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SUMMARY

The estimated average treatment effect in observational studies is biased if the assump-
tions of ignorability and overlap are not satisfied. To deal with this potential problem when
propensity score weights are used in the estimation of the treatment effects, in this paper
we propose a bootstrap bias correction estimator for the average treatment effect (ATE) ob-
tained with the inverse propensity score (BBC-IPS) estimator. We show in simulations that
the BBC-IPC performs well when we have misspecifications of the propensity score (PS)
due to: omitted variables (ignorability property may not be satisfied), overlap (imbalances
in distribution between treatment and control groups) and confounding effects between ob-
servables and unobservables (endogeneity). Further refinements in bias reductions of the
ATE estimates in smaller samples are attained by iterating the BBC-IPS estimator.
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Bootstrap
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1 Introduction
Observational studies and the associated methods of treatment effects are used more often to measure
differences between groups of individuals. In these studies, when confounding between what is
called the treatment effect and the observables from the data is present, the methods employed are
biased.

In the treatment literature a few popular methods are used to deal with confounding: matching,
covariate/regression adjustment, and stratification, see Hennekens and Buring (1987). These meth-
ods while popular can be subject of misspecification. In particular the matching method may fail
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when relevant matching covariates are not available and in this case the presence of unmeasured con-
founding (unobserved heterogeneity) can bias the results. The regression adjustment based methods
on the other hand (linear, logistic for example) depend on correct specification of the model relating
the covariates to the outcome and in case the distributions of the covariates in the treatment and
control groups are different corrections are hard to implement. The stratification method can also
fail if the strata in the two groups does not contain information about subjects from either of the two
groups. These cases of non-informative strata can happen in models with a large number of strata
for example, models with a large numbers of covariates.

One important statistical tool that can be used as a basis for matching, stratification, regression
adjustment and data reduction is the propensity score (PS). The advantage of using the PS method
for matching and stratification rely on the fact that it can control for covariates and in this case, both
matching and stratification can be done on a single scalar variable. The use of PS in observational
studies therefore became popular in the estimation of the average treatment effects (ATE) and was
accepted as a tool to adjust for confounding (reduce the bias of the estimated ATE) when it was
present, see Rosenbaum (1995), Joffe and Rosenbaum (1999) and Lunceford and Davidian (2004).
The literature that looks at the misspecification of the propensity score is thin, while the applications
are skyrocketing. There are two strains in the literature, one focusing on the testing side and the
other one on assessing the issues of misspecification. In particular the paper of Shaikh et al. (2009)
proposed a PS score specification test build on some restrictions between the estimated densities
of the treatment and comparison groups. Lee (2007) proposed a regression based method to detect
a misspecified propensity score in the case when the propensity score model is under-specified as
well as in the case when a relevant covariate is inadvertently excluded. While Lee (2013) proposed
a balancing test for the PS score and shows that a nonparametric version of the balancing test is
working better, he also shows that balancing tests are of little utility if the conditional independence
assumption underlying matching estimators is not fulfilled. On assessing the misspecification issue,
Millimet and Tchernis (2009) suggest that overspecifiyng the propensity score model can be bene-
ficial. Using a similar argument Rubin (2009) claims that not controlling for an observed covariate
is bad practical advice and argues that even if one were to condition on more covariates the result
would be inefficient, but not biased. In another note Clarke et al. (2015) and Clarke et al. (2016)
show that while the standard practice when estimating a treatment effect is to include all available
pre-treatment variables, this approach may not always be optimal when the goal is bias reduction.
In particular they show that conditioning on an observed covariate can increase bias when there is
a confounding effect between two covariates. The work of Imai and Ratkovic (2014) introduce a
covariate balancing propensity score methodology based on the GMM or Empirical Likelihood to
improve the properties of the propensity score. In the case of matching estimators, Abadie and Im-
bens (2011) proposed a nonparametric bias correction method that makes the matching estimator
consistent and asymptotically normal but less efficient than the regression adjustment and weighting
estimators. Zhao et al. (2009) use a PS approach named genomic propensity score (GPS) to correct
for bias due to population stratification using genetic and non-genetic factors. For inverse proba-
bility weighting using PS weights, Peng and Feng (2011) employed a bootstrap method that takes
into account the dependent structure of the propensity score stratified data to construct confidence
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intervals for the estimates of ATE.
As seen from the discussion above, misspecification of the PS score due to omitted relevant

variables, balancing or confounding effects (endogeneity) has important implications on the bias of
the PS score, which translates to bias estimation of the treatment effects. This paper addresses the
problem of misspecification of the PS due to: omitted variables, endogeneity and lack of overlap by
doing a bootstrap bias correction to the inverse probability weighting estimator (BBC-IPS), which
has misspecified the PS score weights. The misspecifications of the PS score weights will induce
bias in the estimation of the ATE.

Kim and Yixiao (2016) have shown that the bootstrap bias correction for maximum likelihood
(ML) estimators is an effective tool in reducing the bias of the fixed effects estimator and in im-
proving the coverage accuracy of the associated confidence interval in nonlinear panels. It is well
known that fixed effects estimators for nonlinear panels with short time periods (the case considered
by Kim and Yixiao (2016)) suffers from inconsistency because of the incidental parameters prob-
lem. Even if the time series dimension grows at a slower rate than the cross-section dimension the
ML estimator is asymptotically biased and therefore the associated confidence intervals have a large
coverage error.

The BBC-IPS estimator in our paper is based on a nonlinear function of the PS weights, which
are estimated by maximum likelihood, which is a model similar to the one analyzed by Kim and
Yixiao (2016) and is also estimated via maximum likelihood. We use their findings about the boot-
strap bias correction for the maximum likelihood (ML) estimators obtained from nonlinear models
to motivate that a bias-correction procedure can reduce the bias for propensity score estimators.
The misspecification cases that we propose to investigate induce bias in the estimated propensity
score, therefore having a method that reduces the bias of the estimated propensity score would be
very useful in applications that use propensity scores. Although bootstrap bias corrections are well
established their application to propensity scores methods is rare in the literature.

We show in our simulations that a bias-correction approach via a bootstrap procedure for the
inverse propensity score (BBC-IPS) performs well. It helps in correcting the finite sample bias of
the ATE for all these types of misspecifications of the propensity score (PS) and different degrees
of endogeneity (correlation between one of the covariates and the unobeservable) and choices of
distributions for the unobservables. The BBC-IPS estimator is iterated in smaller samples for further
refinements in the bias correction of the ATE estimates and this procedure works well in reducing
bias for all types of mispecifications considered in our paper.

The rest of the paper is organized as follows: Section 2 discusses the methodology, Section 3
presents the simulation exercise results and Section 4 concludes.

2 Bootstrap Bias Correction for the Inverse Propensity Score
Weighting Estimator

The PS based method is widely and increasingly used in the estimation of ATE for its attractive
properties. Two important assumptions are required for the validity of this method. In particular the
assumptions of ignorability and overlap are the pillars of this method.
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Consider a sample {yi, zi,x′i}with i = 1, . . . , N individuals, where y is the outcome variable of
interest, z is an indicator for the treatment and x′ is a set of covariates. Now suppose that observation
i with characteristics xi receives a treatment then an outcome y1i is observed. If the ith individual
with characteristics xi did not receive a treatment then we observe the outcome y0i. Let yi denote
the observed outcome and zi denote the indicator of whether individual i received treatment or not,
then the observed outcome can be written as:

yi = ziy1i + (1− zi)y0i.

If the sample is drawn from the joint distribution of (y, z,x′)′ ∈ Y × [0, 1] × X , the following
assumptions are considered for the identification of treatment effects:

1. Ignorability: (y1, y0) and z are independent conditional of x.

2. Overlap: For all x ∈ X , 0 < Pr {z = 1|x} = p (x) < 1.

Assumption 1 which was initially defined by Rosenbaum and Rubin (1983) has different names:
Heckman and Robb (1984) referred to it as “selection on observables”, Lechner (2001) named it the
“conditional independence assumption”, we can also find it in statistical literature as “ignorability
of treatment”, “unconfoundedness”, while in the missing data literature is referred to as “missing
at random”. The assumptions state that if x contains enough information that determines treatment
then the joint distribution (y1, y0) can be independent of z. In other words, when we condition on
x, even if the joint distribution (y1, y0) and z can be correlated, once the x’s are conditioned on
(y1, y0) and z’s become independent.1 In other words there is no unobserved factor that influences
both outcomes (y1, y0) and treatment z simultaneously.2 Assumption 2 guarantees that one observes
individuals with the same characteristics x in both the control (z = 0) and treatment (z = 1) groups.
Here p(x) is known as the propensity score.

Finally, Rosenbaum and Rubin (1983) refer to the combination of the two assumptions as
“strongly ignorable treatment assignment”, conditions that once violated will induce bias in the
estimation of the treatment effects. Cases where some of these covariates are not observed will re-
quire additional strong assumptions (based on instrumental variables) for possible identification. In
the absence of these assumptions, Manski (1990) shows that only bounds can be identified. In this
paper we try to overcome this problem by introducing a correction to the ATE estimator obtained
via inverse probability weights.

The literature focuses on the following two parameters of interest for the evaluation of the treat-
ment effects: the Average Treatment Effect (ATE) and the Average Treatment on the Treated Effect
(ATT ). The ATE describes the expected effect of treatment for an arbitrary observation i chosen
at random from the population, while the ATT is the mean effect for those that actually participate
in the treatment. The focus of this paper is on finding of the ATE measure but the identification of
the ATT measure can be done in an analogous way.

1In this case x can be comprised of pre-treatment variables which values do not change during the time treatment takes
effect.

2This assumption is not testable.
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Under the satisfaction of above two conditions, the ATE is defined as follows:

ATE = E[y1i − y0i].

By employing the inverse propensity score weighting, we can identify ATE (θ) as follows:

θ = E
[
yz

p(x)
− y(1− z)

1− p(x)

]
.

Estimation

If p̂(xi) represents a consistent estimator of p(x) obtained by maximizing the log-likelihood (ll):

ll =
1

N

N∑
i=1

{
zi ln p(xi) + (1− zi) ln(1− p(xi))

}
,

where p(xi) = exp(xiβ)/
(
1 + exp(xiβ)

)
, then using the entire random sample of size N one has

by the analogy principle

θ̂ =
1

N

N∑
i=1

{
yizi
p̂(xi)

− yi(1− zi)
1− p̂(xi)

}
.

A logistic model is used to obtain the Maximum likelihood estimates of the propensity scores p̂(Xi)

and thereafter used to estimate the ATE, θ̂.
If subject i is randomly assigned to the treatment group and the control group, then both these

assumptions, ignorability and overlap hold by construction and ATE is unbiased. If any of the two
assumptions listed above do not hold then the ATE is biased.

Bias Correction

Next, we focus on the bias correction of the estimated ATE. The bias of the ATE estimator θ̂ is
given by,

Bias = E[θ̂]− θ0.

The bootstrapped bias is
Bias∗ = E∗[θ̂∗]− θ̂,

where E∗[θ̂∗] = 1
B

∑B
i=1 θ̂

∗
i is the average of the bootstrap estimates of the ATE, θ̂∗i obtained from

B bootstrap re-samples drawn in each of replication of a Monte Carlo simulation experiment.
The bias adjusted ATE estimator, θ̃C is therefore given by,

θ̃C = θ̂ −Bias∗ = θ̂ − (E∗[θ̂∗]− θ̂) = 2θ̂ − E∗[θ̂∗].

Note that the bootstrapped bias correction specified above can be iterated for further refinements
and to improve its accuracy as discussed in Hall (1992) who provides a formula for this procedure.
The derivation of this is straightforward. Let E∗[θ̂∗] in the above equation denote the average of the
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ATE estimates obtained using an “outer” bootstrap. To iterate the bootstrap bias correction the “bias
of the bias”, i.e., E[Bias∗ −Bias] can be estimated using an “inner bootstrap” such that:

B̃ias = E∗[Bias∗∗ −Bias∗] = E∗[(E∗∗[θ̂∗∗]− E∗[θ̂∗])]− (E∗[θ̂∗]− θ̂]).

This can be used to further reduce the bias from the bias such that the iterated bias correction is
given by:

θC = θ̂ − (Bias∗ − B̃ias) = E∗(E∗∗[θ̂∗∗])− 3E∗[θ̂∗] + 3θ̂. (2.1)

To implement the “inner” bootstrap another B bootstrap resamples are drawn within each “outer”
bootstrap resample and estimates of the ATE, θ̂∗∗i are obtained for each of these resamples and
averaged over B to obtain E∗∗[θ̂∗∗]. E∗(E∗∗[θ̂∗∗]) is therefore obtained by averaging B estimates
for the ATE from the “outer” bootstrap resamples. Further refinements using this iterative bias
correction procedure can be helpful in reducing bias especially in smaller samples where bias is
more pronounced.

Note that the application of a bootstrap bias correction might be computationally complex in
nonlinear propensity score models specified in higher dimension. In multiple treatment examples
complications may arise as one may need to estimate a bivariate or multivariate propensity score.
The finite sample bias in such models can be quite large such that bias reductions may involve
further iterations which can be computationally intensive since with every additional iteration a
larger number of bootstrap resamples are drawn within each replication (M) of a simulation.

3 Simulations
Monte Carlo simulations are conducted to analyze the bias in the estimates of the Average Treatment
effect (ATE) for three special cases of misspecifications commonly encountered in applied work.
Firstly, we consider the case of a missing covariate (Ignorability assumption fails) in the treatment
response model. In the second case one of the covariates is endogenous and we examine the bias at
various levels of endogenity of this variable in our simulations. Lastly, we look at cases where there
is an imbalance (Overlap assumption fails) in the distributions of the control and treatment groups.

Let N = Nt + Nc, where Nt and Nc are the treatment and control samples. A bootstrap
bias correction is applied to the ATE estimates under these three cases of misspecifications. Non-
parametric bootstrap re-samples are drawn with replacement in each replication of the experiment to
estimate the bias of the ATE. The finite sample performance of the bias correction is compared across
various sample sizes; (Nt, Nc) = (30, 50) (60, 80) (100, 150), (200, 300), (500, 750), (1000, 1500)
and true values of the treatment parameter θ0 = 0.5, 1, 2 respectively. The number of simulations (M)
and bootstrap re-samples (B) are set to M = 1000 and B = 999. For the iterated bias corrections
of the ATE estimates, the number of bootstrap resamples B is set equal to 99.

Let yi and zi be vectors of responses and assignments to a treatment. The responses yi are
linearly related to zi, the treatment variable and three other covariates, x1, x2 and x3. In the absence
of any misspecification therefore this relationship is given by the following equation:

yi = θzi + β1x1 + β2x2 + β3x3 + ui. (3.1)
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Table 1: Bootstrapped Bias and Bias-corrected ATE for the case of a missing covariate x3

θo (Nt, Nc): (30, 50) (60, 80) (100, 150) (200, 300) (500, 750) (1000, 1500)

0.5 N Bias∗ 0.9074 0.8057 0.5085 0.5190 0.4581 0.3679

(2.4154) (1.9294) (1.3459) (0.6179) (0.3754) (0.2434)

θC 0.5175 0.4805 0.5360 0.5135 0.5090 0.5099

(2.5248) (2.0546) (1.4156) (0.7087) (0.4035) (0.3483)

t Bias∗ 0.9675 0.8213 0.5886 0.5163 0.4687 0.3794

(2.7301) (1.7439) (1.2806) (0.7354) (0.3876) (0.2789)

θC 0.5359 0.4937 0.5486 0.5660 0.5247 0.5576

(2.8100) (1.8242) (1.3231) (0.8024) (0.4224) (0.3484)

1 N Bias∗ 0.9578 0.6792 0.5877 0.4831 0.4454 0.3491

(2.3491) (1.6792) (1.2484) (0.6802) (0.3323) (0.2363)

θC 0.9672 0.9577 0.9008 0.9130 0.9899 0.9829

(2.4214) (1.7325) (1.3278) (0.7419) (0.4192) (0.3332)

t Bias∗ 1.0777 0.7977 0.5448 0.4914 0.4566 0.3601

(2.3884) (1.6757) (1.4454) (0.5655) (0.3264) (0.1948)

θC 0.9627 0.9761 0.9793 0.9860 1.0204 1.0245

(2.4822) (1.7611) (1.5391) (0.6573) (0.4663) (0.2836)

2 N Bias∗ 0.9032 0.7211 0.5467 0.4806 0.4201 0.3679

(1.4474) (1.3693) (0.8371) (0.5188) (0.2175) (0.1470)

θC 1.8858 1.8722 1.8860 1.8530 1.8811 1.8773

(1.5146) (1.4200) (0.9053) (0.5336) (0.3141) (0.2194)

t Bias∗ 0.9856 0.7611 0.5320 0.4688 0.4306 0.3801

(1.4297) (1.1356) (0.9788) (0.5211) (0.2177) (0.1747)

θC 1.8830 1.9457 1.9434 1.8743 1.8827 1.9484

(1.5092) (1.2769) (1.0223) (0.6592) (0.3118) (0.2237)

Note: (1) For the model in equation 3.1: yi = θzi + β1x1 + β2x2 + β3x3 + ui, x3 is missing and the
treatment effect takes the values θ = {0.5, 1, 2}, the covariates, xi are continuous and drawn from a normal (N )
and student’s t (t) distributions with six degrees of freedom. (2) Bias∗ is the bias associated to the estimation
of θ using IPS without correction. θC is the bias corrected ATE estimator. (3)The standard errors of the ATE
estimates before and after bias correction are in parentheses.

The covariates, xi are continuous and drawn from a normal (N ) and student’s t (t) distributions
with six degrees of freedom. The mean is set to E[xi] = 0 with varying variances V ar[xi] = 0.4,
0.5 and 1.5 respectively. The error ui is standard normal and all the coefficients of the covariates are
set to 1 for simplicity.

As shown in the results in the Tables 1–6, the bias of the ATE estimates is substantial when the
model is misspecified especially in smaller samples. For samples sizes greater than 100 (treatment
and control groups), the BBC-IPS estimator works well in correcting the bias of the ATE estimates
for all types of misspecifications. For samples sizes smaller than 100, the bias of the ATE is more
pronounced as expected. We find that the BBC-IPS estimator does not reduce bias as effectively
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Table 2: Bootstrapped Bias and Bias-corrected ATE for the case of an endogenous covariate x1

θo ρ (Nt, Nc) : (30, 50) (60, 80) (100, 150) (200, 300) (500, 750) (1000, 1500)

0.5 0.25 N Bias∗ -0.6078 -0.4841 -0.4641 -0.4522 -0.3956 -0.3353

(0.7833) (0.5727) (0.5502) (0.3045) (0.1730) (0.1518)

θC 0.5339 0.5282 0.5617 0.5707 0.5308 0.5033

(0.8289) (0.6714) (0.5975) (0.4149) (0.2338) (0.2036)

t Bias∗ -0.7077 -0.5652 -0.5302 -0.5333 -0.5025 -0.4153

(1.0585) (0.7472) (0.7318) (0.3667) (0.2080) (0.1500)

θC 0.5189 0.5341 0.5459 0.5235 0.5431 0.5314

(1.0848) (0.8116) (0.8076) (0.4586) (0.2937) (0.2282)

0.5 N Bias∗ -0.6516 -0.5693 -0.5248 -0.5163 -0.5042 -0.4173

(0.6532) (0.5690) (0.5002) (0.2357) (0.1446) (0.1043)

θC 0.5349 0.4822 0.5530 0.5126 0.5121 0.5076

(0.7151) (0.6046) (0.5929) (0.3138) (0.2207) (0.2094)

t Bias∗ -0.7418 -0.6497 -0.6319 -0.6141 -0.5802 -0.4100

(0.9331) (0.5590) (0.4205) (0.3344) (0.1941) (0.1337)

θC 0.5155 0.5411 0.5772 0.5226 0.5338 0.5256

(1.0396) (0.6792) (0.5263) (0.4837) (0.2124) (0.2330)

0.9 N Bias∗ -0.7044 -0.6540 -0.5962 -0.5688 -0.5152 -0.4801

(0.7047) (0.4574) (0.3069) (0.2044) (0.1173) (0.0815)

θC 0.5411 0.5271 0.5483 0.5186 0.5075 0.5171

(0.7870) (0.5125) (0.4408) (0.3131) (0.2009) (0.1364)

t Bias∗ -0.8176 -0.7453 -0.6875 -0.6893 -0.6003 -0.4854

(1.0484) (0.6070) (0.3598) (0.3214) (0.1618) (0.1278)

θC 0.5470 0.5266 0.5604 0.5293 0.5274 0.5208

(1.1027) (0.7450) (0.4558) (0.4067) (0.2020) (0.2061)

in these samples for all types of misspecifications in our experiment. The BBC-IPS estimator is
therefore iterated as per equation 2.1 and this procedure performs well in reducing bias in smaller
samples such that the bias corrected ATE estimates are close to the true parameter values θo. The
results for these corrections are reported in Tables 1–6.

The bootstrapped bias as discussed in Section 2 is computed for three cases of misspecifications.
The first case relates to a missing covariate where the variable x3 is dropped in the simulations and
the effect on the bias of the ATE is observed over various samples sizes and values of θo. The results
are reported in Table 1.

It is evident that the bias of the ATE is quite large and decreases as the sample size gets larger
for covariates that have either thin (normally distributed) or thicker tails (student’s t distributed),
however covariates with thicker tails induce a slightly higher bias. A bootstrapped bias correction
works quite well in reducing the bias over various values of θ and sample sizes such that the bias
corrected ATE estimates are quite close to the true θo. It is also interesting to note that covariates
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Table 3: Bootstrapped Bias and Bias-corrected ATE for the case of an endogenous covariate x1

θo ρ (Nt, Nc) : (30, 50) (60, 80) (100, 150) (200, 300) (500, 750) (1000, 1500)

1 0.25 N Bias∗ -0.6787 -0.5952 -0.5764 -0.5243 -0.5047 -0.4022

(0.7529) (0.5289) (0.4691) (0.3178) (0.1981) (0.1253)

θC 1.0126 1.0305 1.0079 1.0102 1.0048 0.9788

(0.8857) (0.5813) (0.5443) (0.4210) (0.2160) (0.2231)

t Bias∗ -0.6975 -0.6210 -0.6037 -0.5850 -0.5583 -0.4648

(0.9934) (0.6226) (0.4046) (0.3354) (0.3196) (0.1728)

θC 1.0893 1.0494 1.0396 1.0976 1.0953 1.0765

(1.0359) (0.7480) (0.5126) (0.4976) (0.4018) (0.2511)

0.5 N Bias∗ -0.7881 -0.7275 -0.6980 -0.6185 -0.5986 -0.5044

(0.7750) (0.7347) (0.3621) (0.2512) (0.1748) (0.1128)

θC 1.0297 1.0378 1.0014 1.0053 0.9878 0.9822

(0.8865) (0.8378) (0.3948) (0.2769) (0.2554) (0.2157)

t Bias∗ -0.8130 -0.7685 -0.7013 -0.6988 -0.6705 -0.5719

(1.0183) (0.5977) (0.3785) (0.3331) (0.2171) (0.1276)

θC 1.0815 1.0319 1.0768 1.0012 1.0934 1.0808

(1.0842) (0.7642) (0.4428) (0.3982) (0.3075) (0.2131)

0.9 N Bias∗ -0.8520 -0.8142 -0.7753 -0.6921 -0.6190 -0.5780

(0.7281) (0.5615) (0.3537) (0.2008) (0.1411) (0.0897)

θC 1.0541 1.0430 1.0143 1.0137 0.9886 0.9828

(0.8500) (0.6194) (0.4860) (0.3242) (0.1840) (0.1186)

t Bias∗ -0.8472 -0.8224 -0.7832 -0.7716 -0.7356 -0.6764

(0.7802) (0.5760) (0.3797) (0.2481) (0.2322) ( 0.1034)

θC 1.0454 1.0546 1.0950 1.0677 1.0952 1.0748

(0.8675) (0.7900) (0.4016) (0.3213) (0.3095) (0.2130)

with thicker tails provide a greater reduction of the bias. Also, the bias of the ATE estimator is quite
stable for different values of the treatment effect.

In the second case we allow for one endogenous covariate x1 such that it is correlated with the
error ui. We examine the bias of the ATE estimates over various strengths of endogeneity by setting
the correlation coefficient (ρ) between the covariate x1 and the error ui in equation 3.1 to be ρ =
0.25, 0.5 and 0.9. The results of our Monte Carlo simulations are reported in Tables 2, 3, and 4.

It is noticeable that for all sample sizes and values of θ the bias of the estimates gets larger
in magnitude with stronger endogeneity for instance, ρ = 0.9. The bias is relatively smaller with
weaker endogeneity of x1 as expected and also in larger samples. Contrary to the case of a missing
covariate, the bias associated to a correlation between an observable and the unobservable becomes
negative and is not stable over different values of the treatment effect. Also, fatter observables
induce more bias. The bootstrap bias correction works quite well in reducing bias substantially over
all sample sizes and values of ρ and θ. It is noticeable in Tables 2, 3, and 4 that the bias corrected
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Table 4: Bootstrapped Bias and Bias-corrected ATE for the case of an endogenous covariate x1,
continued:

θo ρ (Nt, Nc) : (30, 50) (60, 80) (100, 150) (200, 300) (500, 750) (1000, 1500)

2 0.25 N Bias∗ -0.8112 -0.6920 -0.5692 -0.5693 -0.5424 -0.4630

(0.7697) (0.6984) (0.4141) (0.2792) (0.1623) (0.1214)

θC 1.8875 1.8693 1.8799 1.8848 1.8626 1.8756

(0.8020) (0.7170) (0.5432) (0.3428) (0.2599) (0.1873)

t Bias∗ -0.7504 -0.7272 -0.6818 -0.6319 -0.5607 -0.4161

(0.8848) (0.6283) (0.4534) (0.2936) (0.2005) (0.1369)

θC 1.9669 1.8952 1.9616 1.9478 1.9376 1.9408

(0.9113) (0.8770) (0.5216) (0.3620) (0.2987) (0.2008)

0.5 N Bias∗ -0.8955 -0.8371 -0.7762 -0.7013 -0.5917 -0.4987

(0.7150) (0.5861) (0.3840) (0.2449) (0.1458) (0.1125)

θC 1.8791 1.8820 1.8546 1.8754 1.8917 1.8855

(0.8472) (0.6901) (0.4744) (0.3547) (0.2344) (0.1655)

t Bias∗ -0.9108 -0.8446 -0.7800 -0.7525 -0.7076 -0.5621

(1.0562) (0.5508) (0.3918) (0.3066) (0.1800) (0.1324)

θC 1.8854 1.8775 1.8834 1.8604 1.8706 1.8806

(1.1413) (0.7042) (0.4249) (0.4003) (0.2559) (0.1855)

0.9 N Bias∗ -0.9524 -0.9067 -0.8212 -0.7980 -0.7143 -0.6174

(0.7779) (0.6912) (0.3345) (0.2359) (0.1367) (0.1126)

θC 1.8854 1.8885 1.8777 1.8830 1.8851 1.8956

(0.8949) (0.7760) (0.4017) (0.3011) (0.2292) (0.1688)

t Bias∗ -0.9680 -0.9169 -0.8860 -0.8724 -0.7973 -0.6886

(1.0001) (0.8232) (0.4330) (0.3207) (0.1858) (0.1942)

θC 1.8776 1.8848 1.8707 1.8821 1.8772 1.9340

(1.0921) (0.8868) (0.5265) (0.4319) (0.2648) (0.2231)

Note: Same notation as in Table 1 is used. The treatment effect takes the values θ = {0.5, 1, 2}, the covariate x1 is correlated
with the unobserved error u with correlations ρ = 0.25, 0.5 and 0.9. The standard errors of the ATE estimates before and after
bias correction are in parentheses.

ATE estimates are quite close to the true values of θ. As in the previous discussed case the bias
corrected ATE estimated via IPS works better when the covariates have fatter tails.

In the third case we consider an imbalance in the distributions between the treatment and control
groups for one of the covariates, x1. We generate this imbalance by varying the standard deviations
for the treatment group St = 0.8, 1.2, while keeping the standard deviation of the control group
constant at Sc = 0.5. Note that the E[x1] = 0 is the same for both groups. The results for this
experiment are reported in Tables 5 and , 6.

As expected the ATE estimates are biased as a result of this imbalance and in particular the
bias gets larger when the standard deviation for the treatment group increases from 0.8 to 1.2. The
bias decreases with a larger sample size. As in the case where there is a confounding/endogenity
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Table 5: Bootstrapped Bias and Bias-corrected ATE: Imbalanced distributions between the control
and treatment groups

θo (St, Sc) (Nt, Nc) (30, 50) (60, 80) (100, 150) (200, 300) (500, 750) (1000, 1500)

0.5 (0.8, 0.5) N Bias∗ -0.8008 -0.6560 -0.4795 -0.4158 -0.3882 -0.2917

(1.8870) (1.6492) (0.7118) (0.4690) (0.2913) (0.2018)

θC 0.5125 0.5223 0.5119 0.5029 0.5026 0.5091

(1.9728) (1.7423) (0.8349) (0.5726) (0.3277) (0.2705)

t Bias∗ -0.8510 -0.7399 -0.5237 -0.4366 -0.4032 -0.3084

(1.6403) (1.2273) (0.7549) (0.4824) (0.3291) (0.2182)

θC 0.4896 0.5264 0.5081 0.5041 0.5097 0.5164

(1.7351) (1.3629) (0.8379) (0.5335) (0.4248) (0.2918)

(1.2, 0.5) N Bias∗ -0.8073 -0.7091 -0.6064 -0.5161 -0.4543 -0.3366

(1.8910) (1.4015) (0.7415) (0.4760) (0.2778) (0.2282)

θC 0.5170 0.4702 0.5362 0.5077 0.5075 0.5064

(1.9280) (1.4777) (0.8506) (0.5252) (0.3165) ( 0.2800)

t Bias∗ -0.8702 -0.7622 -0.6618 -0.5276 -0.4932 -0.3681

(1.7706) (1.4111) (0.7622) (0.4926) (0.2962) (0.1988)

θC 0.5341 0.5180 0.5087 0.5251 0.5434 0.5395

((1.8257) (1.5200) (0.8401) (0.5667) (0.3525) (0.2652)

Note: Same notation as in the previous two tables is used. Additionally, the imbalance in the distributions between the control
and treatment groups is obtained by varying the standard deviations for the treatment group St = 0.8, 1.2, while keeping the
standard deviation of the control group constant at Sc = 0.5. The standard errors of the ATE estimates before and after bias
correction are in parentheses.

effect between observables and unobservables, the bias of the ATE estimates obtained using the
IPS estimator is negative and larger in magnitude than case 2 (endogeneity case) but a bit smaller
in absolute value when it is compared with the missing covariate case (case 1). The bootstrap
bias correction performs quite well over all values of θ, Sc and St and sample sizes. Again, fatter
covariates help more on the bias reduction.

The standard errors of the ATE estimates before and after bias correction are reported in paren-
theses in the tables for all types of misspecification. It is interesting to note that the standard errors
for the bias-corrected ATE estimates are quite close in magnitude to the standard errors of the ATE
estimates prior to bias correction. Bias reductions using the bootstrap correction therefore lead to
efficiency gains in terms of the Mean Squared Error (MSE) across all sample sizes and parameter
values for all cases of misspecification considered in this experiment.

4 Conclusion

This paper proposes a bootstrap bias correction for the ATE obtained using the estimator for the
inverse propensity score (BBC-IPS). We show in our simulations that the BBC-IPC performs well
in correcting the finite sample bias leading to efficiency gains in terms of the Mean Squared Error
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Table 6: Bootstrapped Bias and Bias-corrected ATE: Imbalanced distributions between the control
and treatment groups

θo (St, Sc) (Nt, Nc) (30, 50) (60, 80) (100, 150) (200, 300) (500, 750) (1000, 1500)

1 (0.8, 0.5) N Bias∗ -0.7917 -0.6996 -0.4838 -0.4312 -0.3956 -0.2867

(1.7430) (1.3146) (0.8368) (0.4156) (0.2434) (0.1781)

θC 1.0682 1.0782 1.1152 1.0049 1.0849 1.1089

(1.8151) (1.3918) (0.9072) (0.5042) (0.3279) (0.2673)

t Bias∗ -0.8789 -0.7323 -0.5279 -0.4884 -0.3549 -0.2981

(1.6036) (1.2331) (0.8631) (0.4795) (0.2659) (0.1466)

θC 1.1139 1.0643 1.0937 1.1969 1.0769 1.0597

(1.7153) (1.3348) (0.9475) (0.5386) (0.3135) (0.2365)

(1.2, 0.5) N Bias∗ -0.8212 -0.7332 -0.6338 -0.5210 -0.4793 -0.3560

(1.8450) (1.2571) (0.7823) (0.4373) (0.2820) (0.1967)

θC 1.0822 1.0666 1.0956 1.0914 1.0678 1.0580

(1.9244) (1.4036) (0.8468) (0.5352) (0.3197) (0.2674)

t Bias∗ -0.8882 -0.7507 -0.6588 -0.5533 -0.5274 -0.4111

(1.7495) (1.1401) (0.7643) (0.4782) (0.2236) (0.1527)

θC 1.0671 1.0806 1.0683 1.0457 1.1646 1.0429

(1.8287) (1.2551) (0.8257) (0.5275) (0.3154) (0.2425)

2 (0.8, 0.5) N Bias∗ -0.8791 -0.6652 -0.5190 -0.4289 -0.4078 -0.3032

(1.8910) (0.8653) (0.7802) (0.4340) (0.1979) (0.1316)

θC 1.9091 2.0377 2.0211 1.9713 1.9763 1.9670

(1.9464) (0.9596) (0.8532) (0.4838) (0.2231) (0.2022)

t Bias∗ -0.8336 -0.6052 -0.4971 -0.4727 -0.4047 -0.3249

(1.5949) (0.7255) (0.6590) (0.4255) (0.2376) (0.1861)

θC 1.9636 1.9492 2.0190 2.0410 2.1044 2.0268

(1.6895) (0.8650) (0.7072) (0.4984) (0.3170) (0.2734)

(1.2, 0.5) N Bias∗ -0.9075 -0.7293 -0.6408 -0.5358 -0.5037 -0.4076

(1.8733) (1.4650) (0.6705) (0.4223) (0.1863) (0.1213)

θC 1.9015 2.0693 2.1375 2.0845 2.0615 2.1269

(1.9334) (1.4874) (0.7660) (0.4515) (0.2665) (0.1807)

t Bias∗ -0.8883 -0.7465 -0.6097 -0.5535 -0.5161 -0.4177

(1.6495) (1.1332) (0.5940) (0.4159) (0.1945) (0.1649)

θC 1.9683 2.0595 2.1267 2.0306 2.0323 2.1054

(1.7890) (1.2109) (0.6513) (0.5059) (0.2489) (0.2530)

(MSE) when we have misspecifications of the propensity score (PS) due to: omitted variables (ig-
norability property may not be satisfied), overlap (imbalances in distribution between treatment and
control groups), endogeneity (confounding effect between observables and unobservables). Depend-
ing on the type of misspeciffication the ATE estimate obtained via IPS estimator is overestimated
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(omitted variables) or underestimated (imbalances or endogeneity). The bias correction IPS estima-
tor (BBC-IPS) reduces the bias in all the above cases effectively in larger samples. Also, the bias is
further reduced if the observed covariates have fatter tails. In smaller samples, the bias of the ATE is
more pronounced as expected and further refinements to bias reductions are attained by iterating the
BBC-IPS estimator. This procedure works well in correcting the bias of the ATE in these samples.
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