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summary

National level indicators of child undernutrition often hide the real scenario across
a country. In order to construct a child nutrition map, accurate estimates of un-
dernutrition are required at very small spatial scales, typically the administrative
units of a country or a region within a country. Although comprehensive data
on child nutrition are collected in national surveys, the small scale estimates can-
not be calculated using the standard estimation methods employed in national
surveys, since such methods are designed to produce national or regional level
estimates, and assume large samples. Small area estimation method has been
widely used to find such micro-level estimates. Due to lack of unit level data,
area level small area estimation methods (e.g., Fay-Herriot method) are widely
used to calculate small-scale estimates. In Bangladesh, a few works have been
done to estimate district level child nutrition status. The Bangladesh Demo-
graphic Health Survey covers all districts but district wise sample sizes are very
small to get consistent estimates. In this paper, Fay-Herriot Model has been
developed to calculate district wise estimates with efficient mean squared error.
The Bangladesh Demographic Health Survey 2011 and Population Census 2011
are utilized for this study.

Keywords and phrases: Small Area Estimation; Bivariate Fay-Herriot Model;
Univariate Fay-Herriot Model; Mean Squared Error.

1 Introduction

Small Area Estimation (SAE) techniques have received much attention in recent times due

to increasing demand for micro-level official statistics. Because of small domain-specific

sample sizes (even zero size), direct estimation may lead to estimates with large sampling

variability (Rao and Molina, 2015). The basic idea of SAE method is to link the variable

of interest with auxiliary information (e.g., Census and Administrative data) in a random
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effects model. SAE method is broadly classified into two methods - unit level SAE and

area level SAE. When unit level survey data is not available, area level SAE is utilized for

small area estimates. One of the basic area level models is the Fay-Herriot (FH) model

(Fay and Herriot, 1979) which relates small area direct survey estimates to area specific

covariates. When multiple dependent variables are considered correlated, multivariate Fay-

Herriot model may produce better results than univariate FH model (Rao and Molina, 2015),

but these models have received relatively little attention. In practice, however, univariate FH

(UFH) models are most common. They are either applied to a single variable, or separately

to each variable of interest. Arima et al. (2017) points out two benefits of multivariate

FH (MFH) models: they may result in lower prediction MSEs, and they are more suitable

when functions of different parameters are estimated for each small area (for example annual

change in an indicator).

The MFH estimator has seen increasing attention in recent years. Datta et al. (1998)

compare the precision of small area estimators obtained from UFH and MFH models, show-

ing that more precise small area estimators are obtainable using MFH models rather than

separate UFH models. González-Manteiga et al. (2008) study MFH models with a common

scalar random effect for the two variables. MFH estimators have lower MSEs than UFH esti-

mators for their simulated data. González-Manteiga et al. (2008) also find that a bootstrap

MSE estimator does better than an analytic estimator of the MSE. Benavent and Morales

(2016) relax the assumption of a common scalar random effect, and calculate MFH estima-

tors of provincial poverty rates using data from the 2005 and 2006 Spanish living condition

surveys. Monte-Carlo simulations show that MFH estimators have lower MSEs than UFH

estimators. Porter et al. (2015) develop models allowing for both spatial dependence and

multivariate outcomes, finding that a generalized conditional auto-regressive model gives ex-

cellent results. A simulation study based on the Missouri county lattice structure finds gains

in MSE of around 10% when cross-correlations are weaker, and around 30-70% when they

are stronger, compared to a non-spatial multivariate model based on Datta et al. (1998).

The child nutrition status in Bangladesh are based only on surveys which produce na-

tional or regional level estimates. However, national level indicators of child undernutrition

often hide the real spatial distribution across the country. The standard direct estimation

methods cannot be used due to small sample size for a significant number of administrative

units such as districts. As a result, district level child nutrition indicators have not pre-

viously been calculated. The Bangladesh Demographic and Health Survey (BDHS) 2011

covers all districts but only includes a small sample of children in each district thereby

making consistent estimates of malnourished children are difficult to obtain. The purpose

of this study is to develop an area level Fay-Herriot models to calculate district level esti-

mates with their efficiency and to identify the conditions under which bivariate Fay-Herriot

(BFH) improves prediction. Comparison between univariate and bivariate FH models has

also been done. BFH and UFH estimators and the MSE estimator are applied to data

from the Bangladesh Demographic and Health Survey 2011 and Bangladesh Population and

Housing Census 2011.
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The paper is organised as follows. Section 2 outlines the model structure and the MSE of

the UFH and BFH estimators. The relative performance of the UFH and BFH estimators is

measured by the relative efficiency of these MSEs. In Section 3, some special cases regarding

the relative efficiencies are discussed. Section 4 describes a numerical study including a

traditional descriptive summary of the results as well analysis of variance approach. Section

5 describes the empirical study and Section 6 summarises the findings.

2 Approximate Relative Efficiency of Univariate and
Bivariate Fay-Herriot Estimators

The purpose of this section is to make simple approximate comparisons of the MSEs of the

BFH and UFH estimators assuming known model parameters including variance components

and regression coefficients. Of course in practice these parameters are unknown and this

must be reflected in MSE estimation when FH estimators are calculated in practice.

2.1 Univariate Fay-Herriot Estimation

Let θd = g(Ȳd), where Ȳd is the small area mean for the dth area. Suppose θd is related to

area-specific auxiliary data Zd = (Zd1, Zd2, . . . , Zdp)
′

through the model:

θd = Z′dβ + vd, d = 1, 2, . . . , D

and the direct estimators of θd follow a sampling model,

θ̂d = θd + ed, d = 1, 2, . . . , D.

Combining the above two assumptions, the UFH model is

θ̂d = Z′dβ + vd + ed, d = 1, 2, . . . , D, (2.1)

where D is the number of areas, Zd is a p × 1 vector of auxiliary variables, and β is a

p × 1 vector of regression coefficients. Furthermore, vd and ed are area specific random

effects and sampling errors respectively, assumed to be independent over d = 1, . . . , D, with

vd ∼ N(0, σ2
v) and ed ∼ N(0, ψd). The disturbance terms vd and ed are assumed to be

independent from each other. Their respective variances, σ2
v and ψd, are the area-specific

random effect variance and the design-based sampling variance. The BLUP estimator of θ̂d,

denoted by θ̂∗d, for known β, is

θ̂∗d =
σ2
v

σ2
v + ψd

θ̂d +
ψd

σ2
v + ψd

Z′dβ

and its MSE is

MSE
(
θ̂∗d

)
=

σ2
vψd

σ2
v + ψd

(2.2)
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The log-likelihood function of the data {θ̂d} is

logL = −D
2

log (2π)− 1

2

D∑
d=1

log
(
σ2
v + ψd

)
− 1

2

D∑
d=1

(
θ̂d −Z′dβ

)2 (
σ2
v + ψd

)−1
2.2 Bivariate Fay-Herriot Estimation

Let θd be the 2× 1 vector of the small area statistics in area d for the two target variables.

The BFH model assumes

θd = β′Zd + vd, d = 1, 2, . . . , D, (2.3)

where Zd is a p×1 vector of auxiliary variables, β is a (p× 2) matrix of regression coefficients

and vd are the area specific random effects with mean zero and variance-covariance matrix

Σv given by:

Σv =

Σv11 Σv12

Σv12 Σv22


The direct estimator of θd follows a sampling model,

θ̂d = θd + ed, d = 1, 2, . . . , D, (2.4)

where θ̂d =
(
θ̂d1, θ̂d2

)′
are the direct estimates of θd = (θd1, θd2)

′
. Let ed = (ed1, ed2)

′
be

the sampling error with mean zero and variance-covariance matrix:

Ψd =

Ψd11 Ψd12

Ψd12 Ψd22


Combining (2.3) and (2.4), the BFH model is

θ̂d = β′Zd + vd + ed, d = 1, 2, . . . , D (2.5)

The BLUP estimator of θ̂d for known β is

θ̂∗d1 = β′1Zd + (Σv + Ψd)
−1

Σv1

(
θ̂d − β′Zd

)
θ̂∗d2 = β′2Zd + (Σv + Ψd)

−1
Σv2

(
θ̂d − β′Zd

)
 , (2.6)

where Σv1 = (Σv11,Σv12)′ and Σv2 = (Σv12,Σv22)′. The BLUP estimator (2.6) can be

written as

θ̂∗d = β′Zd + Σ′v (Σv + Ψd)
−1
(
θ̂d − β′Zd

)
(2.7)

See Rao and Molina (2015, p.236) who derive the BLUP when β is unknown.
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The MSE of the BLUP estimator θ̂∗d is

MSE
(
θ̂∗d1

)
= Σv11 −Σ′v1 (Σv + Ψd)

−1
)Σv1

MSE
(
θ̂∗d2

)
= Σv22 −Σ′v2

(
Σv + Ψd)−1

)
Σv2

 (2.8)

which can be expressed as

MSE
(
θ̂∗d

)
= Σv −Σv (Σv + Ψd)

−1
Σv

The log likelihood function is

logL = −Dr
2

log(2π)− 1

2

D∑
d=1

log|Σv +ψd|

− 1

2

D∑
d=1

(
θ̂d − β′Zd

)′(
Σv +ψd

)−1(
θ̂d − β′Zd

)
2.3 Relative Efficiency of UFH and BFH estimators

From (2.2) and (2.8), the approximate relative efficiencies of the bivariate BLUP estimator

compared to the univariate BLUP estimator are

REd1 =
Σv11 −Σ′v1(Σv + Ψd)−1Σv1

Σv11 − Σ2
v11(Σv11 + Ψd11)−1

REd2 =
Σv22 −Σ′v2(Σv + Ψd)−1Σv2

Σv22 − Σ2
v22(Σv22 + Ψd22)−1

 (2.9)

3 Special Cases

The approximate relative efficiency of BFH to UFH estimators will now be examined for

some special cases where simple analytic results are possible. These special scenarios will

provide insights into when BFH would be worthwhile in practice.

Case 1: No Sampling Error

When sampling errors are zero i.e. when Ψd = 0, the MSEs of both the UFH and BFH

estimators in (2.2) and (2.8) become 0. So if sampling errors are small, then we can expect

the UFH and BFH to have similar MSEs.

Case 2: Uncorrelated Sampling Errors and Uncorrelated Random Effects

The relative efficiencies in (2.9) become one when the correlation between the sampling

errors (ρe) for each variable and the correlation between the random effects (ρv) for each
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variable are both zero. This special case is an obvious one to consider and discussed in Rao

and Molina (2015, p.236) where the authors state that the multivariate model leads to more

efficient estimators compared to those based on univariate models when correlation exists

between the response variables.

Case 3: Proportional Variance-Covariance Matrices of Sampling Errors and
Random Effects

It is also straightforward to show that there is no gain when the variance-covariance matrices

of the sampling errors and the random effects are proportional. That is, when Ψd = kΣv,

where k is any scalar constant. In this case, REd1 = REd2 = 1. So even if the correlation

coefficients ρe and ρv are non-zero, if the variance-covariance matrices of the sampling

errors and the random effects are proportional, then no gains are obtained. Birrell et al.

(2011) proved a similar result in the different context of multivariate time series models for

prediction.

Case 1 and 2 are unsurprising, but Case 3 gives a new insight into why the gains from

bivariate modelling may often be small. The result means that even if the cross-variable

correlations are high, there is still no gain from bivariate modelling, unless either the cor-

relation between the sampling errors and the correlation between the random effects differ,

or the ratio of the sampling variance and the random effects variance differs from variable

to variable.

Of course in practice none of the three cases will hold exactly, so a numerical study

will be conducted in the next section to evaluate the relative efficiencies of UFH and BFH

estimators over a wide range of situations.

4 Numerical Study

Birrell et al. (2011) show that the gains are attainable for a multivariate time series model

when the ratio of variances of one sub-series is very different from the ratio of variances

of another sub-series. Although the context is different, their results suggest a focus on

the differences between the variance-covariance matrices of sampling errors and the random

area effects, and also on the variances of the first variable relative to the second variable.

In this section, a numerical study is performed to investigate the relative efficiency of

the bivariate FH estimator to the univariate FH estimator given known parameters. The

settings of the parameters are discussed in the following section.

4.1 Setting the Parameters

We firstly rewrite the variance-covariance matrices of sampling errors and random effects to

focus on the correlation coefficients.



District level child nutrition status in Bangladesh . . . 51

Let ρv and ρe be the correlation of the random effects and the sampling errors respec-

tively, which are defined as:

ρv =
Σv12√

Σv11Σv22

and ρe =
Ψd12√

Ψd11Ψd22

.

The variance-covariance matrices Σv and Ψd can be expressed in terms of ρv and ρe:

Σv =

 Σv11 ρv
√

Σv11Σv22

ρv
√

Σv11Σv22 Σv22

 , Ψd =

 Ψd11 ρe
√

Ψd11Ψd22

ρe
√

Ψd11Ψd22 Ψd22

 .
Let rv be the ratio of the variances of random effects Σv and let rs be the ratio of the

variances of sampling errors Ψd:

rv =
Σv22

Σv11
, rs =

Ψd22

Ψd11
.

The ratio of these ratios is defined by

R =
rs
rv

=
Ψd22Σv11

Ψd11Σv22
. (4.1)

For this study, the parameters to be varied are Σv11, ρv, rv, ρe and rs. Without loss of

generality, Ψd11 is set to 1 and the first variable has sampling variance less than or equal

to that of second variable. The values of the parameters considered in the numerical study

are shown in Table 1.

The total number of combinations for these parameter values is 9×6×9×6×5 = 14580.

Given the range of values set for rv and rs, the value for R ranges from 0.1 to 100. For each

combination of the parameters, the approximate MSEs of the UFH and BFH estimators

are calculated for each variable using (2.2) and (2.8) respectively. The approximate relative

efficiencies of BFH to UFH estimators are calculated using (2.9). The values of the relative

efficiencies are calculated by substituting the parameter settings directly into their algebraic

expressions, since these approximate expressions are a function of the model parameters

only. The numerical study includes nearly 15,000 combinations, so the results need to be

analysed in a structured way. Two ways of summarizing the study are used in the next two

subsections: a descriptive analysis and a analysis of variance (ANOVA) approach.

4.2 Descriptive Summary of Numerical Study

Firstly, we consider the effects of varying the correlation parameters, and then the effects of

varying the values of the ratio R.

4.2.1 The Effects of the Correlations ρv and ρe on Relative Efficiency

The boxplots in Figure 1 summarise the results for both variables for each value of ρv. Each

observation represents the relative efficiency of BFH to UFH from one of the scenarios in
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Table 1: Values of parameters

Parameter Possible values No. values

Σv11 {0.1, 0.2, 0.3, 0.6, 1.0, 1.5, 3.0, 5.0, 10} 9

ρv {0, 0.1, 0.3, 0.5, 0.7, 0.9} 6

rv {0.1, 0.2, 0.3, 0.6, 1.0, 1.5, 3.0, 5.0, 10} 9

ρe {0, 0.1, 0.3, 0.5, 0.7, 0.9} 6

rs {1.0, 1.5, 3.0, 5.0, 10} 5

0 0.1 0.3 0.5 0.7 0.9

0.2
0.4

0.6
0.8

1.0

First Variable

ρv

RE

0 0.1 0.3 0.5 0.7 0.9

0.2
0.4

0.6
0.8

1.0

Second Variable

ρv

RE

Figure 1: Results of relative efficiency, calculated using (2.9), for the first and second vari-
ables with different values of ρv.

the numerical study. Note that a low relative efficiency means a large gain from using BFH

estimators. For the first variable, the potential gains from bivariate modelling are greater

(lower relative efficiency) when ρv is large or small. For the second variable, potential gains

are greater when ρv is large. For example, when ρv = 0.9, the relative efficiencies lie between

0.5 and 1 for the first variable and 0.25 and 1 for the second variable. However, as the range

still reaches to 1 (or very nearly so), it is clear that a high correlation does not guarantee

lower relative efficiency, as also found for Case 3 in Section 3. This is presumably because

other parameters are also influencing the relative efficiencies.

The boxplots shown in Figure 2 summarise the relative efficiencies for different values

of ρe. Figure 2 reveals a similar pattern over ρe to the one in Figure 1, except that the

patterns of variable 1 and 2 are swapped. Here for ρe = 0.9, the relative efficiencies range

from 0.25 to 1 for the first variable and from 0.5 to 1 for the second variable. This means

that the relative efficiencies are not fully determined by ρe and that other parameters also

play a role.

Overall, it can be said that the relative efficiencies of BFH estimators are affected by

the correlations of the sampling errors and the random effects of the two variables. It was

shown in Section 3 that when the correlations of sampling errors and random effects are

both zero, no gain is achievable for both variables. At first thought, it might be expected
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Figure 2: Results of relative efficiency, calculated using (2.9), for the first and second vari-
ables with different values of ρe.

that as either of these correlations increase, the relative efficiency would also improve. It

has been shown here, that while that is true for most cases, it is definitely not true for all

cases, as many of the boxes in Figure 1 and 2 are wide, showing that other parameters also

affect the relative efficiency.

0.1 0.2 0.3 0.5 0.6 0.7 1 1.5 1.7 2 2.2 3 3.3 4.5 5 6.7 7.5 9 10 15 25 30 50 10
0

0.2

0.4

0.6

0.8

1.0

First Variable

R

RE

0.1 0.2 0.3 0.5 0.6 0.7 1 1.5 1.7 2 2.2 3 3.3 4.5 5 6.7 7.5 9 10 15 25 30 50 10
0

0.2

0.4

0.6

0.8

1.0

Second Variable

R

RE

Figure 3: Results of relative efficiency, calculated using (2.9), against ratio, R = rs/rv.

4.2.2 The Effects of the Ratio of Ratio of Variances (R) on Relative Efficiency

The relative efficiency is plotted against the value of R = (rs/rv) in Figure 3. The two panels

clearly indicate that when R=1, BFH and UFH perform very similarly, while the relative

efficiency increases for both variables when R moves away from one in either direction. For

example, low relative efficiences are possible when R is very large say 100 and R is small

say 0.1, for both variables. However, the maximum relative efficiency is very close to 1 for

all values of R, so it is clear that R alone cannot guarantee a gain from bivariate modelling.

Since the relative efficiency is also affected by both ρv and ρe (as shown 4.2.1) an inves-

tigation is now conducted to vary R for fixed ρv and ρe. Figure 4 plots the relative efficiency

against R, fixing ρv = ρe = 0.7. The first noticeable feature is that when R=1 the relative

efficiency becomes exactly one. Figure 4 also shows that the relative efficiency decreases
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when R becomes further away from one in both direction. For example, better gains from

BFH are obtainable when R=100 or R=0.1. Overall, it can be said that the designs which

give the lowest relative efficiency have high ρv, high ρe and high R.

Figures 4-6 show the relative efficiencies vs R for different values of ρv and ρe. Figure

4 presents the results when ρv = ρe = 0.7. Figure 5 shows the case that greater gains of

BFH over UFH are possible when ρv = 0.7 and ρe = 0.1, provided R is also large. The

plots in Figure 5 show the opposite pattern for the two variables. The lower the R the

higher the relative efficiency for the first variable while the reverse is true for the second

variable. Figure 6 gives the result for ρv = 0.1 and ρe = 0.7. The picture flips around the

two variables compared to Figure 5. Now useful gains are possible for the first variable as

R increases and for the second variable as R decreases.
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Figure 4: Results of relative efficiency, calculated using (2.9), against ratio, R = rs/rv, with
ρv = ρe = 0.7.
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Figure 5: Results of relative efficiency, calculated using (2.9), against ratio, R = rs/rv, with
ρv = 0.7, ρe = 0.1.

In summary, gains are achievable when the relative magnitude of the sampling variances

differ from the relative magnitude of the random effects (i.e. R is not close to 1) and gains

are also affected by the values of ρv and ρe.
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Figure 6: Results of relative efficiency, calculated using (2.9), against ratio, R = rs/rv, with
ρv = 0.1, ρe = 0.7.

4.3 Formal Analysis of Numerical Study: Analysis of Variance

In Section 4.2, it was shown that the RE of BFH estimators depends on the different

combinations of parameters. The numerical study can be regarded as a factorial experiment

with RE as the dependent variable and the parameters with the different values shown in

Table 1 as factors. The results can be formally analysed by a linear regression model of

RE given the factors. See Bradley et al. (2015) for an example of analyzing the results of a

simulation study using a formal ANOVA. Two separate regression models have been fitted

for the RE of the first and second variables, in order to assess the main effect of each factor

as well as two-way interaction effects, on the RE.

Figure 7 shows that the residuals of the regression model are approximately normal

which makes the response variables suitable for a linear regression, unlike Bradley et al.

(2015) where a fourth-root transformation was needed to achieve approximate normality.
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Figure 7: Histogram of standardized residuals.

Tables 2 and 3 show the results of ANOVA for both variables respectively where ‘Source’

indicates the source of variability used in the ANOVA, ‘DF’ denotes the degrees of freedom,

‘SS’ denotes the sum of squares, ‘MS’ denotes mean squared error, and F denotes the F-

statistic associated with the source.
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Table 2: Analysis of variance (ANOVA) on relative efficiency of the first variable, for up to
two-way interaction

Source DF SS MS F value R-squared

ρe 5 105.3 21.06 11511.2 0.9060

ρv 5 5.480 1.095 598.731

R 5 16.05 3.209 1754.14

Σv11 8 7.240 0.904 494.409

ρe × ρv 25 12.10 0.484 264.460

ρe× R 25 77.19 3.088 1687.70

ρe × Σv11 40 4.750 0.119 64.8710

ρv× R 25 21.53 0.861 470.716

ρv × Σv11 40 0.570 0.014 7.79800

R×Σv11 40 5.030 0.126 68.7200

Residuals 14361 26.27 0.002

Total 14579 281.5

Table 2 presents the results of an ANOVA for the first variable with up to two-way

interaction between the parameters. The ANOVA indicates that the explanatory variables

including interactions explain 91% of the total variation of the RE for the first variable. In

this case, the most variation (37%) is explained by the correlation of random effects, ρe,

followed by the interaction of ρe with R (27%). The interaction between ρe and ρv explains

4% of the total variation.

The ANOVA for the second variable with up to two-way interactions is presented in

Table 3. Here, all main effects and interactions explain 88% of the total variation. The

highest variation (32%) is explained by the correlation of random effects, ρv. The interaction

between ρv and R and the interaction between ρe and ρv explain 21% and 4% variation

respectively.

Tables 2 and 3 show that most of the variation of the RE of the first variable is explained

by ρe and of the second variable is explained by ρv. It can be concluded that ρe might be

the most important parameter for the first variable and ρv might be the most important

parameter for the second variable. The exploratory analysis described in Subsection 4.2 also

revealed the importance of ρe and ρv for getting lower REs of the first and second variable

respectively.
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Table 3: Analysis of variance (ANOVA) on relative efficiency of the second variable, for up
to two-way interactions

Source DF SS MS F value R-squared

ρe 5 7.060 1.412 777.45 0.8836

ρv 5 72.55 14.51 7989.9

R 5 9.720 1.945 1070.8

Σv11 8 7.430 0.929 511.33

ρe × ρv 25 7.680 0.307 169.19

ρe× R 25 13.02 0.521 286.72

ρe × Σv11 40 3.650 0.091 50.210

ρv× R 25 47.04 1.882 1036.1

ρv × Σv11 40 18.32 0.458 252.18

R ×Σv11 40 11.57 0.289 159.30

Residuals 14361 26.08 0.002

Total 14579 224.1

5 Empirical Study

5.1 Materials and Methods

Small area models are developed using the data set of BDHS 2011 and Bangladesh Popu-

lation and Housing Census 2011. The BDHS covers 600 communities (Primary Sampling

Unit) across 396 sub-districts, comprising 64 districts in 7 divisions. Two anthropometric

standard indices Height-for-age and Weight-for-age (Z-score) are used to calculate the pro-

portion of stunted and underweight children at district level. Three district level statistics

- Proportion of children under 5 years, Proportion of household size with ≤ 4 members and

Average household size are considered as explanatory variables in the FH models. The BFH

model (2.5) as well as the UFH model (2.1) will be used to estimate area prevalences of the

indicators.

5.2 Results of Empirical study

Table 4 presents summary statistics of Stunting prevalence and Underweight prevalence

across the districts. The mean value of Stunting and prevalence of Underweight are 40.16

and 35.73 respectively. The interquartile range is narrow for both variables.

The maximum likelihood (ML) estimate of Σv in the BFH model (2.5) for Stunting and
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Table 4: Five number summary and mean of direct estimates of the prevalence of Stunting
and prevalence of Underweight in percentage across the district

Minimum Lower Quartile Median Mean Upper Quartile Maximum

Stunting 21.21 34.14 38.80 40.16 45.53 68.75

Underweight 15.79 29.68 34.23 35.73 41.83 62.50

Underweight is:

Σ̂v =

 0.00001 0.0000099

0.0000099 0.00001

 (5.1)

The estimated variances for Stunting and Underweight obtained from the corresponding

fitted BFH model are same which is 0.00001. The variance component of Stunting is similar

to Underweight which indicates that there is no much more between area variation in both

variables.

Figure 8 presents the comparison of the direct, univariate and bivariate models against

sample sizes. In Bangladesh, the national level proportion of stunted and underweight chil-

dren aged under 5 are estimated to be 41.0 percent and 36.0 percent respectively (NIPORT

et al., 2013), while district level estimates obtained from SAE models vary across the dis-

tricts (Panels (a) and (b)). Direct estimates are highly variable for those districts with

small (≤ 100) sample size. However, for districts with large (> 100) sample size the direct

estimates are found stable and very close to the FH estimates (Panels (a) and (b)). The

above statements are supported by the pattern of root mean squared errors (RMSE) or

coefficient of variations (CV) of the estimates. The CVs of the direct estimates are almost

double those of FH estimates when the samples are small, however the differences reduce

with the increasing sample size (see Panels (c) and (d)). For FH, CV’s are found below 15

percent for all sample sizes. Panels (e) and (f) show that the direct estimates are randomly

distributed around the FH estimates and they are close to the diagonal line indicating no

evidence of bias.

Although the differences in the UFH and BFH estimates are negligible (Panels (a) and

(b)), the efficiency significantly varies with sample size. Panels (g) and (h) exhibit smaller

RMSE of BFH estimates than those of UFH estimates for both stunting and underweight.

The gain in efficiency (GE=ratio of difference between the RMSEs of UFH and BFH to

RMSE of UFH ) of BFH estimates decreases with sample size (Panels (i) and (j)).

District level maps of Bangladesh for stunting and underweight are shown in Figure

9. The first map (Panel a) shows that the districts of north-western (Rajshahi region)

and central (Dhaka region) had lower prevalence of stunting while the districts of northern

(Mymensingh region) and hill tracts area in south-eastern part had comparatively higher

prevalence of stunting. The prevalence of underweight (Panel b) also followed the pattern

of stunting.
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Figure 8: Comparison of Direct, UFH and BFH estimators

6 Summary

The efficiencies of BFH estimators and UFH estimators have been compared in a numerical

study and an empirical study in this paper. The exploratory results of the numerical study

reveal that the REs of both variables are affected by random effects correlation, sampling

error correlation, and the ratio of the variances of sampling errors and random effects.

Lower RE (good gains) were obtainable with higher values of random effects correlation and

sampling error correlation. The results of numerical study also showed the influence of R

on the RE. There was no gain when the R is equal to one.

BFH and UFH estimators were also applied to small area prevalences of Bangladesh

Demographic Health Survey 2011. Small differences were observed between UFH and BFH
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Figure 9: Spatial distribution of the estimated prevalence of stunting and underweight
among under-5 children at district level using SAE (BFH) estimators

estimates for the considered two indicator variables Stunting and Underweight. Both the

UFH and BFH estimators perform better showing lower RMSEs than the direct estimates

for small sample size. However, BFH performs better than the UFH when the samples are

small.

The generated maps show clear inequality among the districts. The map of both child

malnutrition indicators might help the policy makers and the national and international

organizations in aid distribution for the improvement of child vulnerability.

There is still much scope left for further numerical and empirical research on small area

estimation. In small area estimation, generally, the random effects and sampling errors

are considered to be independently and identically normally distributed with mean zero and

constant variance. However, in practice it is not often true. The distribution of random area

effects can be non-normal, temporally autocorrelated, and spatially-temporally autocorre-

lated. A recent review of small area studies Marhuenda et al. (2013) suggests a univariate

spatio-temporal small area approach which accounts for the spatial autocorrelation pattern

of the random effects. A multivariate Fay-Herriot model incorporating a multivariate version

of spatio-temporal small area approach could also be considered in future research.
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