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SUMMARY

Statistical analysts can encounter difficulties in obtaining point and interval estimates for
fixed effects when sample sizes are small and there are two or more error strata to con-
sider. Standard methods can lead to certain variance components being estimated as zero
which often seems contrary to engineering experience and judgement. Shell Global So-
lutions (UK) has encountered such challenges and is always looking for ways to make its
statistical techniques as robust as possible. In this instance, the challenge was to estimate
fuel effects and confidence limits from small-sample fuel economy experiments where both
test-to-test and day-to-day variation had to be taken into account. Using likelihood-based
methods, the experimenters estimated the day-to-day variance component to be zero which
was unrealistic. The reason behind this zero estimate is that the data set is not large enough
to estimate it reliably. The experimenters were also unsure about the fixed parameter esti-
mates obtained by likelihood methods in linear mixed models. In this paper, we looked for
an alternative to compare the likelihood estimates against and found the Bayesian platform
to be appropriate. Bayesian methods assuming some non-informative and weakly infor-
mative priors enable us to compare the parameter estimates and the variance components.
Profile likelihood and bootstrap based methods verified that the Bayesian point and inter-
val estimates were not unreasonable. Also, simulation studies have assessed the quality of
likelihood and Bayesian estimates in this study.
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1 Introduction
In the context of transport, fuel economy refers to the relationship between the distance traveled by an auto-
mobile and the amount of fuel consumed. Fuel economy is dependent on a number of factors such as vehicle
and fuel properties, driving patterns and loads. For example, vehicle properties might include engine param-
eters, weight, aerodynamic drag and rolling resistance while fuel properties might be physical, chemical or
performance related, e.g. octane. Fuel effects are generally smaller than vehicle, driving or loading effects,
so laboratories have to conduct carefully controlled experiments in order to measure the former. These ex-
periments often involve running vehicles for lengthy periods of time with limited opportunities to change fuel
due to the time and effort needed to remove all traces of the previous fuel out of the engine. This means that
independent sample sizes can be small and a number of time-related variance components come into play.

This work is motivated by challenges in estimating variance components in small experiments, in particular
in fuel economy and round robin studies. In order to demonstrate the effectiveness of its fuels, Shell has
conducted many detailed testing programmes comparing the performances of different fuels. The data from
one of the fuel economy programmes were analyzed by Shell using likelihood-based methods. The likelihood-
based methods estimated certain time-related variance components to be zero for some data sets from that
programme but not others. The reason behind this zero estimate is that the data set is not large enough to
estimate it reliably. The sampling distribution of the estimator of this variance component is highly positively
skewed, leading to the likelihood being maximised at zero. The models used here assumed variance components
were non-negative; if negative variance components are allowed, they also frequently arise in practice. Accurate
estimates of such components were unobtainable in the current study, possibly owing to the limited amount of
relevant data. One such data set will be examined in detail in this paper.

As the experiment was complex, time-consuming and labour-intensive and, as the chosen error model can
affect estimates, significance levels and confidence intervals for differences between fuels, the experimenters
were interested in maximising the robustness of the statistical techniques employed by also analyzing the data
using some other statistical methods for confirmatory purposes. The experimenters believed that a Bayesian
approach might resolve the problem associated with the zero estimates of variance components by introducing
a certain amount of prior information on the parameters. The Bayesian tools used follow those described in
the paper by Gilmour and Goos (2009). Thus a Bayesian method was implemented to overcome the difficulties
related to variance component estimation and to provide an alternative against which the outputs obtained
from likelihood methods could be compared. In addition, simulation studies were carried out to assess, and to
compare the quality of point and interval estimates obtained from likelihood and Bayesian methods.

For the implementation of Bayesian methods a freeware statistical program WinBUGS 1.4 has been used
(Lunn et al., 2000). Throughout the simulation studies an associated package R2WinBUGS was used to call
WinBUGS from R. Basically R2WinBUGS makes use of the batch mode feature and provides tools to call
WinBUGS directly after data manipulation in R. After the WinBUGS process had finished, it was possible to
work with the results by importing them back into R. For example, essential posterior summaries were saved
in R for further processing, which facilitated the presentation of the results of the simulation studies.

The rest of this article has been organized as follows. Section 2 discusses the underlying design and intro-
duces an example data set. Section 3 describes the likelihood analysis of these fuel economy measurements.
Section 4 deals with the Bayesian analysis of the same data set. Section 5 discusses alternative profile likelihood
methods and confidence intervals. Simulation studies are discussed in section 6, kernel densities in section 7
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and conclusions are drawn in section 8. It should be noted that the studies in section 2 to section 4 were the
main concern for Shell and the studies in the remaining sections (section 5 to section 7) have been carried out
to further elucidate the properties of the methods.

2 Fuel Economy Experiment
Shell commissioned tests to investigate the effect of adding certain components to a base fuel B to produce a
test fuel T. The origin and scale of response have been shifted in the data presented in this paper as they are
commercially sensitive. This manipulation of the data did not affect the nature of the statistical analysis under
investigation. We have compared the performances of T and B by estimating appropriate contrasts.

In the experiment, fuels were tested in order to assess which gave the better fuel economy in a vehicle. The
response variable, measured on a continuous scale, was the distance traveled by a vehicle per gallon of fuel
burned.

2.1 Underlying Design

Table 1: Underlying design in the fuel economy experiment

The tests were carried out over a two week period with three days of actual testing each week, as summarized
in Table 1. The programme had two test sessions per day, morning and afternoon.

Once the car had been run on fuel T, it would be very difficult to remove traces of that fuel from the vehicle
as it was believed that the additional components might have long-term effects. This limited the number of fuel
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changes that could practically be made.

Prior engineering judgement and experience suggested that there might be systematic and/or random
morning-to-afternoon, day-to-day and week-to-week effects related to the state of the engine and ambient con-
ditions. These effects had to be catered for in the experimental design. Each session (morning or afternoon),
consisted of three back-to-back tests on the same fuel. In week 2, the fuel was changed after the morning
session on the second day after a suitable fuel flush. To allow a valid comparison, week 1 was used as a control.
The same flushing procedure was used after the morning session on the second day even though the fuel was
not actually changed.

In our discussion of the design and subsequent analysis, B-T means a change of treatment from base fuel
to test fuel while B-B means a dummy change of treatment, i.e. no change of fuel. Some vehicles had a control
week (B-B) followed by a test week (B-T) while others had a test week (B-T) followed by a control week
(B-B). An extensive flushing procedure was carried out at the end of week 1. For brevity, we will only analyze
data from one vehicle in this paper, tested in the order detailed in Table 1.

2.2 Example Data Set

The fuel economy raw data set is presented in the Appendix (Table A1). The experiment was conducted in two
weeks shown in the first column. Days were numbered as 1, 2, 3 for the first week and 4, 5, 6 for the second
week. There were two sessions - morning and afternoon - containing three trials each (e.g. BBB or TTT). The
response variable Y on a continuous scale represents miles traveled by the vehicle per gallon of fuel.

For simplicity, we assume that the three back-to-back tests in each half-day session can be averaged. We
thus have two results per car per day, one from the morning and one from the afternoon, giving 12 data points
in all as listed in Table A2. This data set, and subsets thereof, will be analyzed in sections 3 to 5 to evaluate
fuel effects by estimating appropriate contrasts. The data will also be used to obtain estimates of between and
within day variation, thus enabling confidence intervals and significance tests to be derived for fuel effects.

3 Likelihood Methods in Fuel Economy Experiments

The objective of this section is to analyze the fuel economy experimental data by likelihood-based methods
to illustrate the problems associated with the estimation of variance components in small data sets. We have
chosen three examples, namely likelihood analysis of the contrasts T-B, B2-B1 and (T-B)-(B2-B1) to illustrate
the problem.

3.1 Contrast: T-B

To estimate the contrast T-B, which measures the difference in fuel economy between fuels T and B, we first
looked at the week 2 data subset, as listed in Table A3. We fitted linear mixed-effect models by residual
maximum likelihood (REML) and maximum likelihood (ML) methods using the statistical software R. The
REML and ML methods for linear mixed effects are described in Pinheiro and Bates (2000).
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Table 2: Linear mixed-effects model fit for (T-B) by REML and ML methods

Method Effect Value SE DF t-value p-value

REML α (B) 32.195 0.102 2 316.537 0.000

β2 1.332 0.144 2 9.264 0.012

σ̂2
b 1.684× 10−12

ML α (B) 32.195 0.102 2 316.537 0.000

β2 1.332 0.144 2 9.264 0.012

σ̂2
b 1.849× 10−12

Model

The mixed model

Yjkm = α+ βj + δk + εjkm (3.1)

has been used to estimate the contrast T-B, where Yjkm ∼ N(µjk, τ) is the response corresponding to them-th
test (m = 1 or 2) on day k (k = 1, 2, 3) corresponding to fuel j (j = 1 or 2) with mean µjk = E(Yjkm|δk) =
α+ βj + δk and precision τ = 1/σ2. We have cited the normal distribution precision parameter τ rather than
σ2 in the above to keep consistency with the Bayesian terminology used in this paper. The parameter α is the
intercept, βj is the fixed effect due to the jth fuel with the constraint β1 = 0, δk is the day-to-day error term
(i.e. random effects due to the kth day) which follows a normal distribution with mean zero and variance σ2

b ,
and εjkm is the within-day error term with mean zero and variance σ2. We can define within-day correlation by
ρ = σ2

b/(σ
2
b + σ2) or equivalently ρ = τ/(η + τ) which can be also be expressed as η = (1− ρ)τ/ρ, where

η = 1/σ2
b .

Table 2 shows the fits of model (1) to the data presented in Table A3 by the REML and ML methods
respectively. The between day variance components obtained by REML and ML methods are 1.684 × 10−12

and 1.849× 10−12 respectively which, to the all intents, are zero. The reason for this zero estimate of variance
component could be small sample size of the experiment. The parameter β2 provides an estimate of the contrast
T-B, indicating that test fuel T gives a fuel economy benefit of 1.332 miles/gallon relative to base fuel B. The
p-value is 0.012 in each case suggesting that the performance benefit is statistically significant. The robustness
of this inference will be checked by Bayesian methods in section 4.1.

3.2 Contrast: B2-B1

In week 1, the full fuel flushing procedure was conducted halfway through day 2 even though the base fuel B
was not actually changed. We were interested in checking whether a change in fuel economy was seen after
this flush. Therefore we treated the first nine tests (day 1, day 2 am) as fuel B1 and the next nine tests (day 2
pm, day 3) as fuel B2 (although we knew that both B1 and B2 were actually fuel B). Then we analyzed the
week 1 data subset from Table A2 using the same methods as were used for the week 2 data in section 3.1.
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Table 3: Linear mixed-effects model fit for (B2-B1) by REML and ML methods

Effect Value SE DF t-value p-value

REML α (B1) 32.088 0.142 2 225.219 0.000

β2 -0.366 0.202 2 -1.815 0.211

σ2
b 5.275× 10−12

ML α (B1) 32.088 0.142 2 225.219 0.000

β2 -0.366 0.201 2 -1.815 0.211

σ2
b 2.199× 10−12

In the next section 3.3, we will study whether switching from B to T is better than switching from B1 to
B2 using the complete week 1 and 2 data set.

Mixed Model

To estimate the contrast B2-B1, we consider the mixed linear model

Yjkm = α+ βj + δk + εjkm, (3.2)

where Yjkm is the response corresponding to the mth test (m = 1 or 2) on day k (k = 1, 2, 3) corresponding to
fuel j (j = 1 or 2), α is the intercept, βj is the effect due to the jth fuel, δk is the random effect due to the kth
day and εjkm is the error term corresponding to the mth test (m = 1 or 2) of fuel j (j = 1 or 2) on day k (k =
1, 2, 3). Using the week 1 data subset from Table A2, the results from likelihood based methods are given in
Table 3, where β2 corresponds to the contrast B2-B1. The day-to-day variability is again effectively zero and
the p-values in the tables indicate that there is no significant difference between the performances of B1 and B2
in consecutive trials.

3.3 Contrast: (T-B)-(B2-B1)
In this section, we investigate whether test fuel T bestows a fuel economy benefit by comparing its performance
against base fuel B in week 2 against the corresponding dummy change in control week 1, as planned in the
experimental design (see section 2). By studying the contrast (T-B)-(B2-B1), we are trying to minimize the
effects of any systematic morning to afternoon differences and/or day-to-day trends on our estimate of the fuel
difference. Data regarding contrast (T-B)-(B2-B1) are given in Table A4.

Mixed Model

We have created three dummy variables in the mixed model (3.3)

Yjkm = α+ β2D2k + β3D3k + β4D4k + δk + εjkm, (3.3)
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Table 4: Linear mixed-effects model fit for (T-B)-(B2-B1) by the REML and ML methods

Effect Value SE DF t-value p-value

REML α (B1) 32.088 0.124 5 259.225 0.000

β2 -0.366 0.175 3 -2.089 0.128

β3 0.107 0.175 3 0.610 0.585

β4 1.439 0.175 3 8.222 0.004

σ2
b 1.510× 10−12

ML α (B1) 32.088 0.124 5 259.225 0.000

β2 -0.366 0.175 3 -2.089 0.128

β3 0.107 0.175 3 0.610 0.585

β4 1.439 0.175 3 8.222 0.004

σ2
b 2.312× 10−12

where Yjkm is the response corresponding to fuel j (j = 1, 2, 3, 4) on day k (k = 1, 2, . . . , 6), α is the
intercept, βj is the effect due to the jth fuel (note that j = 2, 3, and 4 correspond to fuels B2, B and T
respectively), D2k is the dummy variable corresponding to fuel B2, D3k is the dummy variable corresponding
to fuel B, D4k is the dummy variable corresponding to fuel T, δk is the random effect due to the kth day
and εjkm is the error term corresponding to the mth test (m = 1 or 2) of fuel j (j = 1, 2, 3, 4) on day k
(k = 1, 2, . . . , 6). Thus we have the means α, α+ β2, α+ β3, and α+ β4 corresponding to fuels B1, B2, B
and T respectively.

The REML and ML estimates of the fixed effects in model (3.3) are shown in Table 4 and are similar. We
need the estimate of the contrast (T-B)-(B2-B1) to compare with the Bayesian counterparts. The estimates of
the contrast (T-B)-(B2-B1) can be obtained from {(α+ β4)− (α+ β3)− (α+ β2) + α} which simplifies to
β4− β3− β2. Thus the estimate of contrast (T-B)-(B2-B1) is 1.698 (using either REML or ML estimates from
Table 4). Its S.E. is 0.247 with 3 d.f., a t-value of 6.861 and a p-value of 0.006. This again suggests that test
fuel T gives significantly better fuel economy than base fuel B.

The estimates for the between days variance σ̂2
b are 1.510 × 10−12 and 2.312 × 10−12 in the REML and

ML methods respectively, implying that the between days variance component is effectively zero which again
is considered unrealistic.

It is evident that likelihood based methods provide estimates of the day-to-day variance component which
are zero or very close to zero. As a consequence, the estimates of the contrasts T-B, B2-B1 and (T-B)-(B2-B1)
derived by ML and REML methods in sections 3.1 to 3.3, and the mean values for T, B, B2 and B1 derived
therefrom, are equal to the corresponding values obtained from the arithmetic means of the data in Table A4.

In the first instance, Shell used the analysis in section 3.3 to determine whether there were significant
fuel differences or not; the Bayesian analysis in section 4.3 was subsequently used as a confirmation of the
robustness of the overall approach.
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Table 5: Bayesian model fit for contrast T-B

Effect Mean SD MC Error P(2.5) Median P(97.5)

B (α) 32.170 0.205 0.002 31.780 32.170 32.580

Fuel Diff(β2) 1.421 0.240 0.002 0.952 1.420 1.877

T 33.590 0.209 0.002 33.190 33.580 34.040

σ2
b 0.059 0.181 0.003 0.001 0.021 0.362

4 Bayesian Analysis of Fuel Economy Experiments
To overcome the problems associated with classical methods we have performed Bayesian analyses of the fuel
economy data. The various contrasts were estimated using the same models, data sets and subsets used in the
likelihood analyses in Section 3.

4.1 Contrast: T-B
We begin by estimating the contrast T-B from the week 2 data in Table A3 in order to compare fuels B and T
combining both between day and within day information.

Priors and Results

We used WinBUGS 1.4 to fit model (3.1) to the data by Bayesian methods assuming the following priors

α ∼ N(32, 0.1), βj ∼ N(0, 0.001)

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20)

The prior for α was centered at 32 to incorporate the notion of the mean fuel effect and was based on the simple
arithmetic mean of the data. Therefore, we assume a weakly informative prior for α by taking α ∼ N(32, 0.1).
Congdon (2007) suggested that, in the absence of prior information about the direction or magnitude of covari-
ate effects, flat priors may be used by taking univariate normal distributions with mean zero and large variance.
The effect of using normal priors with means 0 and large variances is that parameter estimates are smoothed to-
wards zero as large variances are used (Galindo-Garre et al., 2004). Therefore, we tried a non-informative prior
for βj by setting β2 ∼ N(0, 0.001) i.e. β2 follows a normal distribution with mean 0 and low precision 0.001 or
large variance 1000. Also, we assumed a non-informative prior for σ by assuming log(σ) ∼ U(−20, 20). The
beta(1,1) prior for the intra-class correlation ρ is also non-informative and this is used to compute the precision
of the day-to-day error term.

The results of the Bayesian analysis are presented in Table 5 assuming the above set of priors. However, a
completely non-informative prior for α, namely α ∼ N(0, 0.001), provided similar results to those presented
in Table 5 with the weakly informative prior α ∼ N(32, 0.1). The prior α ∼ N(0, 0.001) is considered non-
informative as it has very low precision. The default Markov chain Monte Carlo method used by WinBUGS
is Gibbs sampling and this proved adequate for this problem. There were some autocorrelation effects in
the results before thinning (where thinning refers to removal of some values from the chain). When data
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were thinned by a factor 15 (i.e. instead of using every step in the chain, we only used every 15th step), the
autocorrelation disappeared. Posterior means were calculated on the basis of a sample size of 10000. The first
1000 samples were ignored to remove initial fluctuations of the chains.

In Table 5 the first column shows the names of effects. The ‘Mean’ column shows the magnitude of
any effect, the columns headed by ‘SD’ and ‘MC Error’ denote standard deviations of effects and Monte Carlo
errors respectively; P(2.5), Median, and P(97.5) display the 2.5th, median and 97.5th percentiles of the posterior
estimates respectively.

The estimated fuel economy for base fuel B is 32.170 miles/gallon and for the test fuel T it is 33.590
miles/gallon. The difference of effects β2 between test and base fuel is 1.421, which is slightly higher than the
1.332 found by ML methods in section 3.1. Its SE is also higher at 0.240 vs 0.144 but the difference is still
statistically significant as the 95% Bayesian credible interval (0.952, 1.877) does not contain zero.

The variance between days σ2
b in the Bayesian analysis is 0.059. However, the lower limit of the 95%

credible interval of σ2
b is very close to zero. As the mean is larger than the median of the distribution of σ2

b , it
implies that the distribution of σ2

b is positively skewed which will also be evident in the portrayal of the kernel
density of σ2

b presented in section 7.
Comparing estimates of the variance component σ̂2

b in Tables 2 and 5, we see that a poorly estimated
variance component in likelihood-based methods becomes estimable in the Bayesian method assuming some
priors. The quality of the Bayesian credible interval for σ̂2

b will be assessed by comparison with profile likeli-
hood and bootstrap based confidence intervals derived from likelihood methods (section 5) and by simulation
studies (section 6).

4.2 Contrast: B2-B1
Previously we considered the contrast B2-B1 in likelihood methods in section 3.2. Now we will consider a
Bayesian approach.

Mixed Model

We reconsider the mixed linear model (3.2) regarding the contrast B2-B1 in the Bayesian context.

Priors and Results

We assume the following priors for the parameters in model (3.2)

α ∼ N(0, 0.001), β2 ∼ N(0, 0.001)

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20).

The priors for α, β2, ρ (intra-class correlation), and log(σ) are assumed to be non-informative. Previously, a
weakly informative prior for αwas considered, namely α ∼ N(32, 0.1). As there are no substantial differences
in the results either assuming α ∼ N(32, 0.1) or α ∼ N(0, 0.001) i.e. a non-informative prior for α, we use
only non-informative priors for α in the subsequent analysis. The results concerning the contrast B2-B1 are
presented in Table 6.

Table 6 shows that there is negligible difference (β2) in performance between B1 and B2. The difference
at -0.411 is slightly larger than the -0.366 obtained by ML methods in section 3.2 and the SE, once again, is
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Table 6: Bayesian model fit for contrast B2-B1

Effect Mean SD MC Error P(2.5) Median P(97.5)

B1 32.140 0.311 0.003 31.600 32.120 32.770

B2 31.730 0.289 0.003 31.190 31.730 32.330

Fuel Diff β2 -0.411 0.361 0.004 -1.118 -0.403 0.257

σ2
b 0.115 0.454 0.005 0.005 0.047 0.562

larger at 0.361 vs 0.201. But the 95% Bayesian credible interval for the fuel difference contains zero so again
the difference is not statistically significant.

4.3 Contrast: (T-B)-(B2-B1)

In this section we use the approach described in section 3.3 to test whether fuel T bestows a fuel economy
benefit relative to base fuel B, but now use Bayesian methods to estimate the contrast (T-B)-(B2-B1).

Priors and Results

We assume the following priors for the parameters in model (3.3)

α ∼ N(0, 0.0001), βj ∼ N(0, 0.0001), j = 2, 3, 4;

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20).

From the analysis summarized in Table 7 we see that the difference between B2 and B1 is not significant as
the 95% credible interval for B2-B1 (-0.802, 0.080) includes zero. However, the credible interval for (T-B)-
(B2-B1) does not include zero which implies that there is clear evidence of a benefit by switching from B to T
rather than switching from B1 to B2. In other words, there is a clear advantage in changing from base fuel B to
test fuel T rather than retaining the same base fuel in consecutive trials.

The Bayesian estimate of the contrast (T-B)-(B2-B1) is 1.776, which is slightly higher than the 1.698 by
ML methods in section 3.3, and its SE is larger at 0.320 vs 0.247. But both methods indicate a statistically
significant effect.

5 Profile Likelihood and Confidence Intervals
As the fuel economy experiment was a small sample experiment, the estimates, and particularly confidence
intervals, in the likelihood method which assumes asymptotic normality of estimates might not be precise due
to poor estimates of sampling variance. Therefore, we intend to compare estimates from alternative methods,
namely profile likelihood and bootstrap, against the Bayesian method. We have computed confidence intervals
based on the Wald procedure, profile likelihood and bootstrap methods for the parameters of the model (3.1),
based on the week 2 data in Table A3, and compared these with the Bayesian credible intervals.
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Table 7: Bayesian model fit for contrast (T-B)-(B2-B1)

Effect Mean SD MC Error P(2.5) Median P(97.5)

α (B1) 32.090 0.187 0.004 31.710 32.090 32.460

β2 -0.365 0.222 0.004 -0.802 -0.371 0.080

β3 0.063 0.259 0.002 -0.473 0.069 0.562

β4 1.469 0.259 0.002 0.952 1.467 1.998

B2 31.720 0.173 0.003 31.380 31.720 32.070

B 32.150 0.179 0.004 31.790 32.160 32.500

T 33.560 0.180 0.005 33.210 33.560 33.940

B2-B1 -0.365 0.222 0.004 -0.802 -0.371 0.080

T-B 1.411 0.232 0.006 0.968 1.409 1.912

(T-B)-(B2-B1) 1.776 0.320 0.008 1.138 1.778 2.424

σ2
b 0.033 0.052 0.001 0.001 0.017 0.177

Table 8: Likelihood and Bayesian estimates with 95% confidence/credible intervals under different
methods

Likelihood Method Bayesian Method

95% CI 95% CI

Parameter Estimate Wald Profile Bootstrap Estimate

α 32.195 (32.032, 32.358) (31.915, 32.388) (32.019, 32.365) 32.170 (31.780, 32.580)

β2 1.332 (1.102, 1.563) (1.060, 1.713) (1.067, 1.598) 1.421 (0.952, 1.877)

σ2
b 0.000 - (0.000, 0.099) (0.000, 0.026) 0.059 (0.001, 0.362)
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Table 8 shows that the Bayesian estimate of the fuel difference β2 is 1.421 which differs from its classical
counterpart 1.332. Also, the Bayesian credible interval for β2 is conservative (wider) in comparison to profile
likelihood or bootstrap confidence intervals. The main idea behind the implementation of profile likelihood and
bootstrap based methods, along with the Bayesian technique, is to observe the differences in point and interval
estimates of the variance component σ2

b . The point estimate of the day-to-day variance component σ2
b is zero

in the classical method which is assumed unrealistic, whereas the Bayesian estimate is nonzero (0.059). In the
profile and bootstrap methods, the lower limit of the 95% confidence interval for σ2

b is zero, whereas the lower
limit of the 95% Bayesian credible interval is nonzero, but close to zero. However, Lambert et al. (2005) notice
that if the variance parameter is close to the boundary at zero, MCMC results tend to produce upwardly biased
estimates of variance parameters when inferences are based on the posterior mean. Therefore considering all
the figures in Table 8, either point or interval estimates, we conclude that the day to day variance component
σ2
b might be nonzero and in between likelihood and Bayesian point estimates in the fuel economy experiment.

A simulation study will examine the performance of classical and Bayesian methods in estimating the variance
component σ2

b in section 6.

To conclude this section we summarize that the point estimates of fixed effects do not differ substantially,
but Bayesian confidence intervals are wider than the corresponding likelihood intervals. The estimate of the
variance component might not be zero, and could lie between 0 and the Bayesian point estimate 0.059. The
comparatively larger width of the Bayesian 95% credible intervals could be minimized with an appropriate
choice of priors as non-informative priors are likely to give rise to wider credible intervals.

6 Simulation Studies

In this section we present the results of simulation studies of fuel economy experiments to observe the perfor-
mances of point estimators and confidence/credible intervals under likelihood and Bayesian methods.

In the actual experiments, the fuels were tested in a number of cars, each of which was tested over six days
under carefully controlled conditions. In sections 3.1, 4.1 and 5, we estimated the contrast T-B using data from
the second week for one of the vehicles, as shown in Table A3. To see how the results of such an experiment
might have turned out had it been repeated, a simulation study has been conducted assuming the same test
order. Thus we assumed that n=6 tests would be conducted over three days with two tests per day. The first
three tests would be on fuel B and the last three tests on fuel T.

In the first of the simulation studies, we generated data using model (3.1) with the random terms δk and
εjkm each following normal distributions. The parameters were arbitrarily set as α = 32, β2=1.4, σ2

b=0.05 and
σ2=0.05. These values are close to those actually found in the Bayesian analysis of the real data (see Table 5).
Taking into account both practical considerations and the recommendations of Rahman (2015), the simulation
size was fixed at 2000.

The simulation results are summarized in Table 9. The first column lists the parameters, the second column
presents the bias of the parameter estimates, the third column is the percent relative bias, the fourth column is
the root mean squared error (RMSE), the seventh column represents the root median squared error (RMdSE)
and rest of the columns are self explanatory. In the table, the first set of results (first three rows) shows the
averages of the likelihood estimates, obtained through REML procedures, of the parameters α, β2, and σ2

b

computed from 2000 simulations. The results from those simulations where the REML estimation procedure
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in R failed, for any reason, are excluded from these averages.

For the day-to-day variance component σ2
b , we see that the bias and relative bias of the average (mean) of

the simulated estimates is larger than the corresponding bias in the simulated median. This happens because
mean estimates are affected by unusual (extreme) estimates that arose during the simulations. But the estimation
of random effects was not our primary interest, the main concern being to estimate fixed effects, particularly,
the difference in the effects of the test and base fuels (β2). The biases in the mean and median estimates of α
and β2 were both very small. However the coverage probability for β2 was 0.929 which is significantly below
the acceptable range, because, by definition, a 95% confidence interval should have a coverage probability of at
least 0.95. However, even if the true coverage probability equals 95%, the coverage probability obtained from
a simulation study might not be exactly equal to 0.95 because of the MC error (Galindo-Garre et al., 2004).
This error tends to zero when number of simulations tends to infinity. As we implemented 2000 simulations,
the MC error was equal to (0.95× 0.05/2000)

1
2 = 0.00487 which means that coverage probabilities between

0.9451 and 0.9549 are in agreement with the nominal level of 95%. Therefore, the coverage probability 0.929,
corresponding to β2 in likelihood method, is clearly beyond the range above.

The last six blocks of three rows in Table 9 show the average estimates from 2000 simulated data sets
using the Bayesian analysis described in section 4.1 with the priors α ∼ N(0, 0.001), β2 ∼ N(0, 0.001)

and log(σ) ∼ U(−20, 20) and various non-informative and weakly informative priors for either ρ or 1/σ2
b .

Though mean based bias and relative bias for the random effect estimate seem less in the likelihood method
than the corresponding Bayesian estimates, MLE is unacceptable as the average width of the 95% confidence
interval (CI) for σ2

b is infinity. This happens because the covariance matrix is non-positive definite in a number
of simulations of small sample experiments (here n = 6) which causes the upper CI limit to be infinity.

The problems in fitting mixed models by MLE methods discussed above lead us towards choosing Bayesian
methods, assuming non-informative or weakly informative priors. It is relevant to discuss how we have chosen
the priors in this study. During the selection of non-informative priors, we followed Lambert et al. (2005) who
used 13 different non-informative priors in a simulation study that demonstrates the potential influence of using
prior distributions believed to be vague. A few of their non-informative or weakly informative priors resemble
ours. For fixed effects, we used non-informative normal priors, as we did in our single real study. However, not
all of their priors are suitable for studying the variance components in our models. For example, Pareto, half
normal, uniform or normal priors produced highly biased estimates and also had low coverage probabilities.
Therefore these were not considered further.

The number of Bayesian iterations was 5000 in the analysis of each simulated data set; the thinning factor
was 10, the burn-in period 2000, and the number of chains was 4. For the width of Bayesian credible inter-
vals, we simply average the widths of the 95% credible intervals obtained from each of the simulations. The
median width is the median of the respective widths of the 95% CIs both in likelihood and Bayesian methods.
Median square error (MdSE) was calculated as the median of (β̂−β)2 (Galindo-Garre et al., 2004). For confi-
dence/credible intervals, we report coverage probabilities which represent the proportion of times that the true
parameter lies within the 95% confidence intervals in the likelihood method whereas in the Bayesian case it is
the proportion of times that the true parameter lies within 95% Bayesian credible intervals.

Table 9 shows that the use of the completely non-informative prior ρ ∼ Beta(1, 1), which is equivalent to
ρ ∼ U(0,1), for random effects leads to biased estimates thereof. This prior should not be used to estimate the
variance component σ2

b as the simulation results show that the relative bias is very high at 223.83%. The bias
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reduces steadily as the weakly informative priors Beta (1.5, 1.5), Beta (2.5, 2.5) and Beta (3, 3) are introduced
but still remains large. This is not unusual. Litière et al. (2008) showed that estimates of the variability of
random effects are always biased, though the biases induced in the fixed effect parameters are small so long
as the variability underlying the random effects distribution is small. Note that the bias in σ2

b is much smaller
when bias is measured relative to the median rather than the mean.

Table 9 shows that the estimates of fixed effects are fairly close to the true parameter values in both likeli-
hood and Bayesian methods as the bias and relative bias are small. The bias in fixed effects is generally smaller
when measured relative to the median rather than the mean, but not hugely so. When the priors ρ ∼ Beta(1, 1),
ρ ∼ Beta(1.5, 1.5), ρ ∼ Beta(2.5, 2.5) and ρ ∼ Beta(3, 3) are considered, the Bayesian median widths for all
parameters are always less than the corresponding widths for the likelihood estimates.

The gamma priors for 1/σ2
b are not suitable for estimating either fixed effects or variance components.

They produce severely biased estimates for the variance component and high coverage probabilities for all
three parameters, particularly when sample size is small as here, for instance, with n = 6. Perhaps, the
biased estimates along with high coverage emanate from the sensitive behaviour of gamma priors. Actually,
the gamma or inverse gamma forms with small parameter values are not uninformative in any sense and can
produce substantive sensitivity into the posterior specification (Gill, 2014; Gelman et al., 2006; Hodges and
Sargent, 2001; Natarajan and Kass, 2000). Coverage probabilities are acceptable for fixed effects using the
priors Beta(1, 1) to Beta(3, 3) for ρ as these are close to the nominal coverage. However for the variance
component σ2

b , there appeared to be overcoverage which might lead to erroneous conclusions about σ2
b .

In Table 10, the number of tests has been increased from 6 to 40 to make comparisons, again assuming two
tests per day. The first 30 tests (days 1-15) were assumed to be on base fuel B and the last 10 tests (days 16-
20) on test fuel T. The results are improved in terms of bias, root mean squared error (RMSE) or root median
squared error (RMdSE), coverage probability, and average or median widths. It seems that both MLE and
Bayesian methods, particularly with priors ρ ∼Beta(1, 1) or ρ ∼ Beta(1.5, 1.5), produce good results in terms
of relative bias.

However, the Bayesian estimates, particularly with priors ρ ∼Beta(1, 1) to ρ ∼Beta(3, 3), performed better
than MLE in terms of the average and median width of 95% CIs, except for the ML estimate of β2. All of
these sets provide precise fixed effect estimates. Although the variance component σ2

b is estimated well in the
ML method, the average width of the 95% CI is infinite as, despite the increase in the number of tests from
6 to 40, confidence intervals of infinite width were still obtained for some of the simulated 2000 data sets for
the reasons discussed earlier. The data sets where the SE of σ2

b was not available have been excluded from the
average values in Table 10.

7 Kernel Density of Simulated Estimates

Kernel density estimation can be used to visualize the sampling distribution of simulated estimates. Figure 1
shows the kernel densities of the estimates from the simulated fuel economy experiments. During the generation
of samples the true parameter values were α = 32, β2 = 1.4, σ2

b = 0.05, σ2=0.05, the sample size was
40, the number of simulations was 2000 and the priors in the Bayesian analysis were α ∼ N(0, 0.001),
β2 ∼ N(0, 0.001), and ρ ∼Beta(1, 1). In the figure, the shapes of kernel densities corresponding to base fuel
(α) and fuel difference (β2) are approximately normal both in likelihood and Bayesian methods. The kernel
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Figure 1: Kernel density of likelihood estimates (Left Column) and kernel density of Bayesian
estimates (Right Column)
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densities indicate that the distributions of day to day variability (σ2
b ) under likelihood and Bayesian methods

are positively skewed. There were more zero estimates for day-to-day variability for the likelihood method than
the Bayesian method. Therefore it is likely that zero estimates of day to day variation will be commonplace in
real fuel economy experiments.

To have a better sense of why the density plots have higher bumps at certain places, we look at rug plots. A
rug plot is a plot of tick marks along the horizontal axis indicating where the data are located. Clearly, there are
more data in the neighbourhood between 31.5 and 32.5 where highest ‘bump’ is located for base fuel (α) both
in the likelihood and Bayesian simulation studies. The kernel densities and rug plots for the fuel difference (β2)
also have the same pattern in both methods. However, day to day variability (σ2

b ) has different distributional
patterns for likelihood and Bayesian estimates.

Based on the plots in Figure 1, it would seem that the likelihood and Bayesian methods performed fairly
similarly. Nevertheless we were only able to successfully obtain likelihood estimates in 1638 of the 2000
simulations. The fitting procedure in R failed for the other 362. The Bayesian method did not encounter
such problems. This is the main advantage of using Bayesian methods in fuel economy experiments. Also,
in terms of coverage probabilities and width of 95% confidence/credible intervals Bayesian methods are better
than likelihood based methods as they provide good coverage estimates which are close to the 95% nominal
confidence limit and have less width in comparison to likelihood method (see Table 10).

8 Conclusion

In this paper, we have applied Bayesian methods to the analysis of small fuel economy experiments, which
is a novel approach in this field. This study has enabled estimates of variance components to be obtained
which were poorly estimable in classical methods due to the small number of groups. Likelihood-based REML
and ML methods estimated the variance component due to days to be zero in the data set studied, which was
considered to be unrealistic. We have implemented Bayesian techniques assuming some priors to determine
this day-to-day variance component.

As the standard asymptotic theory breaks down in the case of deriving confidence intervals for the day-
to-day variance component in the likelihood method, we have compared the Bayesian 95% credible interval
for this variance component with the confidence intervals based on profile likelihood and bootstrap methods.
However, the Bayesian estimate of the variance component is inflated as evidenced by Lambert et al. (2005)
who noted that MCMC methods provide estimates of variance parameters that are upwardly biased. To evaluate
the quality of Bayesian as well as likelihood estimates, we have performed simulation studies. In this regard,
the frequentist properties of bias, accuracy, and coverage of the parameter estimates have been investigated.

The analysis of real fuel economy data shows that the fixed effect estimates are similar both in the classical
and Bayesian methods. However, the estimates of variance components differ substantially. For instance,
day-to-day variation in the model corresponding to contrast T-B was close to zero in the classical method,
whereas the Bayesian estimate was 0.059 (see Table 2, Table 5). Though Bayesian methods ensure that the
variance component is not estimated to be zero, Bayesian estimation is not free from criticism as it suffers from
overestimation of the point estimates. Perhaps, the problem of overestimation in variance components could
be reduced by assuming conservative priors for the variance parameters (Gustafson et al., 2006). However, the
Bayesian estimate of the variance component has been compared with profile likelihood and bootstrap based
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intervals. This showed that the Bayesian estimate was not unreasonable as the Bayesian point estimate of the
day to day variance was 0.059 which lies within the profile likelihood based interval (0.000, 0.099) shown in
Table 8.

In the small fuel economy experiment simulation with n=6 in Table 9, it seems that fixed effect estimates are
reasonable in terms of bias, coverage probability and width, both in likelihood and Bayesian methods. However,
the mean width of 95% confidence intervals is infinity in the former case as at least one width in the simulated
samples is infinity due to the upper limit of that interval being infinity. Therefore, a mean based estimate of
the variance component σ2

b is not acceptable. With respect to median based estimates, a Bayesian approach
performed better than the likelihood method, particularly with priors with ρ ∼Beta(1, 1) and ρ ∼Beta(1.5, 1.5).

For fixed effects the main concern is to estimate the fuel difference β2. Though likelihood and Bayesian
estimates of β2 are fairly close, the corresponding coverage probability in the likelihood method is slightly
below the nominal level 0.95. However, for small samples, it seems that the likelihood method underestimates
the variance component σ2

b while the Bayesian method overestimates it. From our intuition we conclude that
none of the estimates of σ2

b obtained by the likelihood or Bayesian methods is accurate, rather perhaps it lies
between the likelihood and Bayesian estimates. The mean or median widths of the Bayesian credible intervals
are smaller than the median widths of the classical confidence intervals, particularly with the set of priors with
ρ ∼Beta(1, 1) to ρ ∼Beta(3, 3). Among the priors the set with ρ ∼Beta(3, 3) performs best for small sample
fuel economy experiments. When the sample size is increased from 6 to 40, the estimates are improved by
providing less bias, close to desired coverage probabilities, and smaller widths of intervals (see Table 10).
However, the likelihood and Bayesian methods perform fairly close to each other except for the pitfall in the
average width of the 95% confidence interval of σ2

b in the likelihood method.

In summary, the newly applied Bayesian methods offer an alternative method of analysis of the fuel econ-
omy data that does much to address the problems of estimating variance components from small sample sizes.
For Shell Global Solutions, it can be used in conjunction with traditional classical methods of analysis to further
underpin the robustness of conclusions. These techniques of analyzing fuel economy have wider applicability
and could be replicated in other small scale industrial experiments.
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Appendix

Table A1: Data before averaging over back-to-back tests

Week Day Session Treatment Y

1 1 am B 31.90993
1 1 am B 31.61670
1 1 am B 32.07328
1 1 pm B 32.38294
1 1 pm B 32.35951
1 1 pm B 32.51994
1 2 am B 31.92975
1 2 am B 32.32851
1 2 am B 31.67399
1 2 pm B 31.79294
1 2 pm B 31.49287
1 2 pm B 31.44593
1 3 am B 31.76795
1 3 am B 31.36462
1 3 am B 31.82962
1 3 pm B 31.87879
1 3 pm B 32.04046
1 3 pm B 31.89035

Week Day Session Treatment Y

2 4 am B 32.11118
2 4 am B 32.41172
2 4 am B 32.43854
2 4 pm B 32.08281
2 4 pm B 32.60450
2 4 pm B 32.17017
2 5 am B 32.08908
2 5 am B 32.15086
2 5 am B 31.69741
2 5 pm T 33.87101
2 5 pm T 33.24747
2 5 pm T 33.71225
2 6 am T 33.08393
2 6 am T 33.62343
2 6 am T 33.31008
2 6 pm T 33.86173
2 6 pm T 33.89393
2 6 pm T 33.14460

Table A2: Data averaged over back-to-back repeats

Week Day Session Treatment Y

1 1 am B 31.86663
1 1 pm B 32.42080
1 2 am B 31.97741
1 2 pm B 31.57725
1 3 am B 31.65406
1 3 pm B 31.93653

Week Day Session Treatment Y

2 1 am B 32.32048
2 1 pm B 32.28583
2 2 am B 31.97912
2 2 pm T 33.61024
2 3 am T 33.33915
2 3 pm T 33.63342

Table A3: Data to test contrast T-B
Week Day Session Treatment Y

2 1 am B 32.32048
2 1 pm B 32.28583
2 2 am B 31.97912
2 2 pm T 33.61024
2 3 am T 33.33915
2 3 pm T 33.63342

Table A4: Data for contrast (T-B)-(B2-B1)

Day Fuel Y

1 B1 31.8666
1 B1 32.4208
2 B1 31.9774
2 B2 31.5772

Day Fuel Y

3 B2 31.6541
3 B2 31.9365
4 B 32.3205
4 B 32.2858

Day Fuel Y

5 B 31.9791
5 T 33.6102
6 T 33.3391
6 T 33.6334
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