

B1 =
α[F (β)]−1h

′2
f(h)h

2 + α[F (β)]−1F (h)
, B2 =

α2[F (β)]−2(f(h))2h
′2

[2 + α[F (β)]−1F (h)]2
, B3 =

α[F (β)]−1f(h)h
′′

2 + α[F (β)]−1F (h)
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where

h =
λ1x√

1 + λ2x2
+ β

√
1 + λ2

1, h
′

=
λ1√

1 + λ2x2
− λ1λ2x

2

(1 + λ2x2)
3
2

, h
′′

=
3λ5x3

(1 + λ2x2)
5
2

− 3λ3x

(1 + λ2x2) 3
2

Note that B1 > 0 for α > 0 and h > 0. And h > 0 for all values of λ, β > 0. Consequently B2 > 0

for all values of λ, α, β > 0. Also B3 < 0 for either α < 0 and h
′′
> 0 or α > 0 and h

′′
< 0.

Hence (2.1) is log concave in these situations.

Result 4.5. ACND(λ, α, β) density is strongly unimodal under the following two cases.
Case 1: For x > 0,

(i) if λ < 0, provided for all α > 0 and β > 0 and

(ii) if λ > 0, provided | 3λ5x3

(1+λ2x2)
5
2
| < | 3λ3x

(1+λ2x2)
3
2
|

Case 2: For x < 0,

(i) if λ > 0, provided for all α > 0 and β > 0 and

(i) if λ < 0, provided | 3λ5x3

(1+λ2x2)
5
2
| < | 3λ3x

(1+λ2x2)
3
2
|.

Result 4.6. ACND(λ, α, β) density is plurimodal under the following two cases.
Case 1: For x > 0,

(i) if λ < 0, provided for all α < 0 and β > 0 and

(ii) if λ > 0, provided | 3λ5x3

(1+λ2x2)
5
2
| > | 3λ3x

(1+λ2x2)
3
2
|

Case 2: For x < 0,

(i) if λ > 0, provided for all α < 0 and β > 0 and

(i) if λ < 0, provided | 3λ5x3

(1+λ2x2)
5
2
| > | 3λλ2x

(1+λ2x2)
3
2
|.

5 Location Scale Extension
In this section we discuss an extended form of ACND(λ, α, β) by introducing the location parameter
µ and scale parameter σ.

Definition 5.1. Let X ∼ ACND(λ, α, β) with p.d.f given in (2.1). Then Y = µ + σX is said to
have an extended ACND with the following p.d.f.

f∗(y;µ, σ, λ, α, β) =
φ
(
y−µ
σ

)
σ(α+ 2)

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 +
λ(y − µ)√

σ2 + λ2(y − µ)2

)]
, (5.1)

in which y ∈ R, µ ∈ R, λ ∈ R, β ∈ R, σ > 0, λ ≥ 0 and α ≥ −1. A distribution with p.d.f (5.1) is
denoted as EACND(µ, σ;λ, α, β). Clearly when
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(i) β = 0 and λ = 0 EACND(µ, σ;λ, α, β) reduces to the p.d.f of normal distribution.

Now, we obtain the following results of EACND(µ, σ;λ, α, β), in a similar way as we defined in
section 2, 3 and 4.

Result 5.1. The c.d.f F ∗(y) of EACND(µ, σ;λ, α, β) with p.d.f (5.1) is the following, for y ∈ R.

F ∗(y) =

[
2 +

αΦ[(β)]−1

2

]
Φ(y−µσ )

σ(α+ 2)
− α[Φ(β)]−1

σ(α+ 2)
ξ∗β

(
y,

λ(t− µ)√
σ2 + λ2(t− µ)2

)

where ξ∗β

(
y, λ(t−µ)√

σ2+λ2(t−µ)2

)
is as defined in Result 2.4.

Result 5.2. The characteristic function of EACND(µ, σ;λ, α, β) is given by

ψ∗Y (t) =
eitµ−

t2σ2

2

α+ 2

{
2 + α[Φ(β)]−1E

[
Φ

(
β
√

1 + λ2 +
λ(z + σ2it)√

σ2 + λ2(z + σ2it)2

)]}
.

Result 5.3. The reliability function R∗(t) of Y is the following, in which ξ∗β(t, λ(y−µ)√
σ2+λ2(y−µ)2

) is as

defined in Result 2.4.

R∗(t) =
1

σ(α+ 2)

[
1− F (

t− µ
σ

)

]{
2 +

α

2
[F (β)]−1

}
+
α[F (β)]−1

σ(α+ 2)

ξ∗β

(
t,

λ(y − µ)√
σ2 + λ2(y − µ)2

)

Result 5.4. The failure rate r∗(t) of Y is given by

r∗(t) =

f( t−µσ )

[
2 + α[F (β)]−1F

(
β
√

1 + λ2 + λ1(t−µ)√
σ2+λ2(y−µ)2

)]
1

σ(α+2)

[
1− F ( t−µσ )

] {
2 + α

2 [F (β)]−1
}

+ α[F (β)]−1

σ(α+2) ξ∗β

(
t, λ(y−µ)√

σ2+λ2(y−µ)2

)

6 Maximum Likelihood Estimation

The log likelihood function, ln L of the random sample of size n from a population following
EMACND(µ, σ;λ, α, β) is the following,

lnL = n log

(
1√
2π

)
− n log σ − n log(α+ 2)− 1

2

n∑
i=1

(yi − µ)2

σ2

+

n∑
i=1

log

(
2 + α [Φ(β)]−1Φ

(
β
√

1 + λ2 +
λ(yi − µ)√

σ2 + λ2(yi − µ)2

))
(6.1)
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On differentiating (6.1) with respect to parameters µ, σ, β, λ and α and then equating to zero, we
obtain the following normal equations.

n∑
i=1

(yi − µ)

σ2
−

n∑
i=1

α[Φ(β)]−1φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)(
λ√

σ2+λ2(yi−µ)2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)

+

n∑
i=1

α[Φ(β)]−1φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)(
λ3(yi−µ)2

[σ2+λ2(yi−µ)2]
3
2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

) = 0, (6.2)

n

σ
−

n∑
i=1

(yi − µ)2

σ3

−
n∑
i=1

αλΦ[(β)]−1φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)(
(yi−µ)σ

[σ2+λ2(yi−µ)2]
3
2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

) = 0, (6.3)

n∑
i=1

α[Φ(β)]−1φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)[
yi−µ√

σ2+λ2(yi−µ)2
+ βλ√

1+λ2

]
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

) = 0, (6.4)

n∑
i=1

α[Φ(β)]−1φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)[
λ(yi−µ)3

[σ2+λ2(yi−µ)2]
3
2

]
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)
(

βλ√
1 + λ2

− λ2(yi − µ)3

(λ2(yi − µ)2 + σ2)
3
2

+
yi − µ√

λ2(yi − µ)2 + σ2

)
= 0, (6.5)

and

n∑
i=1

[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(yi−µ)√
σ2+λ2(yi−µ)2

) = 0. (6.6)

On solving the equations (6.2) to (6.6), we get the maximum likelihood estimate of the parameters
of EACND(µ, σ;λ, α, β).
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7 Generalized Likelihood Ratio Test

In this section we discuss a test procedure for testing the parameter β of EACND. For testing the
null hypothesis H0 : β = 0 against the alternative hypothesis H1 : β 6= 0 by using the generalized
likelihood ratio test, the test statistic is

−2lnλ(x) = 2[lnL(Θ̂;x)− lnL(Θ̂∗;x)], (7.1)

where Θ̂ is the maximum likelihood estimator of Θ = (µ, σ, λ, α, β) with no restriction, and Θ̂∗

is the maximum likelihood estimator of Θ when β = 0. The test statistic given is asymptotically
distributed as χ2 with 1 degrees of freedom.

8 Applications

In this section we consider two real life data application of EACND. The first data concerning the
heights (in centimeters) of 100 Australian athletes, given in Cook and Weisberg (1994). The second
data represent the lean body mass of Australian athletes. The data given in Cook and Weisberg
(1994). We obtained the maximum likelihood estimate (MLE) of the parameters by using these
data sets with the help of the MATHCAD software. The numerical results obtained are presented in
Table 1, which includes the estimated values of the parameters and the corresponding Kolmogorov
Smirnov Statistics (KSS) values of models ESCND(µ, σ;λ, α) and EACND(µ, σ;λ, α, β). Also its
AIC,BIC and AICc values are obtained and included in Table 1.

Table 1: Estimated values of the parameters for the model: ESCND(µ, σ;λ, α) and EACND(µ, σ;
λ, α, β) with respective values of KSS, AIC, BIC and AICc in case of Data sets 1 and 2.

Data method µ σ λ β α KSS P-value AIC BIC AICc

1 ESCND 172.01 3.72 1.84 - 4.12 0.6 < .0001 830.96 841.38 831.38

EACND 174.59 8.23 0.81 10 2 0.09 0.37 714.39 727.42 715.03

2 ESCND 54.21 4.41 12.94 - 0.45 0.28 < .0001 685.74 696.16 686.16

EACND 54.90 6.92 10 8.4 0.78 0.11 0.18 679.73 692.76 680.37

It is clear from Table 1 that the EACND(µ, σ;λ, α, β) is a more appropriate model to both the
data sets compared to the existing model ESCND(µ, σ;λ, α). Also, we have plotted the histogram
of Data sets 1 and 2 along with the fitted probability plots corresponding to the EACND and
ESCND in Figures 2 and 3. From the figures it can be seen that the EACND yields a better fit
compared to the ESCND in case of both the Data sets 1 and 2. Thus, the model discussed in this
paper provides more flexibility in modeling. Also we conduct a generalized likelihood ratio test for
illustrating the suitability of the model EACND, which is described as follows.
Let us consider the problem of testing the hypothesis H0 : β = 0 against H1 : β 6= 0 in the case
of Data set 1. The computed values of the MLEs and likelihood of the distributions ESCND and
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Figure 2: Histogram of Data set 1 and fitted distributions

EACND are as follows.

µ̂ = 172.005, σ̂ = 3.723, λ̂ = 1.839, α̂ = 4.118,

L(Θ̂∗;x) = 1.98091× 10−179 and

µ̂ = 174.59, σ̂ = 8.23, λ̂ = 0.809, β̂ = 10, α̂ = 2,

L(Θ̂;x) = 1.10608× 10−153. The calculated value of likelihood ratio (LR) test statistic is 118.569.
Since the critical value for the test with significance level 0.05 at one degrees of freedom is 3.84, the
null hypothesis is rejected.

Similarly we consider the problem of testing H0 : β = 0 against H1 : β 6= 0 using the Data
set 2. The MLEs and values of the likelihood of the distributions ESCND and EACND are as
follows.

µ̂ = 54.209, σ̂ = 4.406, λ̂ = 12.937, α̂ = 0.451,

L(Θ̂∗;x) = 6.78635× 10−148 and

µ̂ = 54.895, σ̂ = 6.922, λ̂ = 10, β̂ = 8.4, α̂ = 0.78,

L(Θ̂;x) = 3.70745× 10−146. The calculated value of likelihood ratio (LR) test statistic is 8.0012.
Since the critical value for the test with significance level 0.05 at one degrees of freedom is 3.84, the
null hypothesis is rejected.

9 Simulation Study
In order to assess the performance of the maximum likelihood estimators of the parameters of the
EACND(µ, σ;λ, α, β), we have conducted a brief simulation study by generating observations with
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Figure 3: Histogram of Data set 2 and fitted distributions

the help of MATHEMATICA for the following set of parameters µ = 2, σ = 0.5, λ = 0.8, β = 6

and α = 0.3. We have considered 200 bootstrap samples of sizes 10, 30, 50 and 70 from the EACND
for comparing the performances of the maximum likelihood estimators. The likelihood estimates of
the parameters, the average bias estimates and average MSEs over 200 replications are calculated
and presented in Table 2.

Table 2: Estimate of the parameters and corresponding bias and mean square error (MSE)

Sample size Statistics µ σ λ β α

10 estimate 2.146392 0.9304701 0.9 6.4 6 0.69

bias 0.1463921 0.4304701 0.1 0.4 0.39

MSE 0.02143064 0.1853045 0.01 0.1 0.1521

30 estimate 1.989697 0.4912964 0.89 6.2 0.6

bias -0.01030252 -0.008703591 0.09 0.2 0.3

MSE 0.0001061419 7.57525E-05 0.0081 0.04 0.09

50 estimate 2.004876 0.4924149 0.8 6 0.5

bias 0.004876226 -0.007585067 -0.01 -0.1 0.2

MSE 2.377758E-05 5.753324E-05 1E-04 0.01 0.04

70 estimate 2.003085 0.4968208 0.8 6 0.49

bias 0.003085262 -0.003179247 6.065148E-13 -1.311755E-09 0.19

MSE 9.518841E-06 1.010761E-05 3.678602E-25 1.720702E-18 0.0361



186 Kumar & Anila

From Table 2 it can be observed that both the bias and MSE are in decreasing order as sample
size increases.
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