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SUMMARY

The goal of this study is twofold: i) identification of features associated with three cardio-
vascular disease (CVD) risk factors, and (ii) identification of subgroups with differential
treatment effects. Multivariate analysis is performed to identify the features associated
with the CVD risk factors: hypertension, diabetes, and dyslipidemia. For subgroup identi-
fication, we applied model-based recursive partitioning approach. This method fits a local
model in each subgroup of the population rather than fitting one global model for the whole
population. The method starts with a model for the overall effect of treatment and checks
whether this effect is equally applicable for all individuals under the study based on pa-
rameter instability of M fluctuation test over a set of partitioning variables. The procedure
produces a segmented model with a differential effect of cardio-respiratory fitness (CRF)
corresponding to each subgroup. The subgroups are linked to predictive factors learned by
the recursive partitioning approach. This approach is applied to the data from the Ball State
Adult Fitness Program Longitudinal Lifestyle Study (BALL ST), where we considered the
level of CRF as a treatment variable. The overall results indicate that CRF is inversely
associated with hypertension, diabetes and dyslipidemia. The partitioning factors that are
selected are related to these risk factors. The subgroup-specific results indicate that for
each subgroup, the chance of hypertension, diabetes and dyslipidemia increases with low
CRF.

Keywords and phrases: Subgroup identification, multivariate analysis, model-based recur-
sive partitioning approach, cardio-respiratory fitness

1 Introduction

Abundant evidence over the past three decades has established that cardio-respiratory fitness (CRF) is directly
associated with proper function of human body, and its respiratory, cardiovascular, and musculoskeletal systems
(Ross et al., 2016). Recent studies have observed that CRF is inversely associated with non-communicable
diseases including cardiovascular diseases (CVD) (Harber et al., 2017; Arena et al., 2015; Blair, 2009; Kokkinos
et al., 1995). Chase et al. (2009) found that physical activity and CRF are associated with a lower risk of
developing hypertension. In a similar study of physical capacity, Agostinis-Sobrinho et al. (2018) showed
that there is a significant inverse association between CRF and blood pressure. To investigate the relationship
between CRF and diabetes, Sawada et al. (2003) found an inverse association between type 2 diabetes risk and
CRF based on a prospective study of Japanese men. Breneman et al. (2016) found that high CRF at baseline
and maintenance of CRF over time is protective against the development of atherogenic dyslipidemia.

Considerable effort has been devoted to the estimation of overall average effect of CRF on diseases. Despite
this focus, in many cases, the efficacy of CRF might vary based on individual’s lifestyle, physiological, and
demographic characteristics. Thus the effect of CRF on a disease may be different than the estimated average
effect of CRF. A differential treatment effect on groups of individuals can be studied as subgroup analysis and is
important to identify such groups for gaining precise insight about their health condition. This study focuses on
differential effects of CRF on hypertension, diabetes and dyslipidemia separately that leads to subgroup identi-
fication (Ciampi et al., 1995; Foster et al., 2011; Lipkovich et al., 2011) problem for these health conditions. In
addition, we identify which characteristics, if any, lead to these differential effects (Seibold et al., 2016).

Subgroup analysis often plays an essential role in clinical trials to investigate consistency or heterogene-
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ity of treatment effects across subgroups Alosh et al. (2015). A number of subgroup identification methods
are available in the literature including Virtual Twins (VT) Foster et al. (2011), subgroup identification with
enhanced treatment effects based on differential effect search (SIDES) Lipkovich et al. (2011), QUalitative IN-
teraction Trees (QUINT) Dusseldorp and Mechelen (2014) and the Generalized Unbiased Interaction Detection
and Estimation (GUIDE) (Loh (2002), Loh (2009),Loh et al. (2015)). These methods are either limited to spe-
cific outcome variables, feature selection bias, or computational constraints. Model based recursive partitioning
Seibold et al. (2016) approach automatically detect patient subgroups that are identifiable by predictive factors.
In this method, the partial score with respect to the intercept does not give any information about whether the
partitioning variable is predictive or prognostic. In order to state whether a partitioning variable is predictive or
prognostic, it is necessary to consider the model parameters in the segmented model. If the treatment parameter
varies in the subgroups, then the chosen partitioning variables are predictive or both predictive and prognos-
tic. If the treatment parameter is constant, the variables are only prognostic. Subgroup analysis has also been
studied under Bayesian and decision theoretic point of view (Schnell et al. (2017), Nugent et al. (2019)).

In this study, we applied the model based recursive partitioning approach to identify subgroup of patients
with hypertension, diabetes and dyslipidemia (HDD), for which CRF is effective. Data from the BALL ST
Adult Fitness Program Longitudinal Lifestyle Study is considered and is discussed in section 2. Our objective
is to detect subgroups of individuals suffering from HDD in which the subgroups differ in terms of the intercept
and effect of CRF. Before considering to subgroup identification, we identified features that are associated with
HDD. First, we considered a bi-variate analysis using chi-squared test to investigate whether CRF is associated
HDD. Second, we considered multivariate analysis to identify the features of HDD with generalized linear
models. Finally, we applied the model-based recursive partitioning approach (Seibold et al., 2016; Zeileis et al.,
2008) to the generalized linear models for subgroup identification. The method allows us to focus attention on
predictive factors/ partitioning variables, and fit a segmented model that includes CRF × covariate interactions
that describe the relevant subgroups. Thus the objectives of this paper are: to identify features associated with
HDD; to identify subgroups of individuals that differ in terms of the intercept and effect of CRF; and finally to
compare the results of overall intercept and effect of CRF with subgroup-specific intercept and CRF effect for
each scenario.

The rest of the sections of this paper is organized as follows. In section 2, we discuss our data and variables.
In section 3, we describe the methodology that applied to our data to identify features and to identify subgroups.
In section 4, we present the results of exploratory data analysis, multivariate, and subgroup analysis. Finally, in
section 5, we present a discussion of our results and conclusions about our study.

2 Data and Variables

Data from the BALL ST Adult Fitness Program Longitudinal Lifestyle Study is used for the subgroup identi-
fication problem. All participants in this study performed an initial comprehensive health and physical fitness
assessment between 1969 and 2017, including a maximal Cardiopulmonary Exercise (CPX) test. The baseline
CPX test was performed using standardized treadmill protocols BRUCE et al. (1963), Ball State University
Bruce Ramp Kaminsky and Whaley (1998), modified Balke-Ware Pollock et al. (1982), and individualized
protocols to determine VO2peak. The VO2peak was determined by averaging the highest 2 to 3 consecutive
measured VO2 values within 2 ml kg−1 min−1, occurring in the last 2 min of the CPX test. In this pa-
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per, we categorized VO2peak into low CRF group (≤ 33rd percentile) (Imboden et al., 2018) and high CRF
group (> 33rd percentile) using percentiles from database of Fitness Registry and the Importance of Exercise
(FRIEND) Kaminsky et al. (2015). For the US population, the FRIEND registry provides age-specific and
sex-specific reference values for CPX-CRF.

In the original dataset, there were 3694 de-identified participants with 58 covariates. The covariates include
demographic variables, physiological variables, and variables associated with lifestyle. Because of the large
number of missing values, we excluded LDL, HDL, the proportion of body fat, waist circumference, hip waist
ratio, peak systolic, and diastolic blood pressure from our dataset. The percent of missing values in these
variables was 46%, 17%, 28%, 11%, 14%, 34%, 33% respectively. The demographic variable, ethnicity, is
also excluded from the dataset because 99.35% of participants belong to one race, white non-Hispanic. We also
omitted a few participants because of their incomplete information. Some variables including record date, test
number, and death date that are not relevant to our study are excluded from the dataset.

Three health conditions HDD with their binary status are considered as three independent response vari-
ables. These are major health conditions that affect public health substantially and also the major causes of
death. The CRF with two levels (CRF low and CRF high) considered as treatment variables. Based on the
available covariates in our dataset we considered age, BMI, glucose, triglyceride, cholesterol, sex, physical
activity level, obesity, smoking status as explanatory variables.

3 Methodology

3.1 Identification of features associated with hypertension, diabetes, and dys-
lipidemia

To examine the association between CRF and the health conditions: hypertension, diabetes, and dyslipidemia,
we applied the bi-variate Pearson chi-square test. The null hypothesis states that hypertension, diabetes, and
dyslipidemia are not associated with CRF, while the research hypothesis states that they are associated with
CRF. To investigate the relationship between a set of predictors and a response variable we considered the
multivariate models. Since each of the response variables, hypertension, diabetes and dyslipidemia, has two
levels: presence and absence, we consider a binary logistic regression model to investigate the relationship
between predictors and the response variable.

3.2 Model-based recursive partitioning approach for subgroup identification
for hypertension, diabetes, and dyslipidemia

The regular fit of a multivariate model gives the overall average effect of the covariate for all individuals.
However, the overall average response of a treatment is not necessarily the same for all individuals. A treatment
may be more effective for a particular group of people and less effective for another group of people. Especially
in the presence of subgroups the assumption of universal effect of a treatment to all individuals does not hold.
In such a situation, we can consider the existence of subgroups of individuals (Ciampi et al., 1995; Foster et al.,
2011; Lipkovich et al., 2011). To identify subgroups for binary responses, we applied the logistic regression-
based recursive partitioning approach (Zeileis et al., 2008; Seibold et al., 2016).
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Consider, the logistic regression modelM((Y,X, Z),Θ) that describes the conditional distribution of Y as
a function of the treatment (Z) and all possible covariates (X) through a vector of parameters Θ. The parameter
vector Θ = (α,β,γ)T typically contains one intercept parameter α, a set of parameters for covariates β and
one treatment parameter γ. Given n observations Yi (i = 1, 2, . . . , n), the estimate of the parameter vector Θ

can be obtained by applying the maximum likelihood (ML) estimation technique. The estimate of the parameter
vector is obtained by taking partial derivatives with respect to the corresponding parameters of the objective
function Ψ(Yi,Θ), which is equivalent to solving the score equation

n∑
i=1

∂Ψ((y,x, z)i,Θ)

∂Θ
=

n∑
i=1

ψ((y,x,z)i,Θ) = 0, (3.1)

where ψ is the score function.
These estimates give the overall average response for all individuals i = 1, 2, . . . , n. However, in the

presence of patient subgroups that differ in their treatment effect γ, the mean treatment effect γ̂ does not
consider the positive or negative effect of a specific subgroup. Also, the treatment effect might depend on
additional characteristics such as age, gender and other lifestyle factors of the patients. So, it might be possible
to partition the observations with respect to some covariates such that it can be possible to fit a model at each
subgroup of the patients (Seibold et al., 2016).

In such a situation, we use a recursive partitioning approach based on l partitioning variables Xj (j =

1, 2, . . . , l). The patient subgroups can be described as a partition {Bb}, (b = 1, 2, . . . , B) of all patients
i = 1, 2, . . . , n (Zeileis et al., 2008). The parameters of each subgroup should be different, which can be
defined as varying coefficients (Hastie and Tibshirani, 1993). Let the subgroup-specific model parameters be
denoted as Θ(b). The coefficient varies based on the several patients characteristics or predictive factors and
are always step functions with different levels for each subgroup.

In this paper, we are looking for the covariates that interact with the treatment variable (CRF) and the vari-
ables that have a direct effect on the outcome. So, we are interested in subgroups that differ in the intercept
or the treatment effect or both. We assume that the effects of covariates are constant for all patient, so the
subgroup specific parameter vector is Θ(b) = (α(b),β,γ(b))T . Subgroup-specific intercept α(b) and treat-
ment parameter γ(b) are influenced by the additional patient characteristics that also treated as the partitioning
variables to partition the sample space X . Partitioning variables are the predictive variables that interact with
treatment variables.

If the partition {Bb} is known, the partitioned model parameters Θ(b) could be estimated by minimizing
the segmented objective function:

Θ̂b = argmin
Θb

n∑
i=1

B∑
b=1

1(xi ∈ Bb)Ψ(y,z)i,Θb, (3.2)

where 1 denotes the indicator function and (y,z)i,xi are the realizations of (Y,Z) andX for the ith patient.
This allows us to write the subgroup-specific intercept and treatment parameters as a function of the partitioning
variables.

α(z) =

B∑
b=1

1(z ∈ Bb)α(b) and β(z) =

B∑
b=1

1(z ∈ Bb)β(b).
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However, without any prior knowledge about the partitioning Bb, minimization of the objective function is
more complicated, even if the number of the segmentsB is fixed. If there is more than one partitioning variable
(l > 1), the number of potential partitions quickly becomes too large for an exhaustive search (Zeileis et al.,
2008). To control the large number of partitions, we used the Bayesian information criteria (BIC) to prune the
tree to avoid overfitting by increasing B (Su et al., 2004).

3.2.1 Recursive partitioning algorithm

The key idea underlying this method is the ability to detect parameter instability by looking at the score function
of the model. To check the parameter instability, the basic idea is that each node is associated with a single
model. To assess whether the splitting of the node is necessary, a fluctuation test for parameter instability is
performed (Zeileis and Hornik, 2004). If there is significant instability with respect to any of the partitioning
variables Xj , split the node into B locally optimal segments and repeat the procedure. If no more significant
instabilities is found, the recursion stops and returns a tree where each terminal node is associated with a model
M(Y,Θb) (Zeileis et al., 2008), The steps of the algorithm are,

1. Fit the multivariate model once to all observations in the current node of the tree by estimating parame-
ters of the objective function via Maximum likelihood estimation technique.

2. Assess whether the parameter estimates are stable with respect to every ordering covariates,X1, X2, . . . , Xl.

If there is some overall instability, select the variable Xj associated with the highest parameter instabil-
ity, otherwise stop.

3. Compute the split point(s) that locally optimize the objective function, either for a fixed or adaptively
chosen number of splits.

4. Split the node into daughter nodes and repeat the procedure.

3.2.2 Testing the parameter instability

The algorithm to check the parameter instability is to find out whether the parameters of the fitted model are
stable over each particular ordering implied by the partitioning variables Xj , or whether splitting the sample
with respect to one of theXj might capture instabilities in the parameters and thus improve the fit. Since we are
only interested in detecting non-constant intercepts α(X) and treatment effects γ(X) we focus on the partial
score functions ψα((Y,X),Θ) = ∂Ψ((Y,X),Θ)/∂α and ψγ((Y,X),Θ) = ∂Ψ((Y,X),Θ)/∂γ (Seibold
et al., 2016). If the model parameters are in fact constant and do not depend on any of the partitioning vari-
ables X , the partial score function ψα((Y,X),Θ) and ψγ((Y,X),Θ) are independent of X . Consequently,
parameter instability corresponds to a correlation between either of the partial score functions and at least one
of the partitioning variables X1, X2, . . . , Xl. Formally, to detect deviations from independence between the
partial score functions and the partitioning variables, model-based recursive partitioning utilizes independent
tests. The null hypotheses are

Hα,j
0 : ψα((Y,X),Θ) ⊥ Xj , j = 1, 2, . . . , J

Hγ,j
0 : ψγ((Y,X),Θ) ⊥ Xj , j = 1, 2, . . . , J.

For the model M((Y,X),Θ), the partial score functions with respect to α and γ, are independent of
the partitioning variable Xj (j = 1, 2, . . . , J). Hence, these null hypotheses correspond to an appropriate
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model fit regarding the intercept and treatment parameter. Because the partial score functions under the null-
hypotheses are at least asymptotically normal in many model families, asymptotic M-fluctuation tests with
appropriate correction for multiplicity were introduced by Zeileis et al. (2008) and Zeileis and Hornik (2004)).
Alternatively, permutation tests can be applied in situations where asymptotic normality of the partial score is
not guaranteed Zeileis and Hothorn (2013).

If at least one of the 2 × J null hypotheses for the global model M((Y,X, Z),Θ) is rejected at a pre-
specified nominal level, model-based recursive partitioning selects the partitioning variableX∗

j associated with
the highest correlation to any of the partial score functions. This is usually done by means of the smallest p
value. The dependency structure between the partitioning variableX∗

j and either one of the partial score func-
tions is described by a simple cut-point model. Once an optimal cut point X∗

j < µ using a suitable criterion
is found (Zeileis et al., 2008; Hothorn et al., 2006b), the subjects are split into two subgroups according to
X∗
j < µ. For both subgroups, two separate models are estimated with parameters Θ̂1 and Θ̂2, respectively,

followed by testing independence of hypotheses with the corresponding partial score functions. If deviations
from independence is found, a cut-point is selected according to the most highly associated partitioning variable
and split again. The procedure of testing independence of partial score functions and partitioning variables is re-
peated recursively until deviations from independence can no longer be detected. The R codes for the subgroup
analysis can be found in https://github.com/mbegum/GitHubManuscript/R-code-subgroup analysis.txt.

4 Findings

4.1 Results of Exploratory Data Analysis

We summarize the characteristics of the study participants with descriptive statistics and graphical representa-
tion. Since CRF is expressed in percentile, we present the median and interquartile range (IQR) of fitness rank
according to the level of categorical variables in Table 1. The summary statistics of the quantitative variables
according to the levels of CRF are shown in Table 2.

Table 1 shows that the median CRF for a female is higher than a male. Obese people, smokers, and
physically inactive individuals have CRF rank compared to their counterparts. In addition, the CRF of the
people having hypertension, diabetes, dyslipidemia, is lower.

Table 2 and Figure 1 show that the CRF is lower among participants having a higher amount of triglyceride,
glucose, and cholesterol. The average age is similar for participants with both high and low CRF.

The results of bi-variate analysis in Table 3 indicate that there is a strong association between CRF and
hypertension, diabetes, and dyslipidemia.

4.2 Identification of features associated and identification of subgroups with
different CRF effect

Identification of features using multivariate analysis and the subgroup analysis are conducted for hypertension,
diabetes and dyslipidemia separately.

In order to determine the predictive ability of the covariates considered in this study, we constructed receiv-
ing operating characteristics (ROC) curves and calculated the area under the curves (AUC) from a validation
data for each of the three health conditions.
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Table 1: Median and IQR of the fitness rank according to the levels of categorical variables

Categorical Variable Levels n Median IQR

Sex Female 1502 46 42

Male 1701 39 45

Obesity Absence 1100 55 43

Presence 2103 22 28

Smoking Status Smoker 349 30 37

Non-smoker 2854 44 43

Physical activity level Inactive 2319 34 39

Active 884 66 43

Diabetes Absence 3014 44 44

Presence 189 19 31

Hypertension Absence 2219 48 44

Presence 984 30 41

Dyslipidemia Absence 1980 50 36

Presence 1523 34 41

Figure 2 shows that the covariates have high predictive ability for hypertension and diabetes with AUC
0.82 and 0.92 respectively, and acceptable predictive ability for dyslipidemia with AUC 0.76. It is to be noted
that these covariates are standard in the CRF literature.

Before applying the model based methods to the entire dataset, we divided the dataset into training with
approximately two-third of the observations and test with the rest. For hypertension, subgroups in the training
data were identified based on BMI and Age whereas in the test data, only age was informative to subgroup
identification. For diabetes, subgroups in both training and test data are identified based on a single predictor,
Glucose that defines the health condition. Finally for dyslipidemia, subgroups in the training data are identified
based on total cholesterol, sex, and triglyceride whereas subgroups in the test data are identified based on total
cholesterol and sex. These results indicate that other than Glucose, none of the covariates are informative to
subgroup identification for this data. The subgroup analysis results from training and test data are attached in
the supplementary information.

Next we applied the model-based recursive partitioning approach to the entire dataset. For each of the
three health condition, hypertension, diabetes, and dyslipidemia the results from the feature identification and
subgroup analysis are presented below in that order.

Hypertension: There are 984 (30.72%) individuals with hypertension in the dataset, and the rest 2219

(69.28%) do not have hypertension. Considering the status of hypertension as a response variable with two
categories, presence and absence, we identified features associated with hypertension and the impact of CRF
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Table 2: Mean and standard deviation of the quantitative variable by CRF

CRF High CRF Low

Quantitative variables Unit Mean SD Mean SD

Age years 45.18 12.37 44.37 12.00

Weight kg 74.64 14.09 92.54 21.22

BMI kg/m2 25.27 3.85 31.05 6.49

Glucose mg/dl 94.45 16.10 101.02 27.29

Cholesterol mg/dl 200.65 39.28 200.65 39.28

Triglyceride mg/dl 115.92 69.14 167.08 128.47
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Figure 1: Box plot of continuous explanatory variables by CRF

on hypertension by applying the binary logistic regression model.
Table 4 shows the estimates of the odds ratios with corresponding 95% confidence intervals. The 95%

confidence intervals for the odds ratios for CRF, age, sex, BMI, and dyslipidemia do not include one, indi-
cating that each of these covariates are associated with the risk of hypertension. The estimates of regression
coefficients (not shown here) of the continuous covariates, age, BMI, triglyceride, glucose and cholesterol, are
positive, indicating that an increase in these covariates is associated with an increase in the risk of hypertension.
The estimated coefficient for the categorical variable, sex, is positive, indicating that men are more prone to
hypertension than women. Similarly, the estimate of the CRF is positive suggesting that the risk of hypertension
of low CRF people is higher than that of high CRF people.

Subgroup identification: Table 5 reports the test statistics values and the p values of parameter instability
based on M-fluctuation tests, and Figure 3 presents the logistic regression-based tree with different intercept and
differential impact of CRF in each node, where the partitioning variables, age, triglyceride and BMI, interact
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Table 3: Chi-square test between the levels of CRF and different diseases

Variables Test Statistic Degree of Freedom P-value

Hypertension 96.603 1 < .0001

Dyslipidemia 108.05 1 < .0001

Diabetes 66.285 1 < .0001
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Figure 2: ROC curves for three health conditions: hypertension, diabetes, and dyslipidemia

with CRF.
The results show that age has the smallest p value and is highly significant and thus used for splitting the

data in the first node. In the second node, triglyceride has the lowest p value and is highly significant and thus
used for splitting the node again. Similarly, fifth node is split based on BMI. No further considerable parameter
instabilities are detected in the third, fourth, sixth, and seventh nodes and hence partitioning stops in those
nodes.

It is observed that the most significant predictors in multivariate model is age (highest Z-value) that is
also statistically significant predictive factor in the M-fluctuation test and is used to split the data at the very
beginning node.

According to the logistic regression-based recursive partitioning tree in Figure 3, the intercept and estimated
effect of CRF with 95% confidence interval for each subgroup is reported in Table 6. It is to be noted that
subgroups I and II are obtained with age and triglyceride as interacting covariates whereas subgroups III and IV
are obtained with age and BMI as interacting covariates. The intercept of subgroup I indicates that individuals
with triglyceride less than 108.0 mg/dl and younger than 49 years have on average a low risk (−2.23) of
hypertension compared to overall average risk (−1.20) of hypertension, however, this increases with low CRF
since the effect of CRF (0.69) for subgroup I is positive. Thus, within this subgroup the risk of hypertension is
inversely associated with CRF. In contrast, individuals with triglyceride greater than 108.0mg/dl and younger
than 49 years have on average a higher risk (−1.29) of hypertension compared to subgroup I and this also
increases with low CRF. In addition, individuals with body mass index higher than 27.1 kgm−2 and older than
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Table 4: Results of multivariate analysis for hypertension

95% CI

Odds Ratio lower upper

CRF(low) 1.46 1.19 1.78

Age 1.06 1.06 1.07

Sex(male) 1.57 1.31 1.88

BMI 1.09 1.07 1.12

Obesity 1.03 0.8 1.34

Dyslipidemia 1.22 1.01 1.46

Glucose 1.00 0.99 1.01

Triglyceride 1.00 1.00 1.00

Cholesterol 0.99 0.99 1.00

Smoking status 0.85 0.64 1.12

Diabetes 1.36 0.86 2.14

49 years, have a high risk of hypertension that also increases with low CRF.

Diabetes: Out of a total of 3203 participants one hundred and eighty nine (5.9%) have diabetes. The status
of diabetes is considered as a response variable with two categories, presence and absence of diabetes. The
results of multivariate analysis in Table 7 show that Glucose associated to the risk of diabetes which is a general
knowledge for diabetes. Age, sex, BMI, cholesterol, and smoking status are also associated with diabetes and
are borderline significant. CRF not statistically significant for diabetes which may be due to the small number
of diabetic patients in our data.

Subgroup identification: Similar to hypertension, we applied the logistic regression-based recursive par-
titioning approach to identify subgroups of individuals. Figure 4 presents the logistic regression-based tree
with different intercept and differential impact of CRF in each node, where a single predictive factor Glucose
interact with CRF. Similar to hypertension, the predictive factors are selected based on the smallest p value of
the parameter instability of M-fluctuation test (we did not show the result of parameter instability here).

According to the logistic regression-based recursive partitioning plot in Figure 4, the intercept and esti-
mated effect of CRF with 95% confidence intervals for each subgroup are reported in Table 8. If we compare
results of each subgroup with all participants, we see that individuals with Glucose less than or equal 111

mg/dl have on average, a low risk of diabetes (−5.38) compared to overall average risk (−3.52) of diabetes;
however, this increases with low CRF. In contrast, individuals with Glucose higher than 111 mg/dl have a
higher risk of diabetes that also increases with low CRF.
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Table 5: Results of parameter instability based on M-fluctuation test

Node 1 Node 2 Node 5

Variables Test value P value Test value P value Test value P value

Age 258.3 < .0001 61.2 < .0001 34.4 < .0001

Sex 37.3 < .0001 44.3 < .0001 5.0 0.61

BMI 130.8 < .0001 71.5 < .0001 38.7 < .0001

Triglyceride 114.9 < .0001 71.7 < .0001 24.9 < .0001

Obesity 109.5 < .0001 49.4 < .0001 38.1 < .0001

Glucose 108.7 < .0001 46.3 < .0001 38.4 < .0001

Cholesterol 30.7 < .0001 34.4 < .0001 4.9 0.94

Dyslipidemia 76.9 < .0001 38.2 < .0001 15.9 0.02

Inactivity 29.7 0.0001 2.6 1.0 11.1 0.16

Smoking 4.9 0.99 5.2 .997 38.9 0.99

Diabetes 58.1 < .0001 3.3 .999 18.1 0.03

Dyslipidemia: About forty eight percent of individuals have dyslipidemia in the dataset. Table 9 shows that
CRF, age, sex, BMI, obesity, triglyceride, and cholesterol are statistically significant predictors for dyslipidemia
and are associated with the risk of dyslipidemia.

Subgroup identification: Three partitioning variables, cholesterol, triglyceride, and sex, are selected to
identify the subgroup based on the parameter instability of M-fluctuation tests ( not shown here). These vari-
ables are also highly significant in multivariate analysis for dyslipidemia.

The results in Table 10 show that women with cholesterol less or equal 198.7 mg/dl have, on average
(−1.82), a low risk of dyslipidemia compared to the overall mean response (0.41) of all participants , however,
this increases with low CRF. In contrast, men with the same amount of cholesterol have a relatively high risk of
dyslipidemia than women. The intercept of subgroup IV indicates that individuals with more than 198.7mg/dl

cholesterol and 103.2 mg/dl triglyceride have an extremely high risk of dyslipidemia, and that increases with
low CRF.

We compared the results from the model based recursive partitioning approach to that from virtual twin(VT)
which also generates subgroups by selecting covariates that interacts with CRF. But unlike the model based ap-
proach, VT does not take into account of intercepts of each node. We compared the subgroups for hypertension
obtained by VT and the subgroups obtained by the model based approach. After running a number of itera-
tions we found that VT generates different subgroups selecting different covariates at each iteration, whereas,
the subgroups from the model based approach stays the same. We attached subgroups using VT from two
iterations to the supplementary information.
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Figure 3: Logistic regression based tree for hypertension. The terminal nodes of the tree plot report
the intercept and estimate of CRF.

Table 6: Intercept and estimate of the CRF with 95% confidence interval (CI) for each subgroup
based on GLM tree

All participants/ Subgroup Intercept[CI] CRF(Low)[CI]

All participants -1.20 [-1.30, -1.09] 0.88 [0.73, 1.03]

Subgroup I (age<= 49& triglyceride <= 108) -2.23 [-2.48, -2.00] 0.69 [ 0.31, 1.06]

Subgroup II ((age<= 49& triglyceride> 108) -1.29 [-1.52, -1.06] 0.88 [0.60, 1.17]

Subgroup III (age> 49& BMI<= 27.1) -0.80 [-0.99, -0.61] 0.75 [0.34, 1.16]

Subgroup IV(age> 49& BMI> 27.1) 0.04 [-0.21, 0.28] 0.74 [0.39, 1.08]

5 Discussion and Conclusion

In this paper, we accomplished two broad objectives. First, we identified features associated hypertension,
diabetes and dyslipidemia using the data from the BALL ST Adult Fitness Program Longitudinal Lifestyle
Study. Second and most importantly, we identified subgroups of individuals with differential effects of CRF by
applying logistic regression based recursive partitioning approach. This method detects the predictive factors
that interact with the treatment (CRF). In the model-based recursive partitioning approach, the partitioning
variable for each split was selected based on the smallest p value in the M-fluctuation test. After identifying
subgroups based on the partitioning variables for each subgroup of hypertension, diabetes and dyslipidemia,
we obtained the confidence intervals of the parameters (intercept and CRF).

The overall results from the multivariate analyses suggest that CRF is inversely associated with hyperten-
sion, diabetes, and dyslipidemia. That is, individuals with low CRF have a higher chance of getting hyperten-
sion, diabetes, and dyslipidemia than individuals with high CRF which has an important implication for the
policymakers in public health. The results of this study are consistent with the previous literature (Chase et al.
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Table 7: Results of multivariate analysis for diabetes

95% Conf. Int

Odds Ratio lower upper

CRF(low) 1.51 0.8 2.86

Age 1.02 1 1.05

Sex(male) 0.53 0.31 0.93

BMI 1.05 1 1.11

Obesity 1.2 0.57 2.54

Dyslipidemia 1.01 0.57 1.8

Glucose 1.18 1.15 1.20

Triglyceride 1.00 0.99 1.00

Cholesterol 0.99 0.98 1.00

Hypertension 1.3 0.74 2.30

Smoking status 1.89 0.90 3.96

Table 8: Intercept and estimate of the CRF with 95% confidence interval(CI) for each subgroup
based on GLM tree

All participants/ Subgroup Intercept[CI] CRF(Low)[CI]

All participants -3.52 [-3.80, -3.26] 1.37 [1.05, 1.69]

Subgroup I (glucose<= 111) -5.38 [-6.22, -4.71] 1.34 [0.48, 2.29]

Subgroup II (glucose> 111) -0.57 [-0.95, -0.19] 0.64 [0.17, 1.12]

(2009),Agostinis-Sobrinho et al. (2018), Sawada et al. (2003), Breneman et al. (2016)). Our results also suggest
that BMI and age are positively associated with hypertension, diabetes, and dyslipidemia. The chance of having
hypertension and dyslipidemia for men is higher than women, but the chance of diabetes for women is higher
than men. Individuals with a higher amount of triglyceride have a higher chance of having hypertension and
dyslipidemia. Other than Glucose that defines diabetes, no other covariates appeared as significant factors for
the health condition. A relatively small number of diabetic patients in the data may attribute to this result.

The results of subgroup analysis for hypertension based on the entire dataset indicate that, four subgroups
are identified with different intercepts and differential effects of CRF based on partitioning variables, age,
triglyceride and BMI. However, subgroups in the training data are based on age and BMI and subgroups in
the test data are based on age only. A test data with larger number of observations will be helpful to properly
validate the results.

Regarding diabetes, two subgroups are identified from the entire dataset with different intercepts and differ-
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Figure 4: Logistic regression based tree for diabetes. The terminal nodes of the tree plot report the
intercept and estimate of CRF.

ential effect of CRF based on Glucose only. Subgroups based on both training and test data are consistent with
this result. Finally for dyslipidemia patients, four subgroups are identified with different intercepts and differ-
ential effects of CRF based on cholesterol, triglyceride, and sex. Subgroups in the training data are obtained
based on the same covariates as in the entire dataset. However, triglyceride did not appear to be informative for
subgroup identification for dyslipidemia in the test data. Again, a test data with larger number of observations
will be helpful to properly validate the results.

In our analysis, we observed a connection between the most significant features in multivariate analysis
and predictive factors in the first node of subgroup analysis. For example, in case of hypertension, age is the
most significant feature which is also selected as the partitioning variable in the first node of subgroup analysis.
Similarly, for diabetes and dyslipidemia, the most significant factors are glucose and cholesterol, respectively,
and those are also selected as the partitioning variables in the first node of subgroup analysis. To the best of
our knowledge, there is no literature on this connection, and thus we did not discuss any theory against this
argument.

Limitations: One of the limitations of our study is a relatively small number of diabetic patients. Another
limitation is that in our dataset, 99.35% of individuals belong to one race, white non-Hispanic. Therefore, we
were not able to find how race or ethnicity would influence the subgroup analysis.
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Table 9: Results of multivariate analysis for dyslipidemia

95% Conf.Int

Odds Ratio lower upper

CRF(low) 1.33 1.11 1.6

Age 1.02 1.01 1.02

Sex(male) 2.24 1.91 2.63

BMI 1.03 1.01 1.06

Obesity 1.27 0.99 1.63

Glucose 0.99 0.99 1.00

Triglyceride 1.005 1.003 1.01

Cholesterol 1.01 1.01 1.01

Hypertension 1.18 0.98 1.42

Smoking status 0.88 0.68 1.14

Diabetes 1.30 0.83 2.04

Scope for further study: Further investigation and research are required to demonstrate the observed
connection between the most significant feature in multivariate analysis and predictive factors in the first node
of subgroup analysis. In addition, we assumed independence among three outcome variables and conducted
univariate subgroup analysis. A joint subgroup analysis can be performed allowing dependence among these
outcomes and is left as a future research.

Conclusion: In conclusions, CRF is inversely associated hypertension, diabetes, dyslipidemia. The chance
of hypertension and dyslipidemia for men is higher than women. It is interesting to note that the partitioning
variables selected in the subgroup analysis are the established risk factors in the literature. The subgroup-
specific results indicate that for each subgroup, the risks of hypertension, diabetes, and dyslipidemia increase
with low CRF. Our study suggests that improvement of fitness level through cardiopulmonary exercise is es-
sential to control hypertension, diabetes, dyslipidemia: three important risk factors of CVD. In addition, it is
important to maintain the normal level of physiological factors such as, BMI, cholesterol, glucose, triglyceride
and blood pressure.
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Figure 5: Logistic regression based tree for dyslipidemia. The terminal nodes of the tree plot report
the intercept and estimate of CRF.

Table 10: Intercept and estimate of the CRF with 95% confidence interval(CI) for each subgroup
based on GLM tree

All participants/ Subgroup Intercept[CI] CRF(Low)[CI]

All participants 0.41 [-0.50, - 0.32] 0.77 [0.63, 0.92]

Subgroup I (Cholesterol<= 198.7& Sex= ”female”) -1.82 [-2.08, -1.59] 0.67 [0.29, 1.03]

Subgroup II (Cholesterol<= 198.7& Sex= ”male”) -0.78 [-0.98, -0.59] 1.11 [0.81, 1.40]

Subgroup III (Cholesterol> 198.7& Triglyceride <= 103.2) -0.09 [-0.29, 0.11] 0.65 [0.24, 1.06]

Subgroup IV (Cholesterol> 198.7& Triglyceride > 103.2) 0.71 [0.54, 0.89] 0.44 [0.18, 0.71]
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