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SUMMARY

In this paper, we propose an alternative version to the Laplace distribution which we named
as “alternative Laplace distribution (ALD)” and discuss some of its important properties. A
location-scale extension of the ALD is considered and the maximum likelihood estimation
procedures for estimating its parameters is described. Further, the distribution is fitted to
certain real life data sets for illustrating the utility of the model. A simulation study is
carried out to examine the performance of likelihood estimators of the parameters of the
distribution.
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1 Introduction
The Laplace distribution, also called the double exponential distribution was considered as the first
continuous distribution of unbounded support in statistical literature and it is named after the French
mathematician Pierre-Simon Laplace. The Laplace distribution is the distribution of the difference
of two independent random variables with identical exponential distributions. It is often used to
model phenomena with heavy tails or when data has a higher peak than the normal distribution. The
Laplace distribution is defined through the probability density function (p.d.f)

f1 (x;µ, σ) =
1

2σ
e−
|x−µ|
σ , (1.1)

for x ∈ R = (−∞,∞), µ ∈ R and σ > 0. The Laplace distribution with location parameter zero
and scale parameter one is called the classical Laplace distribution and its p.d.f is given by

f2 (x) =
1

2
e−|x|, (1.2)

for x ∈ R.
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Several modifications of the Laplace distribution are currently available in the literature. Some
recent studies in this respect were made by Cordeiro and Lemonte (2011), Jose and Thomas (2014),
Liu and Kozubowski (2015), Mahmoudvand et al. (2015), Kozubowski et al. (2016), Nassar (2016)
and Li (2017). Laplace distribution has wide range of applications in real life to model and analyze
data sets in engineering, financial, industrial, environmental and biological fields.

In this paper, we consider a generalization of the classical Laplace distribution and we call it as
“the alternative Laplace distribution”(or in short “ALD”). As compared to the Laplace distribution,
the main advantage of the ALD is that it possesses both unimodal and bimodal shapes. Also, ALD
accommodates relatively more variation in peakedness compared to Laplace distribution and conse-
quently it also possess heavier tails than the Laplace distribution. Due to these reasons, ALD serves
better than the Laplace distribution and can be used to model several real life situations. Through
this paper, we also consider a location-scale extension of this distribution which we termed as the
“extended alternative Laplace distribution (EALD)” and attempt to highlight the relevance of the
EALD, compared to the existing Laplace distribution with the help of certain real life data sets.

The rest of the paper is organized as follows: In section 2, we present the definition of the ALD
and obtain some basic properties of the distribution through deriving expressions for its c.d.f, mo-
ments, skewness, kurtosis, mean deviation about mean, moment generating function, characteristic
function and cumulant generating function. A location-scale extension of the ALD is discussed in
this section as a remark. Certain reliability measures of the ALD are given in section 3 and in sec-
tion 4 we discuss some order statistics related properties of this distribution. Section 5 contains the
derivation of the Rényi entropy measure of the ALD. Section 6 deals with the maximum likelihood
estimation of ALD and EALD and in section 7 we illustrate the estimation procedures with the help
of certain real life data sets. A simulation study has been carried out in section 8 for examining
the performance of likelihood estimators for the parameters of the EALD. Finally, we conclude the
findings of the study through section 9.

2 Definition and Properties
In this section, first we present the definition of the ALD and investigate some of its important
properties.

Definition 2.1. A random variable X is said to follow alternative Laplace distribution (ALD) with
parameter α if its p.d.f is given by

f (x;α) =
1

2 (α+ 1)
(1 + α |x|) e−|x|, (2.1)

for x ∈ R and α ≥ 0.

A distribution with p.d.f (2.1) hereafter we denoted as ALD(α). Clearly ALD(0) is the classical
Laplace distribution with p.d.f (1.2). Probability plots of the ALD(α) for α ≤ 1 are presented in
Figure 1 and that of α > 1 are given in Figure 2.

We obtain the c.d.f, mode and expression for rth raw moment of the ALD through the following
prepositions. We omit their proofs, since they are straightforward.
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Figure 1: The probability density function of the ALD for α ≤ 1
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Figure 2: The probability density function of the ALD for α > 1

Figure 3: The probability density function of the ALD for selected values of α

Proposition 2.1. The cumulative distribution function (c.d.f) of the ALD with p.d.f (2.1) is:

F (x;α) =


(1+α−αx)ex

2(α+1) , x < 0

1− (1+α+αx)e−x

2(α+1) , x ≥ 0
(2.2)

Figure 4 represents the plots of the cumulative distribution function of the ALD for various
parameter values.

Proposition 2.2. The mode of the ALD is given by

Mode =

 α−1
α and 1−α

α , if α > 1

0, otherwise
(2.3)

Proposition 2.3. For r > 0, the rth raw moment, µ
′

r of the ALD is

µ
′

r = E (Xr) =

 r!(1+α(r+1))
α+1 , if r is even

0, if r is odd.
(2.4)

As a consequence of proposition 2.3, we have the following corollary.
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Figure 4: The cumulative distribution function of the ALD for different values of α

Corollary 2.1. The coefficient of skewness (β1) and the coefficient of kurtosis (β2) of the ALD are
respectively,

β1 =
µ2
3

µ3
2

= 0

and

β2 =
µ4

µ2
2

=
3!(5α+ 1)(α+ 1)

(3α+ 1)2
.

Proof follows from the 2nd, 3rd and 4th central moments (µ2, µ3 and µ4) of the ALD as µ2 =

V ariance = 2!(3α+1)
α+1 , µ3 = 0 and µ4 = 4!(5α+1)

α+1 . These expressions can be easily derived from
(2.4).

From Corollary 2.1, it is quiet trivial that the ALD is symmetric and leptokurtic in nature. It
can be verified that β2 ranges from 3.33 to 6 for the ALD whereas Laplace distribution has a con-
stant kurtosis 6. Therefore, ALD can accommodate data sets with variation in peakedness than the
Laplace distribution.

Next we derive an expression for the rth absolute moment of the ALD through the following
proposition.

Proposition 2.4. For r ≥ 1, the rth absolute moment δr of the ALD is given by

δr =
r! (1 + α(r + 1))

α+ 1
. (2.5)

From (2.5) we obtain the following corollary.
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Corollary 2.2. The mean deviation about mean of ALD is

δ1 =
2α+ 1

α+ 1
.

Next we obtain various generating functions of the ALD through the following propositions.

Proposition 2.5. For any t ∈ (−1, 1), the moment generating function (m.g.f) of the ALD is

MX(t) =
(1 + α− t2 + αt2)

(α+ 1)(1− t2)2
. (2.6)

Proof. By definition, we obtain the m.g.f of the ALD as follows, for any t ∈ (−1, 1)

MX(t) = E(etX) =

∫ ∞
−∞

etx
1

2(α+ 1)
(1 + α |x|)e−|x|dx

=
1

2(α+ 1)

{∫ 0

−∞
e(t+1)x(1− αx)dx+

∫ ∞
0

e(t−1)x(1 + αx)dx

}
=

1

2(α+ 1)

{
1

1 + t
+

α

(1 + t)2
+

1

1− t
+

α

(1− t)2

}
=

(1 + α− t2 + αt2)

(α+ 1)(1− t2)2
.

Proposition 2.6. For any t ∈ R and i =
√
−1, the characteristic function φX(t) of the ALD is given

by

φX (t) =

(
1 + α+ t2 − αt2

)
(α+ 1) (1 + t2)

2 . (2.7)

Proposition 2.7. The nth cumulant νn of the ALD is given by

νn =


2!(3α+1)
α+1 , n = 2

(n− 1)!

[{
2−

( √
1−α√
(α+1)

)n}
((−1)n + 1)

]
, n ≥ 4.

(2.8)

Proof. The cumulant generating function νX(t) of ALD is

νX(t) =

∞∑
n=1

νn
tn

n!
(2.9)

= log[MX(t)] = log

[
1 + α− t2 + αt2

(α+ 1)(1 + t)2(1− t)2

]
= log

(
1 + α− t2 + αt2

)
− log (1 + α)− 2 log (1 + t)− 2 log (1− t) .

(2.10)



116 Kumar & Jose

Now, we expand the logarithmic terms in (2.10), to obtain the following.

νX(t) =
(3α+ 1)t2

α+ 1
+

(α2 + 6α+ 1)t4

2(α+ 1)2
+

(3α3 + 3α2 + 9α+ 1)t6

3(α+ 1)3
+ . . .

+

{
2−

( √
1−α√
(α+1)

)n}
((−1)n + 1) tn

n
+ . . . (2.11)

On equating coefficients of tn

n! in the right hand side expression of (2.9) and (2.11), we get the nth

cumulant νn of the ALD is as given in (2.8). From (2.8), it can be noted that all the odd cumulants
of the ALD are zero.

Remark 2.1. In particular, the 4th, 6th and 8th cumulants of the ALD are respectively

ν4 =
4!(α2 + 6α+ 1)

2(α+ 1)2
,

ν6 =
6!(3α3 + 3α2 + 9α+ 1)

3(α+ 1)3

and

ν8 =
8!(α4 + 12α3 + 6α2 + 12α+ 1)

4(α+ 1)4
.

Remark 2.2. Let X ∼ ALD(α) with p.d.f. (2.1). Then Y = µ + σX is said to have an extended
alternative Laplace distribution (EALD) with parameters α, µ and σ, which has the following p.d.f.

f (y;α, µ, σ) =
1

2σ (α+ 1)

(
1 + α

∣∣∣∣y − µσ
∣∣∣∣) e−|

y−µ
σ |, (2.12)

for −∞ < y <∞, α > 0, −∞ < µ <∞ and σ > 0.

The cumulative distribution function of the EALD is given by

F (y;α, µ, σ) =


(σ+αµ+ασ−αy) e(

y−µ
σ )

2(α+1)σ , y < µ

1− (αy−αµ+ασ+σ) e−( y−µσ )
2(α+1)σ , y ≥ µ.

(2.13)

The further results of EALD are analogous to that of ALD as shown above and hence omitted.

3 Reliability Measures
This section deals with some reliability measures of ALD. Here we derive expressions for the reli-
ability measures like survival function, hazard rate function and mean residual life function for the
ALD so that they can be useful for studying reliability of a system involving one unit. First we
present an expression for survival function of the distribution through the following proposition, its
proof is omitted as it is straightforward.
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Proposition 3.1. The survival function S(x) of ALD(α) is given by

S (x) = 1− F (x;α)

=


2(α+1)−(1+α−αx) ex

2(α+1) , x < 0

(1+αx+α) e−x

2(α+1) , x ≥ 0.
(3.1)

Proposition 3.2. The failure rate function (or hazard rate function) of the ALD is given by

h (x) =

 (1−αx) ex
2(α+1)−(1+α−αx) ex , x < 0

1+αx
1+α+αx , x ≥ 0.

(3.2)

The proof follows directly from the definition of failure rate function and hence omitted.
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Figure 5: The hazard rate function of the ALD for different values of α

It is to be noted that the monotonicity of failure rate function investigates whether the chance of
occurrence of an event in the future over a fixed time interval increases or decreases over time. The
failure rate function of the ALD is graphically represented in Figure 5. From Figure 5, we observe
that the failure rate function of the ALD shows both increasing and decreasing nature.

Through the following theorem we precisely establishes the nature of the failure rate function of
the ALD.

Theorem 3.1. If X follows ALD with failure rate function as given in (3.2), then X has decreasing
failure rate (DFR) for any α > 1 such that 1−α

α ≤ x < 0 and non-decreasing failure rate (IFR)
elsewhere.
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Proof. On differentiating (3.2) with respect to x, we have

d

dx
h(x) =


ex[exα2−2(α+1)(α−1+αx)]

[2(α+1)−ex(α+1−αx)]2 , x < 0

α2

(α+1+αx)2 , x ≥ 0.

From the above expression, it follows that when α > 1, d[h(x)]
dx < 0 for 1−α

α < x < 0 and
d[h(x)]
dx > 0, for all other values of x and α. Therefore, for α > 1 such that 1−α

α ≤ x < 0, the failure
rate function of ALD is DFR and when α ≤ 1 such that x < 1−α

α , it is IFR. The failure rate function
of the ALD is IFR for all values of α when x ≥ 0.

In life testing situations, it is exciting to know about the expected additional lifetime of a compo-
nent given that it has survived until a particular time. Through the following proposition we compute
the mean residual life function of the ALD based on survival function given in (3.1).

Proposition 3.3. The mean residual life function (MRLF) of ALD is given by

m (x) =

 −2x(α+1)−(2α+1)+(2α+1−αx)ex
2(α+1)−(1+α−αx)ex , x < 0

2α+1+αx
α+1+αx , x > 0.

(3.3)

Proof. For x < 0, the MRLF of ALD is obtained by

m (x) = E [X − x|X > x] =
1

1− F (x)

∞∫
x

(1− F (t))dt

=
1

1− (1−αx+α)ex
2(α+1)

∫ 0

x

(
1− (1− αt+ α)et

2(α+ 1)

)
dt

=
−2x (α+ 1)− (2α+ 1) + ex (2α+ 1− αx)

2 (α+ 1)− ex (α+ 1− αx)

and for x > 0, the MRLF of the ALD is given by

m (x) =
2(α+ 1)

(α+ 1 + αx)e−x

∫ ∞
x

(α+ 1 + αt)e−t

2(α+ 1)
dt

=
2α+ 1 + αx

α+ 1 + αx
.

4 Order Statistics

In this section, we discuss about the distribution of order statistics and the qth moment of the kth

order statistics of the ALD.
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Suppose X1, X2, . . . , Xn is a random sample from 2.1. Let X1:n < X2:n < . . . < Xn:n denote
the corresponding order statistics. For k ≥ 1, the p.d.f and c.d.f of the kth order statistic Xk:n of the
ALD are given by

fXk:n(x) =


n!(1−αx) ex

(k−1)!(n−k)!2(α+1)

n−k∑
r=0

(
n−k
r

)
(−1)r

[
[α+1−αx] ex

2(α+1)

]k+r−1
, x < 0

n!(1+αx) e−x

(k−1)!(n−k)!2(α+1)

n−k∑
r=0

(
n−k
r

)
(−1)r

[
1− [α+1+αx] e−x

2(α+1)

]k+r−1
, x ≥ 0

(4.1)

and

FXk:n(x) =


n∑
j=k

n−j∑
r=0

(
n
j

)(
n−j
r

)
(−1)r

[
[α+1−αx] ex

2(α+1)

]j+r
, x < 0

n∑
j=k

n−j∑
r=0

(
n
j

)(
n−j
r

)
(−1)r

[
1− [α+1+αx] e−x

2(α+1)

]j+r
, x ≥ 0.

(4.2)

Now, by using (4.1), we obtain the following proposition.

Proposition 4.1. For q ≥ 1 and 1 ≤ k ≤ n, the qth moment of the kth order statistic Xk:n of the
ALD is given by

E(Xq
k:n) =

n!

(k − 1)!(n− k)!2(α+ 1)


n−k∑
r=0

k+r−1∑
m=0

m∑
j=0

(
n− k
r

)(
k + r − 1

m

)(
m

j

)

× (−1)r+q αk+r+j−m−1(q + j)!

[2(α+ 1)]
k+r−1

(k + r)q+j+2
[k + r + α (q + j + 1)]

+

n−k∑
r=0

k+r−1∑
m=0

m∑
j=0

j+1∑
i=0

(
n− k
r

)(
k + r − 1

m

)(
m

j

)(
j + 1

i

)

× (−1)r+m αm+i−j(q + i)!

[2(α+ 1)]
m

(m+ 1)q+i+1

}
. (4.3)
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Proof. By definition,

E(Xq
k:n) =

∫ ∞
−∞

xqfXk:n(x)dx

=
n!

(k − 1)!(n− k)!2(α+ 1)

{
n−k∑
r=0

(
n−k
r

)
(−1)rαk+r−1

[2(α+ 1)]
k+r−1

×
∫ 0

−∞

[
xq(1− αx)e(k+r)x

[
1 +

1− αx
α

]k+r−1]
dx

+

n−k∑
r=0

(
n− k
r

)
(−1)r

∫ ∞
0

[
xq(1 + αx)e−x

[
1− [α+ 1 + αx] e−x

2(α+ 1)

]k+r−1]
dx

}

=
n!

(k − 1)!(n− k)!2(α+ 1)


n−k∑
r=0

k+r−1∑
m=0

m∑
j=0

(
n− k
r

)(
k + r − 1

m

)(
m

j

)

× (−1)r+jαk+r+j−m−1

[2(α+ 1)]
k+r−1

∫ 0

−∞

[
xq+j(1− αx)e(k+r)x

]
dx

+

n−k∑
r=0

k+r−1∑
m=0

m∑
j=0

(
n− k
r

)(
k + r − 1

m

)(
m

j

)
(−1)r+mαm−j

[2(α+ 1)]
m

×
∫ ∞
0

[
xqe−(m+1)x

j+1∑
i=0

(
j + 1

i

)
αixi

]
dx

}
,

by binomial expansion. Now, on evaluating the integrals, we get (4.3).

5 Entropy
In this section we obtain an entropy measure of the ALD. An entropy of a random variable X is a
measure of variation of the uncertainty. A popular entropy measure introduced by Rényi (1961) is
Rényi entropy. Through the following proposition we obtain an expression for the Rényi entropy of
the ALD.

Proposition 5.1. The Rényi entropy IR(γ) of the ALD is obtained as

IR(γ) =
1

1− γ
{−(γ − 1) log(2)− γ log(α+ 1)− log(γ)

+ log

(
2F1

(
−γ, 1; ;

−α
γ

))}
, (5.1)

where

2F1(a, b; c; θ) =

∞∑
j=0

(a)j(b)j
(c)j

θj

j!
(5.2)

is the Gauss Hypergeometric Function.
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Proof. By definition, Rényi entropy of a distribution with p.d.f f(.) is given by

IR (γ) =
1

1− γ
log

{∫
fγ (x) dx

}
, (5.3)

where 1 6= γ > 0. Thus, for the ALD with p.d.f (2.1), note that∫
fγ(x)dx =

∫ ∞
−∞

[
1

2 (α+ 1)
(1 + α |x|) e−|x|

]γ
dx

=
1

2γ (α+ 1)γ

{∫ 0

−∞
(1− αx)γeγxdx+

∫ ∞
0

(1 + αx)γe−γxdx

}
.

Now, using the series expansions,

(1 + x)a =

∞∑
j=0

(a+ 1− j)j
xj

j!
(5.4)

and

(1− x)a =

∞∑
j=0

(a+ 1− j)j
(−1)jxj

j!
, (5.5)

for any a ∈ R and (x)k = x(x+ 1) . . . (x+ k − 1) for k ≥ 1 with (x)0 = 1. Then, we get

∫
fγ(x)dx =

1

2γ(α+ 1)γ


∫ 0

−∞

∞∑
j=0

(γ + 1− j)j
(−1)j(αx)j

j!
eγxdx

+

∫ ∞
0

∞∑
j=0

(γ + 1− j)j
(αx)j

j!
e−γxdx


=

1

2γ−1(α+ 1)γ

∞∑
j=0

(γ + 1− j)j
αjΓ(j + 1)

j!(γ)j+1
. (5.6)

Now, by applying the identity (a− n)n = (−1)n(1− a)n in (5.6), we get∫
fγ(x)dx =

1

2γ−1γ (α+ 1)γ
2F1(−γ, 1; ;

−α
γ

),

which implies (5.1).

6 Estimation

6.1 Parameter Estimation of ALD

Let X1, X2, . . . , Xn be a random sample of size n from ALD with p.d.f given in (2.1). Let
X(1), X(2), . . . , X(n) be the ordered sample. Assume X(r) < 0 < X(r+1), for a particular r =
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1, 2, . . . , n. Then,the loglikelihood function l(α) of the sample is the following, in which
∑
Ji

,

denotes the summation over the set Ji such that J1 = {j : Y(j) < 0, for j = 1, 2, . . . , r} and
J2 = {j : Y(j) ≥ 0, for j = r + 1, . . . , n}.

l(α) = −n ln (2)− n ln(α+ 1) +
∑
J1

xi −
∑
J2

xi +
∑
J1

ln (1− αxi) +
∑
J2

ln (1 + αxi).

(6.1)

On differentiating (6.1) with respect to the parameter α and then equating to zero, we obtain the
following likelihood equation.

−n
α+ 1

−
∑
J1

xi
(1− αxi)

+
∑
J2

xi
(1 + αxi)

= 0 (6.2)

On solving the equation (6.2), we get the maximum likelihood estimator of the parameter α of the
ALD.

6.2 Estimation of Parameters of EALD

Let Y1, Y2, . . . , Yn be a random sample of size n from EALD with p.d.f given in (2.12). Let
Y(1), Y(2), . . . , Y(n) be the ordered sample. Assume Y(r) < µ < Y(r+1), for a particular r =

1, 2, . . . , n. Then,the loglikelihood function l(α) = l(α, µ, σ) of the sample is the following, in
which

∑
Ij

, denotes the summation over the set Ij such that I1 = {i : Y(i) < µ, for i = 1, 2, . . . , r}

and I2 = {i : Y(i) ≥ µ, for i = r + 1, . . . , n}.

l(α) = −n ln (2)− n ln(σ)− n ln(α+ 1)− 1

σ

∑
I1

(µ− yi)−
1

σ

∑
I2

(yi − µ)

+
∑
I1

ln

(
1 + α

(
µ− yi
σ

))
+
∑
I2

ln

(
1 + α

(
yi − µ
σ

))
.

(6.3)

On differentiating (6.3) with respect to the parameters α, µ and σ and then equating to zero, we
obtain the following likelihood equations.

−n
α+ 1

+
∑
I1

(µ− yi)
σ
[
1 + α

(
µ−yi
σ

)] +
∑
I2

(yi − µ)

σ
[
1 + α

(
yi−µ
σ

)] = 0, (6.4)

n− 2r

σ
+
α

σ

∑
I1

1

1 + α
(
µ−yi
σ

) − α

σ

∑
I2

1

1 + α
(
yi−µ
σ

) = 0 (6.5)

and

−n
σ

+
1

σ2

∑
I1

(µ− yi) +
1

σ2

∑
I2

(yi − µ)− α

σ2

∑
I1

(µ− yi)
1 + α

(
µ−yi
σ

)
− α

σ2

∑
I2

(yi − µ)

1 + α
(
yi−µ
σ

) = 0. (6.6)
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On solving the equations (6.4) - (6.6) we get the maximum likelihood estimators of the parameters
α, µ and σ of the EALD.

7 Applications

For numerical illustration, in this section we consider the following three different types of data
sets. In Data set 1, we consider a data on market shares of airlines of 1000 U.S. domestic routes
for 4th quarter of 2002, which one may find from the website of U.S. department of transportation:
https://www.transportation.gov.

The data set 2 is taken from Weisberg (2005), which discusses the variation in rent paid in 1977
for agricultural land planted to alfalfa of the 67 countries in Minnesota. Alfalfa is a high protein
crop that is suitable feed for dairy cows. In this data set our variable under study is the average rent
paid for all tillable land.
Data set 2 : 15.5, 22.29, 12.36, 31.84, 83.9, 72.25, 27.14, 40.41, 12.42, 69.42, 48.46, 69., 26.09,
62.83, 77.06, 58.83, 59.48, 8.5, 20.64, 81.4, 18.92, 50.32, 21.33, 46.85, 65.94, 38.68, 51.19, 59.42,
24.64, 26.94, 46.2, 26.86, 20., 62.52, 56., 71.41, 65., 36.28, 59.88, 23.62, 24.2, 17.09, 44.56, 34.46,
31.55, 26.94, 58.71, 65.74, 69.05, 57.54, 21.73, 5., 51., 18.25, 69.88, 26.68, 75.73, 41.77, 48.5,
21.89, 38.33, 53.95, 17.17, 82., 40.6, 53.89, 54.17

The dataset 3 is a voltage drop data which describes the battery voltage drop in a guided missile
motor observed over the time of missile flight. This dataset is taken from Montgomery et al. (2015).
Data set 3 : 8.33, 8.23, 7.17, 7.14, 7.31, 7.6, 7.94, 8.3, 8.76, 8.71, 9.71, 10.26, 10.91, 11.67, 11.76,
12.81, 13.3, 13.88, 14.59, 14.05, 14.48, 14.92, 14.37, 14.63, 15.18, 14.51, 14.34, 13.81, 13.79,
13.05, 13.04, 12.6, 12.05, 11.15, 11.15, 10.14, 10.08, 9.78, 9.8, 9.95, 9.51

By using MATHEMATICA software, we have fitted the models EALD (α, µ, σ) and Laplace
(µ, σ) to all the above three data sets by utilizing maximum likelihood estimation procedure. The
Kolmogorov-Smirnov statistic (KSS) is obtained in each case inorder to assess the goodness of
fit. The numerical results obtained are presented in Tables 1, 2 and 3. For model comparison, we
have also computed some well known information criterion-such as Akaike’s Information Criterion
(AIC), the Bayesian Information Criterion (BIC) and the corrected Akaike’s Information Criterion
(AICc), which are also included in Tables 1, 2 and 3.

Based on AIC values one may also compute probability of betterment to select a suitable model
for a data in hand. Probability of betterment (pi) is the relative probability to ith model over the
model with minimum AIC and it is obtained using the formulae (see Burnham and Anderson (2004)
for more details)

pi = exp

{
−∆i

2

}
,

where ∆i = AIC of ith model - AIC of model having minimum value. Here, the probability of
betterment has been computed for Laplace distribution over EALD and hence we denote it as p2.
For data set 1, p2 ≈ 0, which indicates that there is approximately 0% probability that Laplace
distribution will be a better model compared to EALD for analyzing the data. Similarly, for the data
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Table 1: Estimated values of the parameters for the EALD and Laplace distribution with respective
KSS, AIC, BIC and AICc values for the Data set 1.

Estimates of the Parameters Laplace (µ, σ) EALD(α, µ, σ)

α̂ — 3.0574

µ̂ 59.24 59.2912

σ̂ 15.8857 9.05925

KSS 0.06341 0.03319

AIC 8921.14 8815.08

BIC 8930.95 8829.8

AICc 8921.15 8815.1

Table 2: Estimated values of the parameters for the EALD and Laplace distribution with respective
KSS, AIC, BIC and AICc values for the Data set 2.

Estimates of the Parameters Laplace (µ, σ) EALD(α, µ, σ)

α̂ — 60868.8

µ̂ 44.56 43.2383

σ̂ 18.4687 9.24426

KSS 0.16352 0.11797

AIC 621.636 602.425

BIC 626.045 609.039

AICc 621.823 602.806

Table 3: Estimated values of the parameters for the EALD and Laplace distribution with respective
KSS, AIC, BIC and AICc values for the Data set 3.

Estimates of the Parameters Laplace (µ, σ) EALD(α, µ, σ)

α̂ — 61458.2

µ̂ 11.15 11.4328

σ̂ 2.24965 1.12602

KSS 0.152183 0.102028

AIC 209.157 197.642

BIC 212.584 202.782

AICc 209.472 198.29
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Table 4: Estimates of the parameters and the corresponding bias and mean square error

Sample Size Parameters Estimates M.S.E Bias

α 4.7339 4.9213 0.2339

n=200 µ 4.9536 0.0881 -0.0464

σ 2.0426 0.1371 0.0426

α 4.7027 1.8526 0.2027

n=350 µ 5.0198 0.0318 0.0198

σ 2.0367 0.1064 0.0367

α 4.3579 1.3140 -0.1421

n=500 µ 5.0084 0.0238 0.0084

σ 2.0190 0.0060 0.0190

set 2, p2 = 0.000067, which indicates that there is 0.0067% probability that Laplace distribution
will be a better model compared to EALD for analyzing data set 2. Also we can observe that for the
data set 3, p2 = 0.003159, which indicates that there is 0.316% probability that Laplace distribution
will be a better model compared to EALD for analyzing data set 3. It is clear from the tables and
also from the evaluated values of probability of betterment that the EALD is a more appropriate
model to the data sets when compared to Laplace distribution.

8 Simulation

In this section, we investigate the behaviour of the maximum likelihood estimators for a finite sample
size n by conducting a brief simulation study as follows. We have generated samples of sizes 200,
350 and 500 from the EALD using inverse c.d.f transformation. From the generated samples, we
obtain maximum likelihood estimates of α, µ and σ. Then we compute average bias and average
mean square error (MSE) occurred in the estimates of α, µ and σ from 1000 Monte Carlo replicates.
The computation of average bias and MSE are based on the following formulas,

Bias =
1

1000

1000∑
i=1

(ĥi − hi)

MSE =
1

1000

1000∑
i=1

(ĥi − hi)2

where, ĥi and hi are the estimated and true values of either α or µ or σ. The true values of the
parameters are α = 4.5, µ = 5 and σ = 2. The results obtained are presented in Table 4.
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From Table 4, it can be observed that both the bias and MSE decreases as the sample size
increases. Thus, the simulation study supports the appropriateness of our model and accuracy on the
estimates obtained.

9 Conclusion

An alternative to the well-known Laplace distribution has been proposed through the name ”alterna-
tive Laplace distribution (ALD)” in the present study. The ALD possess both bimodal and unimodal
nature whereas the Laplace distribution is always unimodal. While the measure of peakedness for
Laplace distribution is a constant, in case of the ALD, the kurtosis is a function of the parameter
allowing wider range. The heavier tails of ALD when compared to Laplace distribution enables
the slower death of the model. The failure rate of ALD exhibits both increasing and decreasing
behaviour over the real line, whereas the failure rate of Laplace distribution is increasing in the neg-
ative support and remains constant in the non-negative support of the random variable. These char-
acterizations of the ALD makes it more suitable in practical situations as an alternative to Laplace
distribution. The feasibility of the location-scale extended class of ALD over the Laplace distribu-
tion in modelling real life data sets especially in industrial and financial sectors have been illustrated
in the present study.
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