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SUMMARY

In this article, we investigate marginal models for analyzing incomplete longitudinal count
data with dropouts. Specifically, we explore commonly used generalized estimating equa-
tions and weighted generalized estimating equations for fitting log-linear models to count
data in the presence of monotone missing responses. A series of simulations were carried
out to examine the finite-sample properties of the estimators in the presence of both cor-
rectly specified and misspecified dropout mechanisms. An application is provided using
actual longitudinal survey data from the Health and Retirement Study (HRS) (HRS, 2019)
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1 Introduction

We often encounter longitudinal data in surveys and clinical trials, where individuals or units are
monitored repeatedly for a specified study period and data are recorded for each individual or unit.
Longitudinal studies allow researchers to investigate the change in a response variable over time
along with changes in available covariates. Repeated measurements in a longitudinal study are
correlated by nature and proper statistical methods are needed for analyzing such data by taking the
correlations into account.

The most challenging and common problem of longitudinal studies is the presence of missing
observations in the data. In a longitudinal study, an individual’s response may be missing during
one follow-up time and observed at the next follow-up time, resulting in a large class of missing
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data patterns. Many authors studied missingness patterns in longitudinal data, which include Lit-
tle (1995), Little and Rubin (1987), Diggle et al. (1994), Fitzmaurice et al. (1995), Pantazis and
Touloumi (2010), Diggle et al. (2002), and Fitzmaurice et al. (2012).

Generalized estimating equations (GEEs) introduced by Liang and Zeger (1986) are widely used
for analyzing longitudinal data. The technique of GEE, which is a multivariate analog of the quasi-
likelihood approach, is useful for fitting marginal mean response models to dependent data. The
GEE is grounded on a “working” correlation structure and is attractive in the sense that it does not
require any distributional assumption and can provide consistent estimators of regression coefficients
even under a misspecified correlation structure.

Although we are primarily interested in regression parameters of a marginal model, but in recent
years there has been a growing interest in estimating the association parameters efficiently for an
improved statistical inference. The GEE approach of Liang and Zeger (1986) can be extended for
simultaneously estimating both regression and associations parameters, as suggested by Prentice
(1988). Fitzmaurice et al. (1995), Lipsitz et al. (1991), and Carey et al. (1993) studied longitudinal
data by modeling the association among responses in terms of pairwise odds ratios. When data
are missing, the standard GEE approaches of Liang and Zeger (1986) and Prentice (1988) are valid
only when the data are missing completely at random (MCAR) (Robins et al., 1995), i.e., given
the covariates, the missing data process is independent of both observed and unobserved values of
the response variable. The standard GEE estimator may be biased under a weaker assumption of
missing at random (MAR) mechanism, in which missingness depends on the observed values of the
response variable, but not on the unobserved values (Fitzmaurice et al., 1995).

Robins et al. (1995) suggested the inverse probability of first-order weighted GEE (WGEE)
method in which the traditional GEE is weighted by estimated response probabilities. The prob-
abilities creating these weights are attained by modeling missing data indicators as a function of
the response variable and associated covariates. The WGEE method produces unbiased estimating
equations and hence consistent estimators of the mean response parameters when the missing data
follow a correctly specified MAR mechanism (Robins et al., 1995).

In this paper, we focus on studying incomplete longitudinal count data, where we limit our at-
tention to monotone missing data patterns resulting from attrition or dropout. Our research was
motivated by an actual longitudinal household survey data obtained from the Health and Retirement
Study (HRS) (HRS, 2019). The survey was conducted by the Institute for Social Research at the
University of Michigan. The survey data contain variables on demographics, health, social security,
pensions, family structure, retirement plans, and employment history for individuals over age 50
and their spouses. The data were collected from several waves of interviews across fifteen survey
years ranging from 1992–2016. In our analysis, the outcome variable of interest is the number of
doctor visits by a respondent over a two-year period prior to an interview. The goal is to determine
subgroups of respondents with similar behaviors in terms of the number of doctor visits and to iden-
tify predictors that affect the number of visits especially in the presence of missing data, intraperson
correlations and overdispersion. Details about the data analysis are given in the application section.

The paper is organized as follows. Section 2 introduces the model and notation to describe the
mean response and dropout mechanism for missing data. Section 3 describes the standard GEE and
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weighted GEE methods for analyzing incomplete longitudinal data. Section 4 presents results from
a simulation study that was carried out to investigate the finite-sample properties of the estimators.
Section 5 provides an application using actual longitudinal data from the Health and Retirement
Study (HRS). Section 6 provides conclusions of the paper.

2 Model and Notation

2.1 Log-Linear Model

Assume that there are N subjects in a study, where each subject is measured at a fixed set of T time
points. Let yit represent a count response from the ith subject at time t and xit = (xit,1, . . . , xit,p)

′

represent a p-dimensional vector of covariates associated with yit. The covariates may be fixed
or time dependent throughout the observation times and may also include the intercept term in a
regression model. Let yi = (yi1, . . . , yiT )

′
denote the vector of longitudinal responses from the ith

subject.
Assume that the marginal mean response E(yit|xit,β) is given by

log{E(yit|xit,β)} = x
′

itβ, (2.1)

for i = 1, . . . , N , t = 1, . . . , T , where β is a p-dimensional vector of regression coefficients. The
corresponding marginal variance is given by

Var(yit) = φµit, (2.2)

where φ is a dispersion parameter that needs to be estimated. Responses from different subjects are
assumed independent. However, repeated responses from a given subject yi = (yi1, . . . , yiT )

′
are

assumed correlated with a correlation structure

Corr(yit, yit′ ) = ρtt′ (α), (2.3)

depending on a q-dimensional vector of association parameters α, for t 6= t
′
= 1, . . . , T .

Here the extra variance assumption of the response model permits the variance to be inflated
by a factor φ (φ > 1). The excess variability in count data can be accounted for by including the
dispersion parameter φ (Fitzmaurice et al., 2012). We are interested in estimating the regression
parameters β, dispersion parameter φ and association parameters α using a suitable robust method
without making any distributional assumptions about the response variable yit. Several methods are
available for estimating these model parameters, which include the GEE method of Liang and Zeger
(1986) and an extended GEE method of Prentice (1988).

2.2 Dropout Model

We often encounter attrition in a longitudinal study due to dropouts and delayed enrollments, where
participants drop out before the end of the study and do not return. For example, members of a
panel may drop out in panel surveys because they have moved to a place that is inconvenient to
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the researchers, or, in a clinical study, some participants may drop out due to side effects of a drug
used for curing a disease, or for other unknown reasons. The pattern of attrition is an example
of monotonous missing data, where follow-up measurements yi,t+1, . . . , yiT are missing and all
previous measurements yi1, . . . , yi,t−1 are observed. The missing data pattern is rarely monotonous
in practice, but it is often close to monotonous (Little and Rubin, 1987).

To define the missing data mechanism, we consider an indicator variable vit that takes the value
1 if the response yit is observed and 0 if yit is missing. Let vi = (vi1, vi2, . . . , viT )

′
denote the

vector of missing data indicators for the ith subject. Suppose we have a monotone missingness
pattern, so that vi1 ≥ · · · ≥ viT and vi1 = 1 for all subjects. In general, the missing data mechanism
fvi(vi|yi,Xi, τ ) depends on the complete vector of responses yi and design matrix Xi for the ith
subject.

In the case of dropouts, the missing data indicators vi = (vi1, vi2, . . . , viT )
′

may be defined by
a single random variable

mi = 1 +

T∑
t=1

vit, (2.4)

indicating the dropout time. Then the dropout or missing data process can be redefined by

πim = fmi
(m|yi,Xi, τ ) = P (mi = m|yi,Xi, τ ). (2.5)

The value of m lies between 2 and T + 1 if all subjects are observed at the first visit, where the
maximum value of T + 1 corresponds to a full sequence of measurements.

Let yoi and ymi denote the observed and missing components of the response vector yi. In gen-
eral, there are three types of dropout mechanism that we encounter in longitudinal studies. The first
is called missing completely at random (MCAR) mechanism, where missingness (dropout) does
not depend on any of the observed or missing components of the response vector, i.e., P (mi =

m|yi,Xi, τ ) = P (mi = m|Xi, τ ). The second is called missing at random (MAR) mecha-
nism, where missingness depends only on the observed components of the response vector yoi , i.e.,
P (mi = m|yi,Xi, τ ) = P (mi = m|yoi ,Xi, τ ). The third is called nonignorable (NI) mechanism,
where missingness depends on both observed or missing components of the response vector, i.e.,
P (mi = m|yi,Xi, τ ) = P (mi = m|yoi ,ymi ,Xi, τ ). It is often assumed that the NI dropout prob-
ability depends on the missing components ymi only through the current response yim. In this case,
the dropout probability is given by

P (mi = m|yi,Xi, τ ) = P (vi2 = . . . = vi,m−1 = 1, vim = 0|yi1, . . . , yim,Xi, τ )

=

m−1∏
t=2

P (vit = 1|vi1 = . . . = vi,t−1 = 1, yi1, . . . , yit,Xi, τ )×

P (vim = 0|vi1 = . . . = vim−1 = 1, yi1, . . . , yim,Xi, τ )
I{m≤T}

, (2.6)

for an indicator variable I{}.
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3 Methods of Estimation

3.1 Generalized Estimating Equations

For estimating the regression and association parameters, the methods of generalized estimating
equation (GEE) and weighted generalized estimating equation (WGEE) are discussed in this sec-
tion. Our main interest is in the estimation of regression parameters β, association parameters α

and dispersion parameter φ, whereas τ is considered as a vector of nuisance parameters of the
missing data mechanism. Partitioning the mean response vector µi into its observed and missing
components, we can write µi = (µoi ,µ

m
i ).

Ordinary GEE estimates are obtained from available data by ignoring the missing data pattern.
Following Liang and Zeger (1986), the GEE estimates of β for given (α, φ) may be obtained by
solving the equations

Uβ(β,α, φ) =

N∑
i=1

D
′

iV
−1
i (yoi − µoi (β)) = 0, (3.1)

where Di = ∂µoi (β)/∂β and Vi(β,α, φ) = φA
1/2
i Ri(α)A

1/2
i with Ai = diag{µoi } and Ri(α)

being a working correlation matrix for the observed response vector yoi .
If α and φ are known, the solutions to the above equations are asymptotically efficient (Liang and

Zeger, 1986). Liang and Zeger (1986) consider estimating the correlation and dispersion parameters
by the method of moments. Prentice (1988) extended the GEE technique to allow simultaneous
estimation of the vector of regression parameters β and association parameters (α, φ). Let θ =

(α
′
, φ)

′
be the vector of association and dispersion parameters. Following Prentice (1988), we can

estimate θ by solving a second set of estimating equations

Uθ(β,θ) =

N∑
i=1

L
′

iW
−1
i (zoi − ηoi (β,θ)) = 0, (3.2)

where zoi represents the observed components of zi = (ri1ri2, . . . , ri,T−1riT , r
2
i1, . . . , r

2
iT )

′
with

rit = (yit − µit)/
√
µit, ηoi (β,θ) = E(zoi |β,θ), Li = ∂ηoi (β,θ)/∂θ and Wi is a working covari-

ance matrix of zoi . One can set Wi to be a identity matrix to avoid estimating additional parameters
involving higher-order moments and to reduce sampling variation (Diggle et al., 2002).

3.2 Weighted Generalized Estimating Equations

In the case of dropouts, ordinary GEE estimators of (β,θ) are generally biased. To obtain unbiased
estimators, the weighted GEE (WGEE) method may be used (Robins et al., 1995). The WGEE
estimates of (β,θ) may be obtained by solving the equations

U1β(β,θ) =

N∑
i=1

1

πim
D

′

iV
−1
i (yoi − µoi (β)) = 0, (3.3)
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U1θ(β,θ) =

N∑
i=1

1

πim
L

′

iW
−1
i (zoi − ηoi (β,θ)) = 0, (3.4)

with respect to β and θ, respectively. The above estimating equations are unbiased and hence the
WGEE estimators are consistent, as can be shown from the standard theory of method of moments. If
the dropout probabilities πim are estimated consistently, then the WGEE method would still provide
consistent estimators of (β,θ) (Robins et al., 1995).

To solve Eqs. (3.3) and (3.4), we use an iterative method, which begins with some initial values
(β0,θ0) and then produces updated values (βs+1,θs+1) by means of the iterative equations

βs+1 = βs +

(
N∑
i=1

1

πim
D

′

iV
−1
i Di

)−1 N∑
i=1

1

πim
D

′

iV
−1
i (yoi − µoi ), (3.5)

θs+1 = θs +

(
N∑
i=1

1

πim
L

′

iW
−1
i Li

)−1 N∑
i=1

1

πim
L

′

iW
−1
i (zoi − ηoi ), (3.6)

for s = 0, 1, 2, . . ., where the second term on the right side of each equation is evaluated at the
current estimates (βs,θs). The estimates at convergence are called the WGEE estimates (β̂, θ̂).

3.3 Approximate Variance of WGEE Estimators

Following White (1982), the variance-covariance matrix of the WGEE estimators β̂ and θ̂ can be
approximated by using sandwich type estimators. The variance of β̂ can be approximated from

V(β̂) = H−1β QβH
−1
β , (3.7)

where Hβ =
∑N
i=1(1/πim)D

′

iV
−1
i Di and Qβ =

∑N
i=1 Sβ,iS

′

β,i with the score function for β̂,
Sβ,i = (1/πim)D

′

iV
−1
i (yoi − µoi ), for the ith subject.

The variance of θ̂ can be approximated from

V(θ̂) = H−1θ QθH
−1
θ , (3.8)

where Hθ =
∑N
i=1(1/πim)L

′

iW
−1
i Li and Qθ =

∑N
i=1 Sθ,iS

′

θ,i with the score function for θ̂,
Sθ,i = (1/πim)L

′

iW
−1
i (zoi − ηoi ), for the ith subject.

In the next section, we study the finite-sample properties of the estimators based on Monte Carlo
simulations.

4 Simulation Study

We ran a series of simulations using incomplete longitudinal count data to study the empirical prop-
erties of the proposed weighted GEE estimators. In particular, we investigate the three methods
below:
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i) GEE: Estimates of the regression parameters β, association parameters α and dispersion pa-
rameter φ are obtained by using the unweighted GEE approach of Prentice (1988).

ii) WGEE1: Estimates of β are obtained from the weighted GEEs, but estimates of (α, φ) are
obtained from the unweighted GEEs.

iii) WGEE2: Estimates of all parameters (β,α, φ) are obtained from the weighted GEEs.

4.1 Response model

To produce correlated count data, we first created a population using a Poisson mixed model yit|ui ∼
ind. Poisson(µ∗it), with log(µ∗it) = β∗0 + β∗1xi + β∗2 t + β∗3xit + ui and ui ∼ ind.N(0, 0.052), for
(β∗0 , β1, β

∗
2 , β
∗
3) = (1.5,−0.5,−0.5,−0.50), i = 1, . . . , N0 and t = 1, . . . , T . The covariate xi was

chosen as the binary indicator of a treatment with P (xi = 1) = 0.5. The “population data” were
generated from the given model for a large group ofN0 = 500, 000 subjects with each subject being
measured at T = 3 time points. We then fitted a marginal mean response model

log{E((yit|xit,β)} = log(µit) = β0 + β1xi + β2t+ β3xit

to these data assuming Var(yit) = φµit and Corr(yit, yit′ ) = α. The GEE estimates from this fit
were treated as the “true” values of the parameters, which were obtained as β = (β0, β1, β2, β3)

′
=

(1.60,−0.51,−0.50,−0.50)′ and θ = (α, φ)
′
= (0.20, 1.30)

′
.

We then generated random samples from the above population by drawing N subjects randomly
for each combination of N = 300, N = 500 and N = 1000. Each simulation run was based on
1000 replicates of data sets. The numerical study requires intensive computations. To reduce the
computation time, we used 1000 replicates of data sets for each set of simulations, which were found
sufficient to produce empirical results with negligible simulation variations.

4.2 Dropout Model

To generate data with missing responses, we use a dropout model, where the response probability
depends on previous and current responses, but is independent of the covariate xi, so that

P (mi = m|yi,Xi, τ ) = P (mi = m|yi1, . . . , yim, τ ). (4.1)

We assume that all subjects are observed at the first time point. We denote vit = 1 if yit is observed
and 0 if yit is missing. We further assume

P (vit = 0|vi1 = · · · = vit−1 = 1, yi1, . . . , yit, τ ) =
exp(ψit)

1 + exp(ψit)
, (4.2)

where ψit = τ0+τ1yit−1+τ2yit, for t = 2, 3. Note that τ2 = 0 leads to MAR mechanism, whereas
τ2 6= 0 leads to NI (nonignorable) missing data mechanism. The dropout probability is given by

πim = P (mi = m|yi1, . . . , yim, τ ) =

{
m−1∏
t=2

1

1 + exp(ψit)

}{
exp(ψim)

1 + exp(ψim)

}I{m≤T}
. (4.3)
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To assess the performance of the three methods (GEE, WGEE1 and WGEE2), we ran two sets of
simulations. In the first set, data were produced under the MAR mechanism with τ = (−1.5, 0.3, 0)′

and the model parameters were also estimated under the correctly specified MAR mechanism. In
the second set, data were generated under the nonignorable (NI) missing data mechanism with
τ = (−1.5, 0.3, 0.3)′ , whereas the model parameters were estimated under the misspecified MAR
mechanism. Both sets produced roughly 30% missing data on the response variable, with about 12%
missing at the second time point and 18% at the third time point.

4.3 Estimating Dropout Probabilities

To estimate the dropout probabilities πim = P (mi = m|yi1, . . . , yim, τ ), we consider estimating τ

under the MAR mechanism. The pseudo-likelihood function for τ is given by

L(τ ) =

N∏
i=1

P (mi = m|yi1, . . . , yim, τ )

=

N∏
i=1

{
m−1∏
t=2

1

1 + exp(ψ∗it)

}{
exp(ψ∗im)

1 + exp(ψ∗im)

}I{m≤T}
, (4.4)

where ψ∗it = τ0 + τ1yi,t−1. Let p∗it(τ ) = exp(ψ∗it)/(1 + exp(ψ∗it)). Then the score equation for τ
takes the form

S(τ ) =

N∑
i=1

{
−
m−1∑
t=2

p∗it(τ )y
∗
it + I{m ≤ T}{1− p∗im(τ )}y∗im

}
= 0, (4.5)

where y∗it = (1, yi,t−1)
′

and τ = (τ0, τ1)
′
. The pseudo-ML estimator τ̂ is obtained by solving (4.5)

using an iterative method.
The variance of τ̂ may be approximated from the information matrix

I(τ ) =

N∑
i=1

min(m,T )∑
t=2

p∗it(τ )(1− p∗it(τ ))y∗ity∗it′ . (4.6)

For the ith individual at time t, the dropout probability is estimated by

π̂im = P (mi = m|yi1, . . . , yim, τ̂ ) =

{
m−1∏
t=2

(1− p̂∗it)

}
× {p̂∗im}

I{m≤T}
, (4.7)

where p̂∗it = p∗it(τ̂ ). We find the WGEE estimates of β and θ from the iterative equations (3.5) and
(3.6) by replacing πim with π̂im.

4.4 Results

Table 1 presents empirical percentage relative biases, mean squared errors and coverage probabilities
of the GEE, WGEE1 and WGEE2 estimators of the regression parameters β = (β0, β1, β2, β3)

′
and
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association parameters (α, φ) under the correctly specified MAR mechanism with τ = (−1.5, 0.3, 0)′ .
Table 2 repeats the results under a misspecified missing data mechanism with τ = (−1.5, 0.3, 0.3)′ .
It is clear from Table 1 that under the MAR model, both WGEE1 and WGEE2 methods provide
similar results for estimating the regression parameters. For estimating the correlation parameter
α and dispersion parameter φ, the proposed WGEE2 method appears to be the most efficient in
terms of small percentage relative biases and good coverage probabilities of the estimators. For
example, when estimating α at N = 500, the WGEE1 estimator provides a percentage relative bias
of -17.40% and a coverage probability of 81.1%, whereas the WGEE2 estimator provides a much
smaller relative bias of 6.25% and a good coverage probability of 94.6% that is close to the nom-
inal 95% confidence level. Also, for estimating φ at N = 500, the WGEE1 method provides a
percentage relative bias of -13.24% and a poor coverage probability of 40.9%, whereas the WGEE2
estimator provides a very small relative bias of 0.65% and a good coverage probability of 95.1%.
Under the misspecified dropout model, it is evident from Table 2 that all three methods provide bi-
ased estimators of both regression and association parameters. However, the extent of the bias from
the WGEE2 method is generally less as compared to the other two methods. For example, when
estimating α at N = 1000, the WGEE2 method provides a bias of -24.7%, whereas the WGEE1
and GEE methods provide larger biases of -43.6% and -44.6%, respectively. For the overdispersion
parameter φ, unlike the GEE and WGEE1 methods, the WGEE2 method generally provides unbi-
ased estimates and a coverage probability that is close to the nominal confidence level. The WGEE2
estimates are generally more robust than those obtained from the GEE and WGEE1 methods under
a misspecified dropout model.

Table 3 presents empirical relative biases and mean squared errors of the pseudo-ML estima-
tors of dropout model parameters (τo, τ1) under both correctly specified MAR and misspecified NI
dropout models. As expected, the pseudo-ML method provides unbiased estimates under the cor-
rectly specified MAR model. However, under the misspecified (NI) model, it is evident from Table
3 that the ML method generally provides biased estimates.

5 Application: HRS Longitudinal Data

Here we consider analyzing longitudinal count data obtained from the Health and Retirement Study
(HRS) (HRS, 2019), which is a longitudinal household survey conducted by the Institute for Social
Research at the University of Michigan. The RAND HRS Longitudinal File (RAND HRS, 2019)
contains variables on demographics, health, health insurance, social security, pensions, family struc-
ture, retirement plans, expectations, and employment history. The HRS is a national panel survey
of individuals over age 50 and their spouses. The data were collected from thirteen waves of inter-
views across fifteen survey years (1992, 1993, 1994, 1995, and biennially 1996–2016). The data are
available at https://hrs.isr.umich.edu/data-products. We consider analyzing a subset of the HRS data
obtained from the most recent four waves of surveys carried out in the years 2010, 2012, 2014 and
2016, where the year 2010 was considered as the baseline.

In our analysis, the response variable of interest is the number of doctor visits by a respondent
over a two-year period prior to an interview. The goal is to determine subgroups of respondents
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Table 3: Empirical percentage relative biases and mean squared errors of pseudo-ML estimators
under MAR and nonignorible (NI) dropout models.

True dropout model No. of subjects (N ) Parameter True value Relative bias(%) MSE

MAR 300 τ0 –1.5 0.53 0.0219

τ1 0.3 0.60 0.0027

500 τ0 –1.5 0.14 0.0138

τ1 0.3 0.41 0.0027

1000 τ0 –1.5 –0.08 0.0064

τ1 0.3 0.20 0.0008

NI 300 τ0 –1.5 –8.48 0.0388

τ1 0.3 32.67 0.0132

500 τ0 –1.5 –8.33 0.0289

τ1 0.3 32.16 0.0113

1000 τ0 –2.0 –14.04 0.0924

τ1 0.3 30.63 0.0096

with similar behaviors in terms of the number of doctor visits and to identify factors that affect the
number of visits to a medical doctor. The following baseline covariates were considered for the
analysis: Age (age of a respondent in years at baseline), Smoke (1, if the respondent ever smoked
cigarettes and 0, if not), Cancer (1, if the respondent is diagnosed with a cancer and 0, if not), Heart
(1, if the respondent has a heart condition and 0, if not), Lung (1, if the respondent has a lung
condition and 0, if not), Sex (1, if male and 0, if female), Hospital (1, if the respondent reports any
overnight stay in a hospital in the reference period and 0, if not), and BMI (body mass index).

We retained subjects for whom complete data were available on the covariates. The data ex-
hibited a number of extreme outliers in the response variable. Any response with the number of
doctor visits 41 or above over a two-year period was treated as an outlier, and was removed from the
analysis to avoid any potential influence of outliers on the model fit. The discarded data accounted
for only about 1% respondents.

Let yit be the number of doctor visits by the ith respondent (i = 1, . . . , N ) reported at time
t (t = 1, . . . , T ), with N = 4814 subjects and T = 4 time points. The marginal mean response
µit = E(yit|xi,β) is given by

log(µit) = β0 + β1Lungi + β2Hospitali + β3Canceri + β4(Age/10)i+

β5Sexi + β6Hearti + β7Timet + β8BMIi + β9Smokei. (5.1)
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Table 4: ML estimates, their standard errors (SEs) and z-values of the dropout model parameters in
HRS study.

Coefficient Estimate SE z-value

Intercept –6.4989 0.3174 –20.48

yi,t−1 0.0282 0.0033 8.63

Age 0.5021 0.0415 12.10

Cancer 0.1417 0.0640 2.21

Heart 0.2557 0.0552 4.63

Lung 0.5328 0.0706 7.55

Time 0.2994 0.0306 9.79

The marginal variance and correlations are given by

Var(yit) = φµit, Corr(yit, yit′ ) = α,

for t 6= t
′
= 1, . . . , T . We estimate both regression and association parameters using the ordinary

GEE and weighted GEE methods discussed earlier. For the weighted GEEs, we estimate the dropout
probability πim based on the logistic model

logit(p∗it) = τ0 + τ1yi,t−1 + τ2(Age/10)i + τ3Canceri + τ4Hearti + τ5Lungi + τ6Timet, (5.2)

where p∗it = P (vit = 0|vi1 = . . . = vi,t−1 = 1,yi,xi, τ ).
The pseudo-ML estimates of the dropout model parameters τ , their standard errors and corre-

sponding z-values are presented in Table 4. It is evident from the table that the rates of dropout
differ across all covariates as well as the number of doctor visits by respondents in previous years.
In particular, the dropout rate is higher among older respondents; the rate also increases with time as
well as with an increased number of doctor visits by the respondent in the previous year. In addition,
the dropout rate is higher among respondents with cancer as well as with heart or lung conditions.
For example, a respondent with a lung condition has an odds of dropout that is exp(0.5328) = 1.7

times higher than that for a respondent without any lung condition.
Table 5 presents the estimates of the regression and association parameters, their standard errors,

and corresponding z-values obtained by the three methods GEE, WGEE1, and WGEE2 discussed
earlier. Here the GEE estimates of the regression parameters appear to be somewhat different than
those obtained by the WGEE1 and WGEE2 methods. The estimates under the WGEE1 and WGEE2
methods are very similar.

From the WGEE2 model fit, it is evident that females, patients who had recent overnight hospital
stays, and patients with cancer, lung or heart conditions tend to visit doctors more frequently, as
compared to others. The number of visits tends to decrease over time. The overdispersion and
correlation parameters also appear to be significant by all methods.
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Table 5: Estimates, standard errors (SEs) and z-values of regression, association and dispersion
parameters of the count response model in HRS study.

GEE WGEE1 WGEE2

Coefficient Estimate SE z-value Estimate SE z-value Estimate SE z-value

Intercept 1.720 0.128 13.361 1.778 0.208 8.525 1.779 0.208 8.533

Lung 0.183 0.029 6.202 0.177 0.032 5.598 0.176 0.032 5.596

Hospital 0.244 0.022 11.270 0.265 0.028 9.463 0.265 0.028 9.463

Cancer 0.144 0.024 5.807 0.168 0.032 5.325 0.168 0.032 5.327

Age 0.034 0.016 2.083 0.031 0.027 1.124 0.031 0.027 1.122

Sex –0.051 0.020 –2.223 –0.059 0.026 –2.218 –0.059 0.026 –2.218

Heart 0.227 0.022 10.233 0.226 0.026 8.532 0.226 0.026 8.539

Time –0.001 0.005 –0.228 –0.023 0.007 –2.880 –0.022 0.007 –2.874

BMI –0.000 0.002 –0.020 –0.000 0.002 –0.124 –0.000 0.002 –0.127

Smoke –0.007 0.019 –0.387 –0.022 0.025 –0.863 –0.022 0.025 –0.861

α 0.338 0.014 22.818 0.337 0.015 22.231 0.331 0.016 20.184

φ 6.140 0.145 42.313 6.279 0.153 41.114 6.591 0.175 37.472

6 Discussion

The aim of this research was to provide a better alternative to the GEE approach of Prentice (1988)
for analyzing incomplete longitudinal count data with dropouts. Our simulation study reveals that
the proposed WGEE2 method offers unbiased and efficient estimators under the MAR dropout
mechanism. All methods, however, provide biased estimators under the misspecified nonignorable
(NI) dropout mechanism, but the extent of the bias from the WGEE2 method appears to be less as
compared to the GEE and WGEE1 methods.

We have studied the aforementioned three methods under both large and small proportions of
missing data at different follow-up times in a longitudinal setting. As expected, the loss of efficiency
by the ordinary GEE approach was not so dramatic when the proportion of missing responses was
small (e.g., 10% or less). But for large proportions of missing responses (e.g., 50% or 60%), the GEE
approach often provides large systematic biases in the estimation and hence invalid inference on the
model parameters, especially when the missing responses are not missing completely at random. In
such cases, attempts should be made to explore possible reasons for the missingness and to use a
suitable missing data model in the proposed weighted GEE approach for a valid statistical inference.

For the analysis of missing data, the approach of multiple imputation (MI) has been extensively
studied in the literature. There is software available for the MI in the context of linear and logis-
tic regression models. However, we are not aware of any software for MI with correlated count
responses. Multiple imputation for incomplete longitudinal count data is beyond the scope of this
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paper. We intend to study this in a future research.
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