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summary
We investigated the association between longitudinally measured depression
scores and survival times simultaneously for paired spouse data from the Car-
diovascular Health Study (CHS). We propose a joint model incorporating within-
pair correlations, both in the longitudinal and survival processes. We use bivariate
linear mixed-effects models for the longitudinal processes, where the random ef-
fects are used to model the temporal correlation within each subject and the
correlation across outcomes between subjects. For the survival processes, we in-
corporate gamma frailties into Weibull proportional hazards models to account
for the correlation between survival times within pairs. The two sub-models are
then linked through shared random effects, where the longitudinal and survival
processes are conditionally independent given the random effects. Parameter es-
timates are obtained via the EM algorithm by maximizing the joint likelihood
for the bivariate longitudinal and bivariate survival data. We use our method
to model data where the use of bivariate longitudinal and survival sub–models
are apropos but where there are no competing risks, that is, the censoring of
one spouse’s time–to–mortality is not necessarily guaranteed by the death of the
other spouse.
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1 Introduction
Multivariate longitudinal models arising when two or more related processes are being mea-
sured repeatedly were proposed as early as Potthoff and Roy (1964) who used a general
multivariate linear model to characterize both univariate and multivariate longitudinal data.
Reinsel (1982, 1984) introduced a multivariate linear random-effects model but that partic-
ular model could only be used to analyze complete and balanced multivariate longitudinal
data in which all outcomes are measured at the same time point. In practice, however,
the data can be highly unbalanced, where outcomes may be measured at different time
points. Reinsel’s work was extended by Shah et al. (1997) to accommodate the case of ar-
bitrary measurement times. Their approach employed the EM algorithm for the parameter
estimates. Schafer (1997) and Schafer and Yucel (2002) developed a similar model which
allowed for multiple imputation in cases when there was missing data. Other similar work
was introduced by Morrell et al. (2003) used the multivariate linear mixed-effects model in a
Bayesian framework to predict hypertension based on body mass index (BMI), systolic blood
pressure and triglyceride levels from the Baltimore longitudinal study of aging. Lin et al.
(2002), Thiébaut et al. (2005), and Chi and Ibrahim (2006) also employed this approach.
Dang et al. (2005) used a Kalman filtering approach to model bivariate unequally spaced
longitudinal data. Nonlinear methods were also employed using both splines and paramet-
ric methods (Ruppert et al. (2003), Song et al. (2002)). In addition, Brown et al. (2005)
developed a data-driven Bayesian approach B-spline model to describe how two biomarkers
(CD4 counts and HIV RNA levels) change over time and to estimate the impact of a set of
covariates on the two biomarkers in an AIDS clinical trial. Rizopoulos and Ghosh (2011)
considered natural cubic splines.

Modeling bivariate survival data has also had a long history in the statistical literature.
After Gumbel (1960) first proposed two bivariate distributions whose marginal distributions
are exponential, others (Freund (1961), Marshall and Olkin (1967)) considered multivariate
reliability models for two or more component life testing systems that relaxed the require-
ment for exponential failure times. Others (Klein et al. (1989); Ghosh and Gelfand (1998))
generalized the exponential models using more flexible Weibull distributions and where pro-
portional hazards or accelerated failure time models are allowed. Others (Vaupel et al.
(1979); Lancaster (1979)) introduced the notion of frailty, a random effect, to represent the
unobserved population heterogeneity. In related work, Clayton (1978) proposed a continu-
ous bivariate survival model where the conditional hazard for subject 1 at time t1 given that
another subject died at time t2 and the conditional hazard for subject 1 at time t1 given
that the other subject survived at least to t2 are proportional, that is,

λ1(t1|T2 = t2)

λ1(t1|T2 ≥ t2)
= 1 + Φ, (1.1)

where the hazard ratio (1 + Φ) is constant over time. This model can be interpreted in
terms of a proportional hazards model with a one-parameter gamma distributed frailty, µ,
and Φ = θ. Oakes (1982) considered the bivariate case without covariates and showed that
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θ (or Φ) is closely related to a measure of dependence, Kendall’s τ , where τ = θ/(θ + 2)

is calculated from an uncensored sample or from a right-censored sample using only those
pairs that can be classified as either concordant or discordant. Clayton and Cuzick (1985)
later extended the model to allow for covariates and adapted to study the problem of
intra-class association (e.g., litter-matched and matched-pair failure-time data). Guo and
Rodriguez (1992) generalized Clayton’s model to the multivariate case and fitted the model
using an accelerated EM algorithm. Wienke et al. (2003) suggested a correlated gamma
frailty by extending Clayon’s shared gamma frailty model to explain the correlation within
clusters in a breast cancer incidence data for Swedish female monozygotic and dizygotic
twin pairs. Hanagal also has published on the gamma shared frailty model (Hanagal, 2006,
2007; Hanagal and Dabade, 2013; Hanagal and Pandey, 2014).

Joint modeling, linking longitudinal data with survival data, has become a valuable
tool for analyzing clinical trials data. The motivating idea behind this approach is to
couple a survival model, which is of primary interest, with a suitable model for the repeated
measurements of an endogenous outcome that will account for its special features. Of
particular interest is how the temporal features of the endogenous outcome affect the survival
outcome.

A well–known example where this methodology is used is in HIV clinical trials where
longitudinally measured immunologic and physiological status such as CD4 count and RNA
copy number are considered as the predictors for time to progression to acquired immunod-
eficiency syndrome (AIDS) or death (Thiébaut et al., 2005). Most joint models developed
so far have focused on relating single or multiple observations measured longitudinally to a
time-to-event endpoint (Choi et al., 2014; Henderson et al., 2000; Lin et al., 2002; Rizopoulos
and Ghosh, 2011; Song et al., 2002). Newer work focuses on how longitudinal measurements
relate to multiple time-to-event endpoints. For example, Chi and Ibrahim (2006) devel-
oped a model that related multiple quality of life (QOL) endpoints to disease-free survival
(DFS) and overall survival (OS). Their model conditioned the multiple QOL longitudinal
components on a single latent QOL process and assumed that longitudinal covariates were
related to the QOL components only through the latent process. They also assume that the
DFS and OS processes are independent given a common frailty. Furthermore, their broader
model development induced a proportional hazards structure for the population hazard,
both conditionally and marginally, and their model is capable of dealing with survival func-
tions with different cure rate structures. Other related work focused on how longitudinal
measurements relate to multiple competing risks time-to-event endpoints (Elashoff et al.,
2007), or recurrent events (Liu et al., 2008).

Due to the nature of our application, we formulate a different model than those formu-
lated previously. Our subjects are paired and hence, our “experimental unit” is a pair of
different individuals that are likely to be correlated in both the longitudinal and time-to-
event processes but do not involve competing risk events. We assume a bivariate Weibull
structure for the time-to-event processes. This situation is fundamentally different than
that involving a single individual with multiple longitudinal and time-to-event processes
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especially when the time-to-event processes in each individual involve competing risks. A
prototypical example of our situation involves measurements on twins, who have the same
genes and also share a similar childhood environment and have correlated but often dif-
ferent trajectories of health measurements and also typically, have different survival times.
Another example is married couples. The individuals in a married couple presumably do
not have common genetic traits like twins but they usually have other common traits. For
example, a non-smoker might prefer a non-smoker, leading to smoking concordance within
pairs. Shared traits or risks may also be due to coexistent life styles; for example, even
though a non-smoker chooses a smoker, they will both have elevated mortality risks; one
as an active smoker, one as passive smoker. Married couples usually have similar diets
and living environments. Moreover, effects observed in older married couples tend to be
more strongly associated because of shared lifetime exposures. In either example of twins
or spouse pairs, there is no inherent censoring of observing a death in one member of a pair
due to the death of the other member of the pair. Accordingly, somewhat more straight
forward models can account for the correlation within pairs when jointly modeling such
characteristics in a population of pairs of different subjects.

Our proposed model was motivated by the Cardiovascular Health Study (CHS) (Fried
et al., 1991). The CHS is a prospective, observational study designated to identify the
risk factors for and consequences of cardiovascular disease in older adults. A total of 5888
men and women aged 65 or older were enrolled from four U.S. communities and underwent
annual clinical examinations and completed an extensive array of demographic and health
assessments. The CHS sample included 1330 married couples; we are specifically interested
in this subsample. Depression is the most prevalent mental health problem in adulthood and
a significant public health concern (Fisher et al., 1993). Epidemiological studies have found
that 10-20% of community-dwelling elderly persons report clinically significant depressive
symptomatology (Blazer et al., 1987; Kennedy et al., 1989; Murrell et al., 1983). However,
findings of relationships between depression and mortality in older population have been
inconsistent across studies with some investigators concluding that depression is associated
with an increased risk of mortality and others failing to find this association (Schulz et al.,
2000, 2002; Wulsin et al., 1999). Limitations due to lack of adequate information or less than
optimal methodology may have contributed to inconsistent findings about the relationship
between depression and mortality (Zhang et al., 2009). First, many studies only have a one-
time assessment of depression. In such studies, the dynamic nature of depression cannot be
captured. Second, some studies had relatively short follow-up periods to ascertain mortality,
which only captured a few deaths and hence, produced potentially biased and underpowered
results. In the present study, we examine the association between depression and mortality
in a large community sample that utilizes longitudinal depression measures over a long
period of time while controlling for potential confounding factors. The traditional time-
dependent Cox model is only appropriate for exogenous time-dependent covariates and thus
cannot easily handle longitudinal depression measures that are taken on the subjects and
thus typically require the survival of the subject for their existence. In order to better
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quantify the association of mortality and longitudinal course of depression, it is necessary
to use a modeling approach to characterize both longitudinal and survival processes jointly.

We propose a joint modeling methodology for paired data where we use a bivariate
Weibull model for the time-to-event processes. Our model incorporates the flexibility asso-
ciated with Weibull models for the joint time-to-event hazards, while still allowing relatively
easy computation via a maximum likelihood approach. We also do not assume an underly-
ing cure rate structure. Our model, like the current joint models, accounts for within-pair
correlation, both in the longitudinal and in the time-to-event processes. The longitudinal
processes can have both serial and cross correlations. Specifically, we propose a joint model
to investigate the association between time to mortality and longitudinal depression scores
among married couples adjusted for the covariates related to mortality and longitudinal
depression separately.

The rest of our paper is structured as follows. In sections 2 and 3, we introduce our
model and discuss how the parameters are estimated using likelihood techniques and the
EM algorithm. Simulations are performed in section 4 to assess how well model parameters
are estimated under different correlation structures and in section 5, we give the results and
interpretation of an analysis of the CHS spouse mortality data using our method. Finally,
in section 6, we make a few conclusions and discuss areas of further research.

2 The Model
2.1 The Bivariate Longitudinal Submodel
We propose a bivariate linear mixed-effects model to explicitly model the two sources of
correlation: the correlation over time for each response and that between the two responses.
Let yik(t) be the response of subject k in pair i at time t (i = 1, . . . , n; k = 1, 2). Each
subject’s response is described by

yik(t) = xik(t)βββk + zik(t)bik + εik(t)

= mik(t) + εik(t), bi ∼ N(0,D), εεεi(t) ∼ N(0,R) ,

where xik(t) and zik(t) are the 1 × p and 1 × r (0 < r ≤ p) design matrices of fixed and
random effects, respectively. The p×1 and r×1 vectors of corresponding fixed and random
effects parameters are βββk and bik; mik(t) denotes the true, unobserved value of longitudinal
response; and εik(t) is the measurement error. For our particular application, the subject–
specific random effects are of the form zik(t)bik = b0ik + b1ikt, that is, r = 2, and follow a
joint distribution given by

bi1
bi2

 =


b0i1

b1i1

b0i2

b1i2

 ∼ N(0,D) ,
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where D, the covariance (symmetric) matrix of the random effects, has the following struc-
ture to reflect the bivariate nature of the data:

D =


σ2
b01

σb01b11 σb01b02 σb01b12

σ2
b11

σb11b02 σb11b12

σ2
b02

σb02b12

σ2
b12

 =

D1 D12

D21 D2

 .

D can be partitioned in four sub-matrices: (1) D1 =

[
σ2
b01

σb01b11

σ2
b11

]
, the variances and covari-

ances of random effects for the response of subject 1; (2) D2 =

[
σ2
b02

σb02b12

σ2
b12

]
, the variances

and covariances of random effects for the response of subject 2; (3) D12 = D21 =
[
σb01b02

σb01b12
σb11b02

σb11b12

]
,

the covariances between the random effects of the different responses. If D12 = D21 = 0,
the responses are independent at a given time. The two measurement errors are assumed
to follow a joint distribution given byεi1(t)

εi2(t)

 ∼ N(0,R) ,

where R, the covariance matrix of the measurement errors. In our case, we assume R to
be a diagonal matrix with the form

[
σ2
1 0

0 σ2
2

]
, and σ2

1 and σ2
2 represent the variance of mea-

surement errors of each response. We also assume the measurement errors are independent
of the random effects, which implies that conditional on the random effects, both response
trajectories are independent.

2.2 The Bivariate Survival Submodel
For the survival sub–model, we propose a bivariate Weibull model with a gamma frailty to
jointly characterize the spouses’ times to death. We assume that the times until mortality
are conditionally independent given the pair-specific random effect (the frailty), µi. The
shape parameter of the Weibull baseline hazard is assumed to be the same for the two
spouse members. The conditional hazard function at time t for subject k (k = 1, 2) in pair
i (i = 1, . . . , n) is as follows:

hik(t|µi) = ρλkt
ρ−1µi exp {w∗

ikγ
∗
k + αkmik(t)}, ρ > 0, λk > 0

= ρtρ−1µi exp {log λk +w∗
ikγ

∗
k + αkmik(t)}

= ρtρ−1µi exp {wikγk + αkmik(t)} ,

µi ∼ GAM(1/θ, θ) ,

(2.1)

where ρ is the Weibull shape parameter; λk is the Weibull scale parameter for subject k; µi

is the frailty for pair i; w∗
ik is the baseline covariate vector associated with survival time and
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γ∗
k is the corresponding effect for subject k; αk represents the effect of the true longitudinal

response, mik(t), on the survival process for subject k; the intercept term in the baseline
covariate vector (wik) corresponds to log λk. Equation (2.1) formulates the variability of
the event times, coming from two sources. The first source is natural variability that is
explained by the hazard function and the second is variability common to individuals in
the same pair that is explained by the frailty, µi. We assume that the frailty, µi, has a
one-parameter gamma distribution with mean 1 and variance θ and acts multiplicatively on
the hazard. The density of µi is

g(µi) =
µ
1/θ−1
i exp (−µi/θ)

Γ(1/θ)θ1/θ
.

Larger values of θ reflect greater heterogeneity between pairs and stronger association among
individuals within a pair. The dependence of event time between the paired individuals can
be measured by Kendall’s τ using τ = θ/(θ + 2) (Oakes, 1982). When θ = 0, both event
times are assumed to be independent. Let (ti1, ti2) be a bivariate failure time in pair i. The
joint survival function of (ti1, ti2) can be obtained by integrating out µi from a conditional
survival function

S(ti1, ti2) =

∫ ∞

0

S(ti1, ti2|µi)g(µi)dµi

=

∫ ∞

0

exp

[
−

2∑
k=1

∫ t

0

ρsρ−1µi exp
{
wikγk + αkmik(s)

}
ds

]
g(µi)dµi .

2.3 Joint Likelihood
Let the observed data for each pair be

{
Ti =

[
Ti1

Ti2

]
, ∆i =

[
∆i1

∆i2

]
,yi =

[
yi1
yi2

] }
(i = 1, . . . , n),

where yi is the longitudinal response vector for pair i, Ti is the event time vector, and
∆i is the vector of event indicators (∆ik = 1 if the event occurs and ∆ik = 0, otherwise).
Assume censoring is independent of the frailty, µi. We assume that given the shared random
effects bi, the bivariate longitudinal response and the bivariate event time are independent.
This means that these random effects account for both the association between bivariate
longitudinal and bivariate survival outcomes, and the correlations between the repeated
measurements in each response and between the two responses in the bivariate longitudinal
process. Under these assumptions, we have that

p(Ti,∆i,yi|bi;ϕϕϕ) = p(Ti,∆i|bi, ϕϕϕ)p(yi|bi, ϕϕϕ), and

p(yi|bi, ϕϕϕ) =
2∏

k=1

nik∏
j=1

p{yik(tikj)|bi, ϕϕϕ} ,

where p(Ti,∆i|bi, ϕϕϕ) and p(yi|bi, ϕϕϕ) are the joint densities of bivariate survival and longi-
tudinal processes, respectively; ϕϕϕ = (ϕϕϕT

y , ϕϕϕ
T
t , ϕϕϕ

T
b )

T denotes the full parameter vector, with
ϕϕϕy denoting the parameters for the bivariate longitudinal process, ϕϕϕt the parameters for the
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bivariate survival process, and ϕϕϕb the parameters for the random effects covariance matrix;
nik is the number of repeated measurements of subject k in pair i.

We do not observe the random effects, bi. Hence, the log-likelihood of observed bivariate
longitudinal response and bivariate event time can be formulated as

ℓ(ϕϕϕ) =

n∑
i=1

log p(Ti,∆i,yi;ϕϕϕ) =

n∑
i=1

log

∫
p(Ti,∆i,yi, bi;ϕϕϕ)dbi

=

n∑
i=1

log

∫
p(Ti,∆i|bi, ϕϕϕt, βββ)p(yi|bi, ϕϕϕy)p(bi|ϕϕϕb)dbi

=

n∑
i=1

∫ {
log p(Ti,∆i|bi, ϕϕϕt, βββ) + log p(yi|bi, ϕϕϕy) + log p(bi|ϕϕϕb)

}
dbi

=

n∑
i=1

∫ (
Di log θ + log

Γ(Di +
1
θ )

Γ( 1θ )
+

2∑
k=1

∆ik

{
log (ρT ρ−1

ik ) +wikγk + αkmik(Tik)
}

− (Di +
1

θ
) log

[
1 + θ

2∑
k=1

exp(wikγk)

∫ Tik

0

ρsρ−1 exp {αkmik(s)}ds
]

+

2∑
k=1

{
− nik

2

(
log 2π + log |R|

)}
−
(
yi −Xiβββk − Zibi

)T
R−1

(
yi −Xiβββk − Zibi

)
2

− qb
2
log 2π − 1

2
log |D| − bTi D

−1bi
2

)
dbi ,

where Di =

2∑
k=1

∆ik; qb denotes the dimensionality of the random-effects vector, and other

quantities are as defined earlier.

3 Parameter Estimation using the EM Algorithm

In the joint modeling literature, the EM algorithm has been traditionally preferred, mainly
due to the fact that in the M-step, some of the parameters have closed-form updates. In
this study, the EM algorithm was used to estimate the parameters, ϕϕϕ = (ϕϕϕT

y , ϕϕϕ
T
t , ϕϕϕ

T
b )

T , by
maximizing the joint likelihood of the observed data. Below we describe how we implemented
our estimation procedure using the EM algorithm.

E-step: The aim of using the EM algorithm is to find the parameter values ϕϕϕ that maxi-
mize the observed data log-likelihood ℓ(ϕϕϕ), but by maximizing instead the expected value of
the complete data log-likelihood with respect to the posterior distribution of random effects
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as below.

ϱ(ϕϕϕ | ϕϕϕ(it)) =

n∑
i=1

∫
log p(Ti,∆i,yi, bi;ϕϕϕ)p(bi|Ti,∆i,yi;ϕϕϕ

(it))dbi

=

n∑
i=1

∫ {
log p(Ti,∆i|bi, ϕϕϕt, βββ) + log p(yi|bi, ϕϕϕy) + log p(bi|ϕϕϕb)

}
p(bi|Ti,∆i,yi;ϕϕϕ

(it))dbi

=

n∑
i=1

∫ (
Di log θ + log

Γ(Di +
1
θ )

Γ( 1θ )
+

2∑
k=1

∆ik

[
log (ρT ρ−1

ik ) +wikγk + αk{xik(Tik)βββk + zik(Tik)bik}
]

− (Di +
1

θ
) log

(
1 + θ

2∑
k=1

exp(wikγk)

∫ Tik

0

ρsρ−1 exp
[
αk{xik(s)βββk + zik(s)bik}

]
ds

)

+

2∑
k=1

{
− nik

2

(
log 2π + log |R|

)}
−
(
yi −Xiβββk − Zibi

)T
R−1

(
yi −Xiβββk − Zibi

)
2

− qb
2
log 2π − 1

2
log |D| − bTi D

−1bi
2

)
p(bi|Ti,∆i,yi;ϕϕϕ

(it))dbi .

(3.1)

The integrals of the survival density and random effects cannot be solved in closed form so
numerical approaches are required to approximate these integrals. We employ the Gauss–
Kronrod quadrature rule (Press et al., 2007) to approximate the one-dimensional integral
with respect to time in the survival function. For the random effects, we extend the pseudo-
adaptive Gauss–Hermite rule proposed by Rizopoulos (2012) to approximate the integral
with respect to random effects. Rizopoulos’ approach approximates the integral of subject-
specific random effects across individuals. However, in this study, the random effects of
each individual within a pair are tied together through a joint distribution. Thus, we have
extended this approach to approximate the integral of subject-specific random effects across
individuals and pairs. The details are given in Section A of the Supplementary Material.
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Using these approaches, the log-likelihood (3.1) is approximated by

ϱ(ϕϕϕ | ϕϕϕ(it)) ≈
n∑

i=1

{
2qb/2|B̃i|−1

∑
t1···tqb

(
Di log θ + log

Γ(Di +
1
θ )

Γ( 1θ )

+

2∑
k=1

∆ik

[
log (ρT ρ−1

ik ) +wikγk + αk{xik(Tik)βββk + zik(Tik)r̃t}
]

− (Di +
1

θ
) log

[
1 + θ

2∑
k=1

exp(wikγk)
Tik

2

( m∑
g=1

πgρ t
ρ−1
g exp

[
αk{xik(tg)βββk + zik(tg)r̃t}

])]

+

2∑
k=1

{
− nik

2

(
log 2π + log |R|

)}
−
(
yi −Xiβββk − Zir̃t

)T
R−1

(
yi −Xiβββk − Zir̃t

)
2

− qb
2
log 2π − 1

2
log |D| − r̃Tt D

−1r̃t
2

)
p(r̃t|Ti,∆i,yi;ϕϕϕ

(it))πt exp (∥bt∥2)

}
,

where m is the number of Gauss–Kronrod quadrature points; tg = Tik

2 t∗g +
Tik

2 with Gauss-

Kronrod quadrature points t∗g and weights πg;
∑

t1···tqb

is shorthand for
K∑

t1=1

. . .

K∑
tqb=1

with

K denoting the number of Gauss-Hermite quadrature points, and bTt = (bt1 , . . . , btqb ) are
the Gauss-Hermite quadrature points with corresponding weights πt; r̃t = b̃i +

√
2B̃−1

i bt
with b̃i = argmaxb{log p(yi, bi;ϕϕϕy)} and B̃i denoting the Choleski factor of H̃i with H̃i =
−∂2 log p(yi, bi;ϕϕϕy)/∂bi∂b

T
i |bi=b̃i

.

M-step: In the M-step, we update the parameters by

ϕϕϕ(it+1) = argmaxϕϕϕϱ(ϕϕϕ | ϕϕϕ(it)) .

Because the complete data log-likelihood consists of three parts, i.e., log p(Ti,∆i,yi, bi;ϕϕϕ) =

log p(Ti,∆i|bi, ϕϕϕt, βββ)+log p(yi|bi, ϕϕϕy)+log p(bi|ϕϕϕb), maximization of ϱ(ϕϕϕ | ϕϕϕ(it)) with respect
to ϕϕϕ involves only the parts where the respective parameters appear. The covariance matrix
of the measurement errors in the bivariate longitudinal model and the covariance matrix of
the random effects have a closed-form update

R̂ =

σ̂2
1 0

0 σ̂2
2

 with

σ̂2
k = N−1

k

n∑
i=1

(
yik −Xikβββk)

T
(
yik −Xikβββk − 2Zikb̃ik

)
+ tr(ZT

ikZikṽbik) + b̃TikZ
T
ikZikb̃ik ,

D̂ = n−1
n∑

i=1

{ṽbi − b̃Ti b̃i} ,
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where Nk =
∑

i nik, b̃i = E(bi|Ti,∆i,yi;ϕϕϕ
(it)) =

∫
bi p(bi|Ti,∆i,yi;ϕϕϕ

(it))dbi, and
ṽbi = var(bi|Ti,∆i,yi;ϕϕϕ

(it)) =
∫
(bi − b̃i)

T (bi − b̃i) p(bi|Ti,∆i,yi;ϕϕϕ
(it))dbi.

The estimates of the fixed effects, βββ, and the parameters, ϕϕϕt, of the survival sub-model
do not have a closed-form updates and hence, we use one–step Newton–Raphson approach
to update these parameters as follows:

β̂ββ
(it+1)

= β̂ββ
(it)

−
{
∂S(β̂ββ

(it)
)

∂βββ

}−1

S(β̂ββ
(it)

),

ϕ̂ϕϕ
(it+1)

t = ϕ̂ϕϕ
(it)

t −
{
∂S(ϕ̂ϕϕ

(it)

t )

∂ϕϕϕt

}−1

S(ϕ̂ϕϕ
(it)

t ),

where β̂ββ
(it)

and ϕ̂ϕϕ
(it)

t denote the values of βββ and ϕϕϕt at the current iteration, respectively;
S(β̂ββ

(it)
) and S(ϕ̂ϕϕ

(it)
) denote the score vector of βββ and ϕϕϕt, evaluated at β̂ββ

(it)
and ϕ̂ϕϕ

(it)

t ,
respectively; ∂S(β̂ββ

(it)
)/∂βββ and ∂S(ϕ̂ϕϕ

(it)

t )/∂ϕϕϕt denote the corresponding blocks of the Hessian
matrix, evaluated at β̂ββ

(it)
and ϕ̂ϕϕ

(it)

t , respectively. The components of the score vector of βββ
and ϕϕϕt are given in Section B of the Supplementary Material.

To compute the standard errors for the parameter estimates, we first calculate the score
vector

S(ϕ̂ϕϕ) =

n∑
i=1

∫ [
∂

∂ϕϕϕ
log
{
p(Ti,∆i|bi, ϕϕϕ)p(yi|bi, ϕϕϕ)p(bi|ϕϕϕ)

}]
p(bi|Ti,∆i,yi;ϕϕϕ) dbi |ϕϕϕ=

ˆϕϕϕ

and the standard errors are calculated as

v̂ar(ϕ̂ϕϕ) = −{H(ϕ̂ϕϕ)}−1, with H(ϕ̂ϕϕ) =
∂S(ϕϕϕ)

∂ϕϕϕ

∣∣∣∣
ϕϕϕ=

ˆϕϕϕ

We implemented our method in R, version 3.1, by using the lme() function for the longitu-
dinal part; creating a function to create the bivariate Weibull model; and then modifying
Rizopoulos’ JM procedure to accommodate our bivariate joint model. Details of our algo-
rithm are given in the Supplementary Material.

4 Simulation Studies
We conducted simulations to evaluate the performance of our proposed model. We consid-
ered three situations representing different levels of dependence (i.e., low, moderate, high)
on the bivariate longitudinal measurement as well as the bivariate survival time. In each sim-
ulation, we constructed several sets of association parameters to assess how well our model
estimates the effect of longitudinal measurements on the risk of events. We generated data
sets with 600 “female–male” pairs as described below.
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Simulation 1. Low dependence on both bivariate longitudinal and bivariate survival out-
comes: For the bivariate longitudinal outcome, we assumed seven repeated measurements
were taken at fixed times 0, 0.5, 1, 1.5, 2, 2.5, and 3 years. The measurement yikj of subject
k (k=1, female; 2, male) in pair i (i = 1, . . . , 600) at time tikj (j = 1, . . . , 7) was generated
from a bivariate linear mixed-effects model with random intercept

yikj = β0k + β1ktikj + b0ik + εikj ,

b0i =

b0i1

b0i2

 ∼ N(0,D), εi =

εi1

εi2

 ∼ N(0,R),

where
(

β01

β02

)
=
(

2

1

)
;
(

β11

β12

)
=
(

0.2

0.1

)
; D =

(
σ2
b1

σa1b1

σa1b1
σ2
b2

)
=
(

0.7 0.2

0.2 0.6

)
; we set σa1b1 = 0.2 to

simulate a low correlation between the two longitudinal measurements (i.e., r = 0.2√
0.6×0.7

=

0.3); and R =
(

σ2
1 0

0 σ2
2

)
=
(

0.6 0

0 0.6

)
. For the bivariate survival outcome, we first generated

the hazard function hik(t) of subject k in pair i at time t from a Weibull proportional
hazards model with a gamma frailty given by

hik(t) = ρtρ−1µi exp {wikγk + αk(β0k + β1kt+ b0ik)},

µi ∼ GAM

(
1

θ
, θ

)
,

where the intercept term in the baseline covariate vector (wik) corresponds to log λk; ρ = 6
and (λ1, λ2) = (0.1, 0.2) so that the median survival time was between 1.1-1.5 years and the
maximum survival time was ≤ 3.5 years among both genders; We set θ = 0.5 to simulate a low
overall dependence between the two survival times (i.e., Kendall’s τ = 0.5/(0.5 + 2.0) = 0.2);
covariates (wi1, wi2) were both generated from a binomial distribution with probability
0.5 and their corresponding parameters (γ1, γ2) = (0.7, 0.6). We considered four sets of
association parameters: (1) (α1, α2) = (0.1, 0.05) represents a small effect of longitudinal
measurement on survival time for both genders (i.e., the hazard ratio (HR) in both genders
(HR1, HR2) = (1.11, 1.05), per unit increase in longitudinal measurement); (2) (α1, α2) =
(0.5, 0.3) represents a moderate effect for both genders (i.e., (HR1, HR2) = (1.65, 1.35));
(3) (α1, α2) = (1.0, 0.8) represents a large effect for both genders (i.e., (HR1, HR2) = (2.72,
2.23)); (4) (α1, α2) = (1.0, 0.05) represents a large effect for females but a small effect
for males. Using Sik(t) = exp

{
−
∫ t

0
hik(s) ds

}
and Sik(t) ∼ U(0, 1), we generated event

times by randomly generating Sik(t), then solving for t using the uniroot() and integrate()

functions in R (Ihaka and Gentleman, 1996). Observations were censored with a probability
of 0.2 for both genders. A censored subject’s censoring time was chosen uniformly over the
interval (0, t). Finally, the longitudinal measurements were censored when they were taken
after the event times.

Simulation 2. Moderate dependence on both bivariate longitudinal and bivariate survival
outcomes: With the same model settings in simulation 1, except here we set σa1b1 = 0.4
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and θ = 2 to simulate a moderate dependence on both longitudinal (r = 0.6) and survival
(Kendall’s τ = 0.5) outcomes. We set ρ = 12 and (λ1, λ2) = (1.0, 1.0) so that the median
survival time was between 1.1-1.5 years and the maximum survival time was ≤ 3.5 years
among both genders. Three sets of the association parameters were considered: (α1, α2) =
(0.1, 0.05), (0.5, 0.3), and (1.0, 0.8).

Simulation 3. High dependence on both bivariate longitudinal and bivariate survival
outcomes: With the same model settings in simulation 1, except here we set σa1b1 = 0.5
(r = 0.8), θ = 6 (Kendall’s τ = 0.8), ρ = 40, and (λ1, λ2) = (1.2, 1.2). Three sets of the
association parameters were considered: (α1, α2) = {(0.1, 0.05), (0.5, 0.3), (1.0, 0.8)}.

For each scenario, 1000 replications were conducted. We evaluate the model performance
using the mean bias in the estimates, the mean standard error of the estimates, and the
coverage probability of the estimated 95% confidence intervals. The results are given in
Tables 1, 2, and 3. The simulation evidence suggests that overall our model performs well
under all simulated circumstances from two perspectives. The biases of the estimates are
all minimal and the coverage probabilities are close to or achieve the nominal level.

5 Application to the Cardiovascular Health Study (CHS)
We applied the proposed joint models to the spouse-pair data from the CHS (1) to investigate
the association of both longitudinal depressive symptoms scores and mortality between
husbands and wives in older adults, controlling for covariates associated with depressive
symptoms and mortality separately, and (2) to characterize mortality in both genders based
on their own longitudinal depressive symptoms score and other factors.

5.1 Study Population
The sample used in the study was obtained from the CHS, a prospective, observational
study designated to identify the risk factors for and consequences of cardiovascular disease
(CVD) in older adults. Adults 65 years and older were recruited from random samples of
Medicare eligibility lists in four communities — Sacramento County, California; Washington
County, Maryland; Forsyth County, North Carolina; and Pittsburgh, Pennsylvania — and
from age-eligible participants in the same household. A total of 5201 men and women
65 years or older were enrolled in 1989 to 1990 (cohort 1), and a supplemental cohort of
687 African Americans was enrolled from 1992 through 1993 (cohort 2). Further details
regarding CHS sampling and recruitment can be found in Fried et al. (1991) and Tell et al.
(1993). Participants underwent annual clinical examinations and health assessments and
were followed for coronary events and mortality. The follow-up length is 18 years for cohort
1 and 15 years for cohort 2. For the present study, a total of 1330 married couples from
across the two cohorts (cohort 1, n = 2520; cohort 2, n = 140) were identified in the CHS
sample.
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5.2 Outcomes and Covariates
Mortality — The CHS has complete follow-up on mortality (18 years for cohort 1 and 15
years for cohort 2). Deaths were confirmed through reviews of obituaries, medical records,
death certificates, and the Health Care Financing Administration healthcare database for
hospitalizations. The survival time was defined as the time from enrollment to death.

Depressive symptoms — Depressive symptoms were assessed annually up to 10 years in
cohort 1 and 6 years in cohort 2. Severity of depressive symptoms was evaluated using the
previously validated 10-item Center for Epidemiological Studies Depression Scale (CES-D)
(Andresen et al., 1994; Radloff, 1977) at baseline and yearly throughout the follow-up. The
CES-D score was between 0 and 30 with a higher score indicating a greater severity of
depressive symptoms.

Covariates — Sociodemographic factors included baseline age, race (white or non-white),
education (the highest grade or year of school ever completed), stressful life events (total
of 10 possible stressful life events in past 6 months), and annual income. Health behavior
factors included smoking status (never, former, or current), alcohol consumption (drinks
per week), and body mass index (BMI). Functional disability was assessed using difficulty
with activities of daily living (ADL)/instrumental activities of daily (IADL). It was yes for
the presence of any self-reported difficulty in walking, getting in and out of a bed or chair,
eating, dressing, bathing, or using the toilet (ADL), or any difficulty with heavy housework,
light housework, shopping, preparing meals, managing money, or using the telephone (IADL)
“because of health or physical problems”. Cognitive status was estimated using the modified
Mini-Mental State Examination (3MS), with a higher score (range 0-30) indicating better
functioning (Teng and Chui, 1897).

Caregiving status was evaluated by asking participants if they ever provided help with
IADL. CVD was measured as follows: a) prevalent clinical disease including angina pectoris,
myocardial infarction, bypass, congestive heart failure, intermittent claudication, stroke, and
transient ischemic attack, and b) subclinical disease, indicative of risk for CVD but without
clinical manifestations, including the Rose questionnaires for claudication and angina ratio
of ankle to arm blood pressure, major electrocardiogram abnormality, and carotid stenosis
(Kuller et al., 1995; Psaty et al., 1995). Antidepressant medication use was defined as
taking any medication classified as an antidepressant (i.e., non-tricyclic antidepressants
other than monoamine oxidase inhibitors (MAOIs), tricyclic anti-depressants, or tri-cyclic
anti-depressants plus anti-psychotics).

5.3 Statistical Analysis
Longitudinal submodel: To approximate the normality assumption for longitudinal
CES-D score, we took the square root transformation of CES-D scores. We considered
quadratic models for fitting the longitudinal fixed effects of the

√
CES-D scores but the

quadratic terms of time were not significant. Hence, in the bivariate linear mixed-effects
models we used a linear fixed effects bivariate longitudinal model and found that using
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random intercepts only fit the data best with the smallest AIC and BIC values. Thus, the
bivariate linear population model with random intercepts was used to model the longitu-
dinal part of the joint model. In addition, we tried to identify baseline factors related to
longitudinal

√
CES-D scores. Education, income, stressful life events, BMI, smoking status,

alcohol consumption, caregiving status, ADL/IADL difficulty, 3MS score, prevalent clinical
CVD, subclinical CVD, and antidepressant medication use all were considered. Univariate
analyses were first conducted to test the association of each individual baseline variable
with

√
CES-D score. Significant variables in the univariate analyses (P<.10) were then in-

cluded in the multivariable models, controlling for age and race, and retained if statistically
significant (P<.05).

Survival submodel: Using the same model building strategy, we fit Weibull proportional
hazards models with a gamma frailty to identify baseline factors related to mortality. Edu-
cation, income, stressful life events, BMI, smoking status, alcohol consumption, ADL/IADL
difficulty, 3MS score, prevalent clinical CVD, and subclinical CVD were considered.

Joint model: The two submodels above were then linked together through the random
effects used in the bivariate linear mixed-effects models. Parameter estimates in joint mod-
els were obtained by maximizing the joint likelihood for the two submodels using the EM
algorithm. We first looked at unadjusted joint models, where no covariate was included in
the bivariate linear mixed-effects model or the Weibull proportional hazards model with a
gamma frailty. Then the adjusted joint models were built, controlling for the covariates
independently associated with longitudinal

√
CES-D scores in the bivariate linear mixed-

effects model as well as the covariates independently associated with mortality in the Weibull
proportional hazards model with a gamma frailty. The marginal correlation between hus-
bands’ and wives’

√
CES-D scores was calculated and the dependence of husbands’ and

wives’ mortality was measured by Kendall’s τ .
Because the CHS sample includes two cohorts with different follow-up periods for mor-

tality and depressive symptoms, we truncated both outcomes at 6 years in both cohorts to
ensure a same minimal follow-up period for both outcomes in both cohorts. To understand
the impact of ignoring the correlation between husbands and wives on the estimation of the
association parameters of CES-D score and mortality, we also fit data using a joint model
where the correlations were not considered.

5.4 Results
Baseline characteristics of the analysis sample stratified by sex are presented in eTable 1 of
the Supplementary Material. Out of 1330 spouse pairs, 117(8.8%) wives and 334 (25.1%)
husbands died within six years.

Table 4 shows the results of unadjusted and adjusted joint models. Without controlling
for any covariate, an increase of one unit of the

√
CES-D score was associated with 82%
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(95%CI, 1.42-2.34) and 66% (95%CI, 1.40-1.96) higher risks of mortality in wives and hus-
bands, respectively. A moderate correlation of

√
CES-D scores (r=0.36) and low dependence

of mortality (Kendall’s τ=0.21) between husbands and wives were observed. The
√
CES-D

score was still associated with mortality after adjusting for the covariates, where the mor-
tality increased 45% (95%CI, 1.10-1.91) in wives and 35% (95%CI, 1.13-1.61) in husbands
with one unit of increase in the

√
CES-D score. These estimates are obtained from taking

exp(α1) and exp(α2), where α1 and α2 are the parameters associating the longitudinal and
survival sub-models in equation (2.1). The

√
CES-D score increased with time in both gen-

ders. Older age, less education, having stressful life events, having ADL/IADL difficulty,
prevalent clinical CVD, and being on antidepressant medication were independently related
to the longitudinal

√
CES-D score in both genders. Non-white race was associated to the

longitudinal
√
CES-D scores in husbands only. Older age, and having prevalent clinical

CVD and subclinical CVD were independently associated with mortality in both genders.
Having ADL/IADL difficulty was associated with mortality in husbands only. The cor-
relation of

√
CES-D scores and the dependence of mortality between husbands and wives

became smaller after adjusting for the covariates (r = 0.30; Kendall’s τ=0.13). When the
correlations between husbands and wives were ignored in the model, the estimate of the
wives’ association between the

√
CES-D score and mortality didn’t change much but had a

larger standard error (i.e., HR(95%CI)=1.83(1.38-2.43)) and husbands’ association estimate
became smaller and also had a larger standard error (i.e., HR(95%CI) = 1.55(1.32-1.82)).

5.5 Discussion of Results
Utilizing our new joint modeling approach to simultaneously investigate the association of
both longitudinal severity of depressive symptoms and mortality between husbands and
wives, we found that longitudinal severity of depressive symptoms was a significant inde-
pendent risk factor for mortality in both husbands and wives after adjusting for covariates.
Our analyses also showed that the associations between longitudinal severity of depressive
symptoms and mortality were slightly attenuated after adjusting for covariates. It is be-
lieved that depression-mortality effect is driven by an underlying psychological state that
includes elements of health and functioning. We would expect this effect to be shared and
diluted among a wide range of health and functional status factors. Our study also points
out the importance of taking into account the correlations between husbands and wives in
the joint models. Ignoring such correlations may result in a less accurate estimate of the
true association between the longitudinal severity of depressive symptoms and mortality.

The longitudinal parameter estimates obtained from the joint models indicate that older
age, less educated, and having more stressful life events, ADL/IADL difficulty, prevalent
clinical CVD, and antidepressant medication use were independently associated with de-
pressive symptoms changes over time in both genders. However, a significant association
between antidepressant medication use and longitudinal

√
CES-D score does not mean that

depressive symptoms were worse among those taking medication. This association cannot
be established to be causal, and we assert that antidepressant medication does not cause
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depressive symptoms but rather that antidepressant medication use is a proxy for having
clinical depression (i.e., severe depressive symptoms). From a clinical perspective, the cur-
rent findings suggest that severity of depressive symptoms measured by existing screening
tests should be taken seriously and further evaluated for possible treatment to stop the
progression of depressive symptoms, thus enhancing quality of life and longevity in older
people.

6 Conclusions
We have proposed a joint modeling approach for paired data which took into account the
within-pair correlation, both in the longitudinal and in the time-to-event processes. Our
method offers a feasible approach to connect the long-term course of psychiatric conditions
to the time to mortality in paired subjects and simultaneously investigate the association
of both longitudinal psychiatric conditions and mortality within pairs. Application of the
methodology and simulation evidence show that it is accessible for routine use and provides
reliable inference.

There is much potential future work related to this research. The advantage of our
choosing parametric proportional hazards models with gamma frailties is that the marginal
likelihood is fully parametric and we can rely on classical maximum likelihood techniques
and the EM algorithm to estimate the parameters. However, we may not know what the
appropriate baseline hazard distribution is and it may be more appropriate not to make any
assumption on its distribution. Moreover, the gamma distribution was used in the study
due to its simple interpretation and mathematical tractability. However, other distributions,
such as the positive stable and the inverse Gaussian distributions proposed in the literature
for frailty, may also be considered and compared with that used in our method.

The simulations we performed in this work largely assessed how our model performed
with differing levels of dependence within and across the longitudinal and survival processes.
However, even though the Weibull models are very flexible, future work would involve as-
sessing, through simulation or otherwise, the robustness of the model under situations where
either or both of the longitudinal or survival processes are misspecified. Due to the com-
plexity of the model, many combinations of misspecifications could occur within either or
both of the longitudinal and survival sub-processes. Furthermore, a thorough comparison
of our model to that of Chi and Ibrahim (2006) would be helpful and is an area of future
research.
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Table 1: Results of Simulation 1: Low dependence on both bivariate longitudinal and
bivariate survival outcomes with 20% censoring rate and 1000 replications.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Parameter True Bias SE CP True Bias SE CP True Bias SE CP True Bias SE CP

β01 2.0 0.000 0.044 0.949 2.0 -0.002 0.045 0.948 2.0 -0.002 0.045 0.948 2.0 -0.001 0.045 0.938

β02 1.0 -0.001 0.042 0.950 1.0 -0.001 0.043 0.949 1.0 -0.002 0.043 0.952 1.0 -0.002 0.042 0.950

β11 0.2 -0.001 0.041 0.949 0.2 -0.005 0.049 0.943 0.2 -0.010 0.061 0.939 0.2 -0.012 0.061 0.936

β12 0.1 -0.001 0.046 0.953 0.1 -0.002 0.048 0.959 0.1 -0.003 0.053 0.947 0.1 0.001 0.046 0.954

σ1 0.77 -0.001 0.016 0.948 0.77 0.000 0.018 0.948 0.77 -0.002 0.020 0.953 0.77 -0.002 0.020 0.957

σ2 0.77 -0.001 0.017 0.949 0.77 -0.001 0.018 0.949 0.77 -0.001 0.019 0.949 0.77 -0.001 0.017 0.944

σ2
b1

0.7 0.001 0.046 0.911 0.7 -0.001 0.048 0.915 0.7 -0.001 0.050 0.914 0.7 0.001 0.050 0.917

σb1b2 0.2 0.000 0.040 0.975 0.2 0.000 0.041 0.970 0.2 0.002 0.041 0.972 0.2 0.001 0.041 0.975

σ2
b2

0.6 -0.001 0.046 0.946 0.6 -0.003 0.046 0.935 0.6 -0.002 0.048 0.929 0.6 -0.000 0.046 0.943

θ 0.5 0.015 0.070 0.948 0.5 0.017 0.071 0.948 0.5 0.015 0.075 0.949 0.5 0.009 0.073 0.947

ρ 6.0 0.113 0.211 0.933 6.0 0.114 0.214 0.925 6.0 0.125 0.230 0.934 6.0 0.100 0.222 0.951

log λ1 -2.30 -0.090 0.213 0.935 -2.30 -0.097 0.226 0.941 -2.30 -0.093 0.254 0.963 -2.30 -0.049 0.248 0.983

log λ2 -1.61 -0.081 0.140 0.915 -1.61 -0.082 0.144 0.913 -1.61 -0.089 0.158 0.933 -1.61 -0.077 0.142 0.936

γ1 0.7 0.011 0.122 0.953 0.7 0.009 0.124 0.954 0.7 0.008 0.130 0.955 0.7 0.006 0.129 0.948

γ2 0.6 0.008 0.121 0.944 0.6 0.007 0.122 0.950 0.6 0.010 0.127 0.950 0.6 0.008 0.122 0.950

α1 0.1 -0.001 0.082 0.943 0.5 0.012 0.089 0.950 1.0 0.021 0.109 0.962 1.0 0.002 0.106 0.986

α2 0.05 0.002 0.091 0.946 0.3 0.008 0.094 0.950 0.8 0.025 0.108 0.953 0.01 0.004 0.091 0.951

True, true value; Bias, the mean bias of estimates; SE, the mean standard error of estimates; CP, the coverage
probability of the estimated 95% confidence intervals.
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Table 2: Results of Simulation 2: Moderate dependence on both bivariate longitudinal and
survival outcomes with 20% censoring rate and 1000 replications.

Scenario 1 Scenario 2 Scenario 3

Parameter True Bias SE CP True Bias SE CP True Bias SE CP

β01 2.0 -0.000 0.045 0.945 2.0 -0.003 0.045 0.949 2.0 -0.001 0.045 0.957

β02 1.0 -0.001 0.043 0.954 1.0 -0.002 0.043 0.949 1.0 -0.003 0.043 0.955

β11 0.2 0.001 0.056 0.955 0.2 0.000 0.062 0.952 0.2 -0.006 0.069 0.948

β12 0.1 0.000 0.054 0.951 0.1 0.000 0.056 0.947 0.1 -0.002 0.059 0.955

σ1 0.77 -0.001 0.019 0.948 0.77 0.000 0.020 0.958 0.77 -0.001 0.021 0.958

σ2 0.77 0.000 0.019 0.949 0.77 0.000 0.019 0.960 0.77 -0.001 0.020 0.957

σ2
b1

0.7 -0.002 0.049 0.886 0.7 -0.001 0.050 0.903 0.7 0.001 0.051 0.910

σb1b2
0.4 -0.002 0.045 0.968 0.4 -0.002 0.045 0.967 0.4 -0.001 0.045 0.967

σ2
b2

0.6 -0.003 0.050 0.950 0.6 -0.003 0.051 0.961 0.6 -0.004 0.051 0.952

θ 2.0 0.032 0.161 0.958 2.0 0.045 0.163 0.949 2.0 0.035 0.167 0.951

ρ 12.0 0.121 0.450 0.943 12.0 0.145 0.458 0.950 12.0 0.114 0.484 0.961

log λ1 0.0 -0.041 0.279 0.950 0.0 -0.040 0.286 0.950 0.0 0.003 0.303 0.972

log λ2 0.0 -0.036 0.186 0.954 0.0 -0.035 0.188 0.951 0.0 -0.042 0.198 0.946

γ1 0.7 0.013 0.149 0.950 0.7 0.008 0.150 0.952 0.7 0.002 0.155 0.956

γ2 0.6 0.006 0.148 0.942 0.6 0.013 0.149 0.949 0.6 0.011 0.153 0.944

α1 0.1 0.002 0.114 0.945 0.5 0.009 0.120 0.942 1.0 -0.009 0.138 0.963

α2 0.05 -0.002 0.125 0.946 0.3 0.002 0.128 0.950 0.8 0.007 0.142 0.951

True, true value; Bias, the mean bias of estimates; SE, the mean standard error of estimates;

CP, the coverage probability of the estimated 95% confidence intervals.
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Table 3: Results of Simulation 3: High dependence on both bivariate longitudinal and
bivariate survival outcomes with 20% censoring rate and 1000 replications.

Scenario 1 Scenario 2 Scenario 3

Parameter True Bias SE CP True Bias SE CP True Bias SE CP

β01 2.0 0.001 0.04 0.962 2.0 0.000 0.045 0.950 2.0 0.000 0.045 0.946

β02 1.0 0.002 0.04 0.938 1.0 0.000 0.043 0.934 1.0 0.000 0.043 0.948

β11 0.2 0.000 0.05 0.953 0.2 -0.001 0.054 0.955 0.2 0.000 0.056 0.950

β12 0.1 -0.002 0.05 0.948 0.1 -0.001 0.051 0.939 0.1 -0.001 0.053 0.952

σ1 0.77 -0.001 0.01 0.959 0.77 -0.001 0.019 0.956 0.77 -0.004 0.020 0.950

σ2 0.77 0.000 0.01 0.948 0.77 -0.001 0.019 0.957 0.77 -0.002 0.019 0.952

σ2
b1

0.7 0.001 0.04 0.903 0.7 -0.001 0.049 0.913 0.7 0.008 0.049 0.932

σb1b2
0.5 -0.001 0.04 0.968 0.5 -0.001 0.048 0.972 0.5 0.001 0.048 0.971

σ2
b2

0.6 -0.001 0.05 0.971 0.6 -0.001 0.053 0.967 0.6 0.000 0.053 0.974

θ 6.0 0.091 0.40 0.959 6.0 0.099 0.406 0.959 6.0 0.042 0.410 0.950

ρ 40.0 0.262 1.60 0.953 40.0 0.337 1.633 0.957 40.0 0.051 1.685 0.959

log λ1 0.18 -0.008 0.40 0.950 0.18 -0.015 0.407 0.957 0.18 0.175 0.415 0.960

log λ2 0.18 -0.016 0.26 0.946 0.18 -0.020 0.268 0.953 0.18 0.021 0.275 0.951

γ1 0.7 0.004 0.16 0.954 0.7 -0.004 0.168 0.945 0.7 0.000 0.171 0.951

γ2 0.6 0.007 0.16 0.946 0.6 0.008 0.167 0.945 0.6 -0.002 0.170 0.952

α1 0.1 -0.003 0.16 0.950 0.5 0.008 0.170 0.954 1.0 -0.089 0.183 0.957

α2 0.05 -0.003 0.17 0.950 0.3 0.005 0.182 0.952 0.8 -0.042 0.195 0.952

True, true value; Bias, the mean bias of estimates; SE, the mean standard error of estimates;

CP, the coverage probability of the estimated 95% confidence intervals.
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Table 4: Results of joint modeling of bivariate longitudinal CES-D score and bivariate mortality
in the CHS spouse pairs.

Unadjusted Adjusted for covariates

(N=1330 spouse pairs) (N=1277 spouse pairs)

Estimate (95% CI) HR (95% CI) Estimate (95% CI) AHR (95% CI)

Longitudinal model:

Wives

Intercept 1.87 (1.82, 1.92) 1.19 (0.46, 1.92)

Time, per 1 y 0.07 (0.06, 0.08) 0.07 (0.06, 0.08)

Age, per 1 y 0.01 (0.00, 0.02)

White -0.07 (-0.25, 0.10)

Education, per 1 y -0.03 (-0.04, -0.01)

Stressful life event, per 1 0.12 (0.08, 0.16)

Any ADL/IADL difficulty 0.42 (0.32, 0.52)

Prevalent clinical CVD 0.18 (0.06, 0.30)

Antidepressant medication use 0.39 (0.19, 0.60)

σ1 0.76 (0.75, 0.77) 0.76 (0.75, 0.77)

Husbands

Intercept 1.56 (1.51, 1.61) 0.94 (0.26, 1.61)

Time, per 1 y 0.08 (0.07, 0.08) 0.08 (0.07, 0.09)

Age, per 1 y 0.01 (0.00, 0.02)

White -0.21 (-0.38, -0.04)

Education, per 1 y -0.03 (-0.03, -0.02)

Stressful life event, per 1 0.12 (0.07, 0.16)

Any ADL/IADL difficulty 0.42 (0.31, 0.53)

Prevalent clinical CVD 0.19 (0.10, 0.29)

Antidepressant medication use 0.63 (0.33, 0.93)

σ2 0.76 (0.75, 0.77) 0.76 (0.75, 0.78)

σ2
b1

0.68 (0.63, 0.73) 0.57 (0.52, 0.62)

σb1b2
0.24 (0.19, 0.28) 0.17 (0.13, 0.21)

σ2
b2

0.66 (0.61, 0.71) 0.55 (0.50, 0.60)

Survival model:
Wives

log λ1 -6.39 (-7.07, -5.70) -15.11 (-17.87, -12.35)

Age, per 1 y 0.11 (0.08, 0.15) 1.12 (1.08, 1.16)

White 0.39 (-0.43, 1.22) 1.48 (0.65, 3.38)

Any ADL/IADL difficulty 0.18 (-0.25, 0.60) 1.19 (0.78, 1.83)

Prevalent clinical CVD 0.63 (0.21, 1.05) 1.87 (1.23, 2.86)

Subclinical CVD 0.51 (0.07, 0.96) 1.67 (1.08, 2.60)
√

CES-D score, per 1 0.60 (0.35, 0.85) 1.82 (1.42, 2.34) 0.37 (0.09, 0.65) 1.45 (1.10, 1.91)

Husbands

log λ2 -4.79 (-5.20, -4.37) -10.00 (-11.72, -8.28)

Age, per 1 y 0.06 (0.04, 0.09) 1.07 (1.04, 1.09)

White -0.19 (-0.60, 0.22) 0.83 (0.55, 1.25)

Any ADL/IADL difficulty 0.70 (0.44, 0.97) 2.02 (1.55, 2.64)

Prevalent clinical CVD 0.27 (0.03, 0.51) 1.31 (1.03, 1.67)

Subclinical CVD 0.80 (0.46, 1.14) 2.23 (1.59, 3.14)
√

CES-D score, per 1 0.51 (0.34, 0.68) 1.66 (1.40, 1.96) 0.30 (0.12, 0.48) 1.35 (1.13, 1.61)

θ 0.52 (0.08, 0.97) 0.29 (-0.06, 0.65)

ρ 1.41 (1.27, 1.54) 1.47 (1.33, 1.61)

Abbreviation: CI, confidence interval; HR, hazard ratio; AHR, adjusted hazard ratio; ADL, Activities of Daily Living

IADL, Instrumental Activities of Daily; CVD, cardiovascular disease; CES-D, Center for Epidemiological Studies Depression Scale.
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