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SUMMARY

In this paper, estimation of parameters of Kumaraswamy-exponential distribution with
shape parameters α and β is considered based on a progressively type-II censored sample
with binomial removals. Together with the unknown parameters, the removal probability
p is also estimated. Bayes estimators are obtained using different loss functions such as
squared error, LINEX loss function and entropy loss function. All Bayesian estimates are
compared with the corresponding maximum likelihood estimates numerically in terms of
their bias and mean square error values and found that Bayes estimators perform better than
MLE’s for β and p and MLEs perform better than Bayes estimators for α. A real data set
is also used for illustration.

Keywords and phrases: Kumaraswamy-exponential distribution; Progressive type-II cen-
soring; Binomial removals; Bayes estimates; MCMC method

1 Introduction
Censored sampling is common in life-testing experiments and it arises usually due to the failure of
experimenter to observe failure times of all units on a life-test. In medical and industrial applications,
researchers have to treat censored data because they usually do not have sufficient time to observe
the lifetime of all subject in the study. There are different censoring schemes; for detail see, Lawless
(2003). The most common censoring schemes are type-I and type-II censoring schemes. One of the
drawbacks of the conventional type-I or type-II schemes is that they do not permit the flexibility of
removal of units at points other than the terminal points of the experiment. This method is considered
to be very efficient in terms of cost and time especially when the items/subjects being tested are very
expensive (see Balakrishnan and Aggarwala, 2000).

The progressive type-II censoring scheme is defined as follows. Let X1, . . . , Xn be independent
and identically distributed (i.i.d.) random lifetimes of n items. At the time of the first failure,
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noted as X1:m:n, R1 units are randomly removed from (n − 1) surviving units. Similarly at the
time of the second failure, noted as X2:m:n, R2 units from the (n − R1 − 2) units are randomly
removed. This process continuous until, at the time of the mth observed failure, the remaining
(n−m−R1 −R2 − · · · −Rm−1) units are all removed from the experiment.

Usually, in progressive type-II censoring, the schemes R1, R2, . . . , Rm are all pre-fixed. How-
ever, random occurrence of these numbers may be seen in some practical situations. For example,
in some reliability experiments, an experimenter might decide against testing of some of the units
as it might be inappropriate or too dangerous to carry out the testing. In such cases, the removal of
units after each failure tends to exhibit a random pattern. This leads to progressive censoring with
random removals. In this paper, our assumption is that the units to be removed at the ith failure is
random and the random removal Ri follows a binomial distribution with parameter p. It means that
unit leaves with equal probability p and the probability of Ri units leaving after the occurrence of
ith failure for i = 1, 2, . . . ,m is

P (R1 = r1) =

(
n−m
r1

)
pr1 (1− p)n−m−r1 (1.1)

and for i = 2, . . . ,m

P (Ri = ri |Ri−1 = ri−1, . . . , R1 = r1) =

(
n−m−

i−1∑
j=1

rj

ri

)
pri (1− p)

n−m−
i−1∑
j=1

rj
, (1.2)

where 0 ≤ ri ≤ n−m−
i−1∑
j=1

rj . Furthermore, we assume that Ri is independent of Xi for all i. The

schematic representation of the progressive type-II censoring with binomial removals is illustrated
in Table 1.

Table 1: schematic representation of the progressive type-II censoring with binomial removals

Process The number in life testing Failures Binomial removals Remains

1 n 1 R1 ∼ B(n−m, p) n− 1−R1

2 n− 1−R1 1 R2 ∼ B
(
n−m−R1, p

)
n− 2−R1 −R2

· · · · · · · · · · · · · · ·

m− 1 n− (m− 2)−
m−2∑
j=1

Rj 1 Rm−1 ∼ B
(
n−m−

m−2∑
j=1

Rj , p
)

n− (m− 1)−
m−1∑
j=1

Rj

m n− (m− 1)−
m−1∑
j=1

Rj 1 Rm = n−m−
m−1∑
j=1

Rj 0

The joint distribution of X = (X1:m:n, X2:m:n, . . . , Xm:m:n) and R = (R1, R2, . . . , Rm) is
obtained as

fX,R
(
x1:m:n, x2:m:n, . . . , xm:m:n, r | p

)
= fX

(
x1:m:n, x2:m:n, . . . , xm:m:n

)
P
(
r | p

)
, (1.3)
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where

fX (x1:m:n, x2:m:n, . . . , xm:m:n) = C

m∏
i=1

fXi:m:n
(xi:m:n) {1− FXi:m:n

(xi:m:n)}ri ,

r = (r1, r2, . . . , rm), C is a constant defined as

C = n(n−r1−1)(n−r1−r2−2) · · · (n−r1−r2) · · · (n−r1−r2−· · ·−rm−1−m+1) (1.4)

and P (r | p) is the joint probability distribution of R = (R1, R2, . . . , Rm) defined as

P (r | p) = P (Rm = rm |Rm−1 = rm−1, . . . , R1 = r1)P (R2 = r2 |R1 = r1)P (R1 = r1) .

Therefore from (1.1) and (1.2), we have

P (r | p) = (n−m)!
m−1∏
j=1

rj !
(
n−m−

m−1∑
j=1

rj

)
!

p

m−1∑
j=1

rj
(1− p)

(m−1)(n−m)−
m−1∑
j=1

(m−j)rj !
. (1.5)

Statistical inference on different lifetime distributions under progressive censoring with random
removals were considered by several authors. Yuen and Tse (1996) considered parametric estima-
tion for Weibull distribution under progressive censoring with random removals. Tse et al. (2000)
considered statistical analysis for Weibull distributed lifetime data under type-II progressive cen-
soring with binomial removals. Wu and Chang (2003) and Wu et al. (2004) discussed inference in
the Pareto distribution based on progressive type-II censoring with random removals. Amin (2008)
discussed Bayesian inference procedures of the Pareto distribution under progressive censoring with
binomial removals. Al-Zahrani (2012) derived the maximum likelihood estimators of the General-
ized Pareto distribution under progressive censoring with binomial removals. Azimi and Yaghmaei
(2013) considered the Bayesian estimation based on Rayleigh distribution under progressive type-II
censored data with binomial removals. Feroze and El-Batal (2013) derived the maximum likelihood
estimators of the Kumaraswamy distribution under progressive type-II censored data with random
removals. Azimi et al. (2014) discussed statistical inference procedures of the Pareto distribution us-
ing progressive type-II censoring data with binomial removals. Chacko and Mohan (2018) discussed
statistical inference for Gompertz distribution under progressive type-II censoring with binomial re-
movals.

In this paper, we consider progressive type-II censored sample taken from a Kumaraswamy-
exponential distribution with probability density function (pdf) given by

f (x |α, β) = αβe−x
(
1− e−x

)α−1 (
1−

(
1− e−x

)α)β−1
, x > 0, (1.6)

and cumulative distribution function (cdf) given by

F (x |α, β) = 1−
(
1−

(
1− e−x

)α)β
, x > 0, (1.7)

where α > 0, β > 0 are two shape parameters.
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Through out the paper we use the notation KE(α, β) to denote Kumaraswamy-Exponential dis-
tribution with shape parameters α and β. KE distribution is a generalization of the Exponential
distribution which is developed as a model for problems in environmental studies and survival anal-
ysis. Recently several authors have studied the Kumaraswamy distribution and its Generalizations
(see Mohammed, 2014; de Araujo Rodrigues and Silva, 2015). Nadarajah et al. (2012) have studied
general results for the Kumaraswamy-G distribution and discussed its properties. Elbatal (2013) in-
troduced the Kumaraswamy linear exponential distribution and obtained its distributional properties.
Lemonte et al. (2013) considered an exponentiated Kumaraswamy distribution and studied its prop-
erties.

This paper is organised as follows. In Section 2, maximum likelihood estimates of α, β and p
are obtained. The asymptotic variance-covariance matrix of the estimates is also obtained in this
section. In Section 3, Bayes estimates for α, β and p are obtained for different loss functions such
as squared error, LINEX and general entropy. In Section 4, a simulation study is performed for
analyzing the properties of different estimators developed in this paper. In Section 5, we illustrate
the estimation procedure using a real data. Finally, a conclusion is given in Section 6.

2 Maximum likelihood Estimation

Let X1:m:n, X2:m:n, . . . , Xm:m:n, 1 ≤ m ≤ n be a progressively type-II censored sample observed
from a life test involving n units taken from a KE(α, β) distribution and (R1, R2, . . . , Rm) being
the censoring scheme with probability distribution defined in (1.5). Then the joint pdf of X =

(X1:m:n, X2:m:n, . . . , Xm:m:n) and R = (R1, R2, . . . , Rm) is given by

fX,R (x1:m:n, x2:m:n, . . . , xm:m:n, r|p) = fX (x1:m:n, x2:m:n, . . . , xm:m:n) P (r| p) , (2.1)

where

f(X1:m:n,X2:m:n,...,Xm:m:n) (x1:m:n, x2:m:n, . . . , xm:m:n)

= Cαmβm
m∏
i=1

e−xi:m:n
(
1− e−xi:m:n

)α−1. [
1−

(
1− e−xi:m:n

)α]β(ri+1)−1
,

P (r| p) is as given in (1.5) and C is as given in (1.4).

Then the likelihood function of α, β and p is given by

L (α, β, p |x, r) ∝ αmβm
m∏
i=1

e−xi:m:n
(
1− e−xi:m:n

)α−1
(2.2)

×
[
1−

(
1− e−xi:m:n

)α]β(ri+1)−1
p

m−1∑
j=1

rj
(1− p)

(m−1)(n−m)−
m−1∑
j=1

(m−j)rj
.
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Thus the log-likelihood function is given by

logL (α, β, p |x, r) = m logα+m log β −
m∑
i=1

xi:m:n + (α− 1)

m∑
i=1

log
(
1− e−xi:m:n

)
+

m∑
i=1

{β (ri + 1)− 1} log
[
1−

(
1− e−xi:m:n

)α]
+
(m−1∑
j=1

rj

)
log p

+
(
(m− 1) (n−m)−

m−1∑
j=1

(m− j) rj
)
log (1− p) . (2.3)

Thus we have

∂ logL

∂α
=
m

α
+

m∑
i=1

log
(
1− e−xi:m:n

)
−

m∑
i=1

{β (ri + 1)− 1} (1− e−xi:m:n)
α
log (1− e−xi:m:n)

[1− (1− e−xi:m:n)
α
]

(2.4)

∂ logL

∂β
=
m

β
+

m∑
i=1

(ri + 1) log[1−
(
1− e−xi:m:n

)α
(2.5)

∂ logL

∂p
=

m−1∑
j=1

rj

p
−

(m− 1) (n−m)−
m−1∑
j=1

(m− j) rj

1− p
. (2.6)

The maximum likelihood estimators of the parameters α, β and p respectively can then be obtained
as the solution of the following normal equations

m

α
+

m∑
i=1

log
(
1− e−xi:m:n

)
−

m∑
i=1

{β (ri + 1)− 1} (1− e−xi:m:n)
α
log (1− e−xi:m:n)

[1− (1− e−xi:m:n)
α
]

= 0 (2.7)

m

β
+

m∑
i=1

(ri + 1) log
[
1−

(
1− e−xi:m:n

)α]
= 0 (2.8)

m−1∑
j=1

rj

p
−

(m− 1) (n−m)−
m−1∑
j=1

(m− j) rj

1− p
= 0. (2.9)

Thus from (2.5) and (2.8), we have

β = − m
m∑
i=1

(ri + 1) log [1− (1− e−xi:m:n)
α
]
. (2.10)



152 Mohan & Chacko

On substituting (2.10) into (2.7), we get

m

α
+

m∑
i=1

log
(
1− e−xi:m:n

)
+

m∑
i=1

{
m (ri + 1)

m∑
i=1

(ri + 1) log [1− (1− e−xi:m:n)
α
]
+ 1

}
(1− e−xi:m:n)

α
log (1− e−xi:m:n)

[1− (1− e−xi:m:n)
α
]

= 0.

(2.11)

The maximum likelihood estimator α̂ of α can be obtained as solution of the nonlinear equation of
the form g (α) = α, where

g (α) = −m

(
m∑
i=1

log
(
1− e−xi:m:n

)
−

m∑
i=1

[
m (1 + ri)

m∑
i=1

(1 + ri) log [1− (1− e−xi:m:n)
α
]
− 1

]

× (1− e−xi:m:n)
α
log (1− e−xi:m:n)

[1− (1− e−xi:m:n)
α
]

)−1
. (2.12)

Let α̂ be the ML estimator of α by solving the non linear equation g (α) = α and then by using
(2.10), the ML estimator of β will be given by

β̂ = − m
m∑
i=1

(1 + ri) log
[
1− (1− e−xi:m:n)

α̂
] . (2.13)

Also from (2.6) and (2.9), we have the ML estimator of p as

p̂ =

m−1∑
j=1

rj

(m− 1) (n−m)−
m−1∑
j=1

(m− j) rj +
m−1∑
j=1

rj

. (2.14)

2.1 Interval Estimation

In this section, the appropriate confidence intervals of the parameters based on asymptotic distri-
butions of ML of the parameters α, β and p are obtained. Based on progressive censored samples,
the elements of the Fisher information matrix for the parameters of the KE distribution have been
derived explicitly. The Fisher information matrix can be defined as

I = −E


∂2 logL
∂α2

∂2 logL
∂α∂β

∂2 logL
∂α∂p

∂2 logL
∂β∂α

∂2 logL
∂β2

∂2 lnL
∂β∂p

∂2 logL
∂p∂α

∂2 logL
∂p∂β

∂2 lnL
∂p2

 .



Statistical inference for Kumaraswamy-exponential distribution . . . 153

As the exact mathematical expressions for the above expectations are difficult to obtain, we give the
approximate (observed) information matrix, which is obtained by dropping the expectation operator
E. It can be written as

I = −


∂2 logL
∂α2

∂2 logL
∂α∂β

∂2 logL
∂α∂p

∂2 logL
∂β∂α

∂2 logL
∂β2

∂2 logL
∂β∂p

∂2 lnL
∂p∂α

∂2 logL
∂p∂β

∂2 logL
∂p2

 =

 Iαα Iαβ Iαp

Iβα Iββ Iβp

Ipα Ipβ Ipp

 ,

where

Iαα = −m
α2
−

m∑
i=1

{β (ri + 1)− 1}
[
log
(
1− e−xi:m:n

)]2{ (1− e−xi:m:n)
α

[1− (1− e−xi:m:n)
α
]
2

}
,

Iαβ = Iβα = −
m∑
i=1

(ri + 1) (1− e−xi:m:n)
α
log (1− e−xi:m:n)

[1− (1− e−xi:m:n)
α
]

,

Iββ = −m
β2
, Ipp =

m−1∑
i=1

ri

p2
+

(m− 1) (n−m)−
m−1∑
i=1

(m− i) ri

(1− p)2
,

Iαp = Ipα = Iβp = Ipβ = 0.

Therefore the variance-covariance matrix may be approximated as

V =

 Vαα Vαβ 0

Vβα Vββ 0

0 0 Vpp

 =

 Iαα Iαβ 0

Iβα Iββ 0

0 0 Ipp


−1

.

Thus the asymptotic distribution of the MLEs can be written as follows (see, Miller (1981)),[
(α̂− α) ,

(
β̂ − β

)
, (p̂− p)

]
−→ N3 (0, V ) . (2.15)

Since V involves the parameters α, β and p, by replacing the parameters by the corresponding
MLE’s, estimate of V can be obtained, which is denoted by V̂ . Approximate 100 (1− ϑ)% confi-
dence intervals for α, β and p are determined by using (2.15), respectively as

α̂± Zϑ/2
√
V̂αα, β̂ ± Zϑ/2

√
V̂ββ and p̂± Zϑ/2

√
V̂pp (2.16)

where Zϑ is the upper 100 ϑth percentile of the standard normal distribution.

3 Bayesian estimation
In this section, we consider the Bayes estimators of the parameters α, β and p using progressively
type-II censored data with binomial removals. The Bayes estimates are obtained using symmetric
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as well as asymmetric loss functions such as squared error, LINEX loss function and entropy loss
function.

We assume that the prior distributions for α and β follow Gamma(a1, b1) and Gamma(a2, b2)
respectively, with pdfs given by

π1 (α) ∝ αa1−1e−b1α, α > 0, a1 > 0, b1 > 0, (3.1)

π2 (β) ∝ βa2−1e−b2β , β > 0, a2 > 0, b2 > 0. (3.2)

Here a1, b1, a2 and b2 are chosen to reflect prior knowledge about α and β. Independently from
parameters α and β, p has a beta prior distribution with parameters a and b of the form,

π3 (p) ∝ pa−1(1− p)b−1, 0 < p < 1, a > 0, b > 0. (3.3)

Based on the priors π1 (α), π2 (β) and π3 (p), the joint prior pdf of (α, β, p) is

π (α, β, p) ∝ π1 (α)π2 (β)π3 (p)

∝ αa1−1e−b1αβa2−1e−b2βpa−1 (1− p)b−1 ;α, β>0, 0<p<1. (3.4)

From (1.3) the likelihood function of α, β and p is given by

L (α, β, p |x, r) ∝ αmβm
m∏
i=1

e−xi:m:n
(
1− e−xi:m:n

)α−1 [
1−

(
1− e−xi:m:n

)α]β(ri+1)−1

× p
m−1∑
j=1

rj
(1− p)

(m−1)(n−m)−
m−1∑
j=1

(m−j)rj
, (3.5)

where x = (x1:m:n, x2:m:n, . . . , xm:m:n) and r = (r1, r2, . . . , rm).
Then the joint posterior distribution of α, β and p is given by

π∗ (α, β, p |x, r) = L (α, β, p |x, r)π (α, β, p)
∞∫
0

∞∫
0

1∫
0

L (α, β, p |x, r)π (α, β, p) dpdβdα
. (3.6)

The above equation can be written as

π∗ (α, β, p |x) ∝ αm+a1−1βm+a2−1p
a+

m−1∑
j=1

rj−1
(1− p)

b+(m−1)(n−m)−
m−1∑
j=1

(m−j)rj−1

× e
−α
[
b1−

m∑
i=1

log(1−e−xi:m:n)
]
m∏
i=1

[
1−

(
1− e−xi:m:n

)α]−1
× e

−β
{
b2−

m∑
i=1

(ri+1) log[1−(1−e−xi:m:n)
α
]
}
. (3.7)

From (3.7), it is clear that it is not possible to get explicit forms for expectation of the marginal
posterior distributions for each parameter. Hence we use MCMC method for sampling from pos-
terior distributions and computing posterior quantities of interest. A Gibb’s algorithm is required
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to decompose the joint posterior distribution into full conditional distributions for each parameter
in the model, then sample from each one of these conditional distributions and compute the Bayes
estimate of α, β and p.

The conditional density of α, given β, p and data is given by

π∗1 (α |β, p, x) ∝ αm+a1−1 e
−α
[
b1−

m∑
i=1

log(1−e−xi:m:n)
]
m∏
i=1

[
1−

(
1− e−xi:m:n

)α]−1
× e

β
m∑
i=1

(ri+1) log[1−(1−e−xi:m:n)
α
]
. (3.8)

Similarly, the conditional density of β, given α, p and data is given by

π∗2 (β |α, p, x) ∝ βm+a2−1e
−β
{
b2−

m∑
i=1

(ri+1) log[1−(1−e−xi:m:n)
α
]
}
. (3.9)

Again, the conditional density of p, given α, β and data is given by

π∗3 (p |α, β, x) ∝ p
a+

m−1∑
j=1

rj−1
(1− p)

b+(m−1)(n−m)−
m−1∑
j=1

(m−j)rj−1
. (3.10)

From (3.9) we can see that the conditional distribution of β given α, p and data follows

Gamma
(
m+ a2, b2 −

m∑
i=1

(ri + 1) log
[
1−

(
1− e−xi:m:n

)α])
.

Similarly, from (3.10) we can see that the conditional distribution of p given α, β and data follows

Beta
(
a+

m−1∑
j=1

rj , b+ (m− 1) (n−m)−
m−1∑
j=1

(m− j) rj
)
.

Therefore one can easily generate samples from the posterior distributions of β and p. But it is not
possible to generate random variables from the posterior distribution of α given in (3.8) using stan-
dard random number generation methods, therefore we use Metropolis-Hastings (M-H) algorithm
within the Gibbs sampling procedure to generate sample from (3.8). Since plot of (3.8) is similar to
a normal plot we take normal proposal density for α for the M-H algorithm.

By setting initial values α(0), β(0) and p(0), let α(j), β(j) and p(j), j = 1, ..., N be the observa-
tions generated from (3.8), (3.9) and (3.10) respectively. Then, by taking the first M iterations as
burn-in period, the Bayes estimates of α, β and p against different loss functions are as given below.

The Bayes estimates ψ̂SB , ψ̂LB and ψ̂EB of ψ under squared error, LINEX loss function and
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entropy loss function, respectively, are obtained as follows:

ψ̂SB =
1

N −M

N∑
j=M+1

ψ(j) (3.11)

ψ̂LB = − 1

h
log
( 1

N −M

N∑
j=M+1

e−hψ
(j)
)

(3.12)

ψ̂EB =
{ 1

N −M

N∑
j=M+1

(
ψ(j)

)−q}− 1
q

, (3.13)

where ψ stands for α, β or p.

4 Simulation Study

In this section, a simulation is performed to study the behavior of different estimators for the param-
eters α, β and p. The performance of all estimators are compared numerically in terms of their bias
and MSE values for different combinations of n, m, α, β and p. First we obtain the MLE’s of α, β
and p using 500 generated samples. The bias and MSE for the MLE’s of α, β and p for p = 0.25, 0.5

and 0.75 are given in Tables 2, 3 and 4 respectively. For the simulation studies for Bayes estimators
we took hyperparameters for the prior distributions of α and β as a1 = 3, a2 = 3, b1 = 3, b2 = 3,
a = 3 and b = 3. We have obtained the Bayes estimates for α, β and p using MCMC method. For
the MCMC method we do the following

1. For a given n generate m progressive type-II censored sample from KE(α, β).

2. Calculate estimators of the parameters α, β and p using MCMC method as describe below.

(a) Start with initial guess
(
α(0), β(0), p(0)

)
.

(b) Set j = 1.

(c) Generate β(j) from

Gamma
(
m+ a2, b2 −

m∑
i=1

(ri + 1) log
[
1−

(
1− e−xi:m:n

)α(j−1)])
.

(d) Generate p(j) from

Beta
(
a+

m−1∑
j=1

rj , b+ (m− 1) (n−m)−
m−1∑
j=1

(m− j) rj
)
.

(e) Using Metropolis-Hastings algorithm, generate α(j) from (3.8) with the normal proposal
density.
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(f) Set j = j + 1.

(g) Repeat the steps from (c) to (f) for N = 50, 000 times.

(h) Calculate the Bayes estimators of the parameters α, β and p under different functions by
taking first 5000 iteration as burn-in period.

3. Repeat the steps 1 and 2 for 500 times.

4. Calculate the bias and MSE of all estimators.

The bias and MSE for the Bayes estimates of α under different loss functions for p = 0.25, 0.5

and 0.75 are given in Table 2. The bias and MSE for the estimates of β under different loss functions
for p = 0.25, 0.5 and 0.75 are given in Table 3. The bias and MSE for the estimates of p under
different loss functions for different choices of p = 0.25, 0.5 and 0.75 are given in Table 4. For
evaluating Bayes estimators under LINEX loss function L2 we take h=1 and entropy loss function
L3 we take q = 1.

From the tables, we can see that for β and p the Bayes estimators have smaller bias and MSE
than MLE’s. But for α bias and MSE of MLE’s are smaller than bias and MSE of Bayes estimators.
From Table 3, one can see that the bias and MSE of Bayes estimators of β under squared error loss
function (β̂SB) are smaller than bias and MSE of other estimators of β. From Table 4, one can see
that for p ≤ 0.5 the bias and MSE of Bayes estimators of p under entropy loss function (α̂EB) are
smaller than bias and MSE of other estimators of p and for p > 0.5 Bayes estimators under squared
error loss function (p̂SB) have smaller bias and MSE than other estimators of p.

5 Illustration using Real-Life Data

In this section, we illustrate the inferential procedure using a real life data. For that we use a data
set on active repair times (in hours) for an airborne transceiver, reported in Jorgensen (1982).

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50,
1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70,
5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

To check for the goodness of fit we use the Anderson-Darling test (see, Stephens (1974)). We
have computed the Anderson-Darling statistic for the data using ’DistributionFitTest’ function in
Mathematica and is obtained as 1.53775. The corresponding P -Value is 0.167823. Since the P -
Value is quite high, we cannot reject the null hypothesis that the data are coming from the KE
distribution.

From the data set we generated progressive type-II censored observation with binomial removals
for different values of p (p=0.25, 0.5, 0.75) and m (m=10, 15, 20) and are given in Table 5. We have
obtained the MLE’s of α, β and p and Bayes estimates of α, β and p under squared error, LINEX
and entropy loss functions are given in Table 6 .
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Table 2: Bias and MSE of the MLE α̂, Bayes estimates under squared error loss function α̂SB , Bayes
estimates under LINEX error loss function α̂LB and Bayes estimates under entropy loss function
α̂EB for different choices n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β α̂ α̂SB α̂LB α̂EB

Bias MSE Bias MSE Bias MSE Bias MSE

0.25 30 5 0.5 1 0.017 0.320 0.666 0.707 0.414 0.605 0.284 0.514

1 1.5 0.518 0.432 -0.507 0.531 -0.372 0.460 -0.253 0.341

1 2 0.524 0.548 -0.348 0.647 -0.230 0.430 -0.069 0.362

10 0.5 1 -0.031 0.002 0.305 0.419 0.209 0.241 0.090 0.206

1 1.5 0.532 0.452 -0.544 0.387 -0.422 0.270 -0.371 0.235

1 2 0.087 0.015 -0.466 0.290 -0.361 0.366 -0.287 0.279

50 10 0.5 1 0.044 0.004 0.351 0.515 0.239 0.294 0.145 0.258

1 1.5 0.322 0.207 -0.551 0.402 -0.444 0.295 -0.397 0.277

1 2 0.020 0.001 -0.480 0.432 -0.368 0.423 -0.272 0.328

25 0.5 1 0.182 0.066 0.090 0.075 -0.069 0.073 0.050 0.071

1 1.5 -0.275 0.152 -0.668 0.486 -0.554 0.347 -0.511 0.299

1 2 -0.194 0.075 -0.572 0.401 -0.459 0.286 -0.416 0.254

0.5 30 5 0.5 1 0.097 0.019 0.770 0.840 0.513 0.670 0.377 0.549

1 1.5 0.168 0.057 -0.454 0.326 -0.338 0.387 -0.253 0.295

1 2 0.198 0.078 -0.364 0.409 -0.237 0.384 -0.113 0.307

10 0.5 1 0.178 0.063 0.198 0.320 0.108 0.171 0.000 0.159

1 1.5 -0.236 0.112 -0.540 0.365 -0.431 0.415 -0.362 0.309

1 2 0.663 0.879 -0.468 0.363 -0.359 0.272 -0.299 0.267

50 10 0.5 1 0.039 0.003 0.303 0.434 0.195 0.261 0.046 0.225

1 1.5 0.369 0.273 -0.529 0.391 -0.418 0.285 -0.363 0.280

1 2 0.040 0.003 -0.509 0.368 -0.385 0.257 -0.323 0.237

25 0.5 1 -0.093 0.017 0.042 0.069 -0.114 0.056 -0.001 0.055

1 1.5 0.059 0.007 -0.631 0.451 -0.510 0.313 -0.469 0.270

1 2 -0.284 0.162 -0.621 0.444 -0.487 0.295 -0.436 0.257

0.75 30 5 0.5 1 0.096 0.018 0.458 0.790 0.298 0.358 0.160 0.295

1 1.5 0.010 0.096 -0.450 0.363 -0.326 0.393 -0.237 0.297

1 2 0.331 0.219 -0.327 0.575 -0.204 0.423 -0.070 0.358

10 0.5 1 0.025 0.001 0.127 0.179 -0.066 0.115 0.063 0.115

1 1.5 -0.125 0.031 -0.584 0.428 -0.476 0.314 -0.429 0.287

1 2 -0.147 0.043 -0.467 0.397 -0.365 0.382 -0.286 0.312

50 10 0.5 1 -0.132 0.035 0.160 0.166 0.104 0.124 -0.011 0.113

1 1.5 -0.290 0.168 -0.548 0.388 -0.427 0.270 -0.378 0.238

1 2 -0.073 0.011 -0.471 0.370 -0.362 0.324 -0.289 0.280

25 0.5 1 0.329 0.217 0.049 0.051 -0.126 0.066 -0.006 0.051

1 1.5 -0.223 0.099 -0.597 0.419 -0.496 0.308 -0.460 0.270

1 2 0.297 0.176 -0.569 0.405 -0.441 0.276 -0.390 0.256

6 Conclusion

In this paper, we considered a maximum likelihood estimation and Bayesian estimation of KE(α, β)
based on data under type-II progressive censoring scheme with binomial removals. The Bayes esti-
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Table 3: Bias and MSE of the MLE β̂, Bayes estimates under squared error loss function β̂SB , Bayes
estimates under LINEX error loss function β̂LB and Bayes estimates under entropy loss function
β̂EB for different choices n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β β̂ β̂SB β̂LB β̂EB

Bias MSE Bias MSE Bias MSE Bias MSE

0.25 30 5 0.5 1 -0.514 0.491 0.046 0.363 0.181 0.393 0.424 0.687

1 1.5 0.953 0.977 -0.584 0.596 -0.710 0.687 -0.863 0.927

1 2 0.965 0.975 -0.888 0.976 -0.948 0.977 -0.983 0.979

10 0.5 1 0.670 0.574 0.106 0.382 0.211 0.415 0.441 0.802

1 1.5 0.971 0.994 -0.552 0.493 -0.659 0.577 -0.780 0.752

1 2 0.958 0.934 -0.805 0.929 -0.989 0.929 -0.903 0.967

50 10 0.5 1 0.474 0.449 0.195 0.531 0.276 0.569 0.578 0.919

1 1.5 0.977 0.929 -0.625 0.610 -0.733 0.692 -0.869 0.909

1 2 -0.553 0.611 -0.890 0.959 -0.986 0.987 -0.931 0.995

25 0.5 1 0.960 0.944 0.151 0.300 0.030 0.188 -0.055 0.190

1 1.5 -0.417 0.348 -0.658 0.500 -0.747 0.619 -0.857 0.796

1 2 0.701 0.983 -0.855 0.975 -0.994 0.995 -0.996 0.989

0.5 30 5 0.5 1 0.944 0.906 0.104 0.341 0.250 0.619 0.480 0.290

1 1.5 0.987 0.913 -0.541 0.572 -0.667 0.644 -0.806 0.849

1 2 0.965 0.933 -0.845 0.900 -0.917 0.988 -0.950 0.989

10 0.5 1 0.676 0.562 0.026 0.230 -0.082 0.236 0.213 0.467

1 1.5 -0.559 0.518 -0.522 0.561 -0.644 0.607 -0.756 0.763

1 2 0.685 0.938 -0.754 0.930 -0.930 0.953 -0.937 0.939

50 10 0.5 1 -0.252 0.127 0.020 0.402 0.161 0.428 0.444 0.897

1 1.5 0.975 0.975 -0.572 0.607 -0.691 0.668 -0.810 0.847

1 2 0.622 0.599 -0.897 0.912 -0.920 0.945 -0.969 0.966

25 0.5 1 0.643 0.524 -0.042 0.126 0.063 0.142 -0.136 0.143

1 1.5 0.562 0.453 -0.572 0.412 -0.657 0.518 -0.769 0.678

1 2 -0.641 0.821 -0.866 0.917 -0.936 0.973 -0.962 0.993

0.75 30 5 0.5 1 0.810 0.931 0.014 0.264 0.136 0.283 0.332 0.481

1 1.5 0.939 0.965 -0.540 0.547 -0.654 0.623 -0.786 0.812

1 2 0.997 0.957 -0.870 0.921 -0.935 0.934 -0.976 0.947

10 0.5 1 0.584 0.682 -0.014 0.202 -0.129 0.219 0.135 0.372

1 1.5 -0.557 0.450 -0.560 0.554 -0.671 0.620 -0.783 0.782

1 2 -0.823 0.956 -0.802 0.924 -0.965 0.983 -0.970 0.996

50 10 0.5 1 0.570 0.621 0.055 0.282 -0.058 0.282 0.228 0.513

1 1.5 -0.597 0.477 -0.556 0.503 -0.676 0.603 -0.820 0.819

1 2 -0.660 0.551 -0.862 0.926 -0.918 0.993 -0.949 0.977

25 0.5 1 0.956 0.943 -0.033 0.116 0.071 0.163 -0.129 0.132

1 1.5 0.653 0.060 -0.588 0.458 -0.659 0.544 -0.751 0.674

1 2 0.524 0.500 -0.743 0.942 -0.911 0.990 -0.917 0.945

mates obtained using different loss functions such as squared error, LINEX and general entropy. To
evaluate the Bayes estimates MCMC method has been applied. A simulation study was performed
to evaluate the performance of the obtained estimators. The Bayes estimators for β and p perform



160 Mohan & Chacko

Table 4: Bias and MSE of the MLE p̂, Bayes estimates under squared error loss function p̂SB , Bayes
estimates under LINEX error loss function p̂LB and Bayes estimates under entropy loss function
p̂EB for different choices n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β p̂ p̂SB p̂LB p̂EB

Bias MSE Bias MSE Bias MSE Bias MSE

0.25 30 5 0.5 1 0.083 0.014 0.035 0.001 0.032 0.001 0.016 0.000

1 1.5 0.047 0.004 0.042 0.002 0.038 0.002 0.024 0.001

1 2 0.011 0.000 0.045 0.002 0.042 0.002 0.027 0.001

10 0.5 1 0.015 0.000 0.099 0.010 0.097 0.010 0.086 0.008

1 1.5 -0.019 0.001 0.042 0.002 0.039 0.002 0.025 0.001

1 2 -0.052 0.005 0.021 0.001 0.017 0.000 0.001 0.000

50 10 0.5 1 -0.018 0.001 0.015 0.000 0.012 0.000 0.000 0.000

1 1.5 -0.044 0.004 0.031 0.001 0.028 0.001 0.017 0.000

1 2 0.029 0.002 0.031 0.001 0.028 0.001 0.017 0.000

25 0.5 1 0.071 0.010 0.017 0.000 0.014 0.000 0.000 0.000

1 1.5 0.031 0.002 0.011 0.000 0.009 0.000 -0.007 0.000

1 2 0.010 0.000 0.007 0.000 0.010 0.000 -0.004 0.000

0.5 30 5 0.5 1 0.100 0.020 -0.088 0.008 -0.081 0.007 -0.079 0.006

1 1.5 0.058 0.007 0.100 0.010 0.097 0.010 0.091 0.009

1 2 -0.132 0.035 -0.007 0.000 -0.014 0.001 -0.005 0.000

10 0.5 1 0.056 0.006 -0.062 0.004 -0.070 0.005 -0.060 0.004

1 1.5 0.125 0.031 -0.063 0.004 -0.071 0.006 -0.061 0.004

1 2 0.167 0.056 0.033 0.001 0.035 0.002 0.026 0.001

50 10 0.5 1 0.019 0.001 -0.076 0.006 -0.082 0.007 -0.075 0.006

1 1.5 -0.083 0.014 -0.027 0.001 -0.031 0.001 -0.026 0.001

1 2 0.041 0.003 -0.043 0.002 -0.039 0.002 -0.038 0.002

25 0.5 1 0.081 0.013 -0.014 0.001 -0.008 0.000 -0.006 0.000

1 1.5 -0.109 0.024 -0.033 0.001 -0.027 0.001 -0.025 0.001

1 2 -0.010 0.000 0.111 0.013 0.109 0.012 0.103 0.011

0.75 30 5 0.5 1 -0.036 0.003 -0.125 0.016 -0.128 0.017 -0.135 0.019

1 1.5 -0.015 0.000 -0.054 0.003 -0.059 0.004 -0.068 0.005

1 2 0.008 0.000 -0.100 0.011 -0.103 0.011 -0.111 0.013

10 0.5 1 -0.060 0.007 -0.141 0.020 -0.144 0.021 -0.152 0.024

1 1.5 0.019 0.001 -0.086 0.008 -0.090 0.008 -0.098 0.010

1 2 -0.194 0.076 0.045 0.002 0.061 0.004 0.068 0.005

50 10 0.5 1 0.050 0.005 -0.083 0.007 -0.086 0.008 -0.093 0.009

1 1.5 -0.009 0.000 -0.074 0.006 -0.077 0.006 -0.083 0.007

1 2 -0.009 0.000 0.083 0.007 0.101 0.010 0.109 0.012

25 0.5 1 -0.036 0.003 -0.069 0.005 -0.073 0.006 -0.081 0.007

1 1.5 -0.015 0.000 -0.092 0.009 -0.095 0.010 -0.103 0.011

1 2 0.083 0.014 -0.097 0.010 -0.101 0.011 -0.108 0.012

better than the corresponding MLE’s in terms of bias and MSE but MLE’s of α perform better than
the corresponding Bayes estimators in terms of bias and MSE. Among the Bayes estimates of β,
estimator under squared error loss function possess minimum bias and MSE. Also among the Bayes
estimates of p, estimator under entropy loss functions possess minimum bias and MSE for small
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Table 5: Progressive type-II censoring samples with binomial removals

Scheme p m Ri Data

1 .25 10 5, 6, 3, 7, 1, 2, 3, 0, 1, 1 0.5, 0.7, 1.1, 1.5, 3.0, 4.0, 4.7, 7.0, 7.5, 9.0

2 .25 15 9, 5, 1, 2, 3, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0 0.5, 1.0, 1.5, 1.5, 2.2, 3.0, 3.3, 4.5, 5.0, 5.4, 7.5, 8.8, 9.0,
10.2, 22.0

3 .25 20 1, 6, 4, 3, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0

0.5, 0.6, 1.0, 1.3, 1.5, 2.2, 2.7, 3.0, 3.3, 4.0, 4.5, 4.7, 5.0,
5.4, 5.4, 7.0, 7.5, 9.0, 10.2, 22.0

4 .5 10 14, 9, 4, 1, 2, 0, 0, 0, 0, 0 0.5, 1.5, 3.0, 4.7, 5.4, 7.5, 8.8, 9.0, 10.2, 22.0

5 0.5 15 16, 3, 3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.5, 1.5, 2.2, 3.0, 4.0, 4.5, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0,
10.2, 22.0.

6 0.5 20 9, 4, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,
0, 0, 0

0.5, 1.0, 1.5, 1.5, 2.5, 3.0, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4,
5.4, 7.0, 7.5, 8.8, 9.0, 10.2, 22.0

7 0.75 10 20, 8, 2, 0, 0, 0, 0, 0, 0, 0 0.5, 2.2, 4.7, 5.4, 7.0, 7.5, 8.8, 9.0, 10.2, 22.0

8 0.75 15 17, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.5, 1.5, 3.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0,
10.2, 22.0

9 0.75 20 10, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0

0.5, 1.0, 2.0, 2.7, 3.0, 3.0, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0 5.4
5.4 7.0, 7.5, 8.8, 9.0, 10.2, 22.0

Table 6: Maximum likelihood estimates of α, β and p, Bayes estimates of α, β and p based on data
under squared error, LINEX and entropy loss functions for different choices of p = 0.25, 0.5 and
0.75.

p m α̂ β̂ p̂ α̂SB α̂LB α̂EB β̂SB β̂LB β̂EB p̂SB p̂LB p̂EB

0.25 10 1.120 0.253 0.243 0.014 0.014 0.003 0.048 0.047 0.043 0.255 0.254 0.248

15 1.228 0.279 0.214 0.018 0.018 0.005 0.062 0.062 0.058 0.227 0.226 0.221

20 1.033 0.202 0.253 0.016 0.015 0.004 0.073 0.073 0.068 0.267 0.266 0.258

0.5 10 1.101 0.212 0.508 0.011 0.011 0.002 0.041 0.041 0.037 0.500 0.498 0.493

15 1.409 0.263 0.446 0.015 0.015 0.002 0.059 0.059 0.054 0.444 0.442 0.435

20 1.493 0.213 0.444 0.018 0.017 0.004 0.076 0.076 0.071 0.443 0.441 0.432

0.75 10 1.383 0.227 0.750 0.018 0.018 0.005 0.047 0.047 0.042 0.701 0.699 0.694

15 1.937 0.275 0.714 0.019 0.018 0.002 0.061 0.061 0.055 0.668 0.665 0.660

20 2.110 0.221 0.606 0.019 0.018 0.002 0.075 0.075 0.070 0.575 0.572 0.564

values of p and squared error loss function possess minimum bias and MSE for large value of p. A
real data was also used to illustrate the estimation procedures proposed in this paper.
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