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SUMMARY

Esscher transformed Laplace distribution is a new class of asymmetric heavy tailed distri-
bution. In this article, we generalize the Esscher transformed Laplace distribution using the
quadratic rank transmutation map to develop transmuted Esscher transformed Laplace dis-
tribution. We derived the probability density function of transmuted Esscher transformed
Laplace distribution and its various properties were studied. The maximum likelihood esti-
mation procedure is employed to estimate the parameters of the proposed distribution and
an algorithm in R package is developed to carry out the estimation. Simulation studies
for various choices of parameter values were performed to validate the algorithm. Finally,
we fitted the transmuted Esscher transformed Laplace, Esscher transformed Laplace and
Gaussian distributions to microarray gene expression dataset and compared them.
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1 Introduction

Recently, there is a lot of research interest in developing new generalized families of distributions
which have applications in modeling data in many applied areas such as finance, economics, engi-
neering, lifetime analysis and in biomedical research. Shaw and Buckley (2007), introduced new
family of distributions transforming cumulative distribution functions (CDF) through the quadratic
rank transmutation map and applied to uniform, exponential and normal distributions. Transmuted
distributions found applications in many areas for analyzing frequently occurring large scale applied
science experimental data.

Recently, many authors used the transmuted-generalized (T-G) family to propose new gener-
alizations of several distributions, for example, transmuted generalized extreme value (Aryal and
Tsokos, 2009), transmuted Weibull (Aryal and Tsokos, 2011), transmuted Lindley (Merovci, 2013),
transmuted Pareto (Merovci and Pukab, 2014), transmuted Laplace (Hady and Shalabi, 2016) and
transmuted Birnbaum-Saunders (Bourguignon et al., 2017).
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Esscher transformed Laplace (ETL) distribution is one of the asymmetric generalizations of
Laplace distribution. Recently Arezoomand et al. (2018) introduced new asymmetric generalization
of Laplace distribution called asymmetric Uniform-Laplace (AUL) distribution. In this article we
present a new generalization of Esscher transformed Laplace (ETL) distribution (Sebastian and Dais,
2012) called the transmuted Esscher transformed Laplace distribution. Esscher transformed Laplace
distribution is a transformed version of standard symmetric Laplace distribution and is a subclass of
asymmetric Laplace distribution. This distribution belongs to one parameter exponential family.

The probability density function (pdf) and cumulative distribution function (cdf) of Esscher
transformed Laplace distribution, denoted by ETL(θ) are respectively given for θ ∈ (−1, 1) as

f(x; θ) =


1−θ2

2 ex(1+θ), x < 0

1−θ2
2 e−x(1−θ), x ≥ 0

(1.1)

and

F (x; θ) =


1−θ
2 ex(1+θ), x < 0

1− 1+θ
2 e−x(1−θ), x ≥ 0.

(1.2)

When θ ∈ (−1, 0), the distribution is left skewed and when θ ∈ (0, 1), then the distribution is right
skewed.

The probability density function (pdf) and cumulative distribution function (cdf) of three param-
eter Esscher transformed Laplace distribution, denoted by ETL(θ, µ, σ) are respectively given for
θ ∈ (−1, 1) as

f(x; θ, µ, σ) =


1−θ2
2σ e

x−µ
σ (1+θ), x < µ,

1−θ2
2σ e

µ−x
σ (1−θ), x ≥ µ,

(1.3)

and

F (x; θ, µ, σ) =


1−θ
2 e

x−µ
σ (1+θ), x < µ,

1− 1+θ
2 e

µ−x
σ (1−θ), x ≥ µ,

(1.4)

were µ ∈ R and σ > 0.
In the present study we proposed the transmuted Esscher transformed Laplace (TETL) distribu-

tion as an error distribution for cDNA microarray gene expression data. Microarray is a technique
widely used to asses changes in gene expression levels of thousands of genes simultaneously during
several biological processes. Here level of expression of genes in one set (test) is compared with
another (control) to identify differentially expressed genes. After normalization, gene expression
distribution (log ratio of red and green intensity measurements) which is referred to as error dis-
tribution has heavier tails than Gaussian distribution and has asymmetry of varying degrees. The
error distribution is modeled using several densities, Devika et al. (2016) used Esscher transformed
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Laplace distribution in modeling microarray data as an alternative to normal and Laplace distribu-
tion. Various authors suggested error distribution for gene expression data, asymmetric Laplace dis-
tribution (Purdom and Holmes, 2005), asymmetric type II compound Laplace (Punathumparambath
et al., 2012), slash distribution with normal kernel (Punathumparambath, 2011), asymmetric slash
Laplace (Punathumparambath, 2012a), skew slash t (Punathumparambath, 2012b), Laplace mixture
(Punathumparambath and Kannan, 2012), slash distribution with Cauchy kernel (Punathumparam-
bath, 2013), Double Lomax (Punathumparambath and Kulathinal, 2015) and compound exponential
power (Punathumparambath, 2020).

A typical microarray data with thousands of genes show asymmetry and peakedness because a
large proportion of genes are not differentially expressed, and the log-ratio of the intensities have
tendency to cluster around a single point, and outliers are present. Mean, variance and skewness
parameters cannot completely capture such pattern in the dataset. In the present study we introduce
the transmuted Esscher transformed Laplace (TETL) distribution which is the transmuted version of
the Esscher transformed Laplace distribution. The paper is organized as follows. In Section 2, we
derive the pdf, cdf, sf, hf, of, rhf, and some properties of the TETL distribution. Location scale
extension of TETL and quantile function was derived in section 3. In section 4 we describe the
maximum likelihood estimation of parameters using the Broyden - Fletcher - Goldfarb - Shanno
(BFGS) algorithm of optim function (Nash, 1990) in R (R-Core-Team, 2015). Simulation studies
were carried out to illustrate the performance of the algorithm and is presented in section 5. In
Section 6 we illustrate the applications of the proposed distribution to microarray gene expression
dataset, we fitted the TETL, ETL and Gaussian distributions to microarray gene expression dataset
and compared. Finally, some concluding remarks are given in section 7.

2 Transmuted Esscher Transformed Distribution
In this section we introduce transmuted Esscher transformed Laplace distribution. The transmuted-
G (T-G) family by Shaw and Buckley (2007) is defined by the cumulative distribution function (cdf)
and probability density function (pdf) given by

F (x;λ) = (1 + λ)G(x)− λG(x)2, |λ| ≤ 1, (2.1)

f(x;λ) = g(x) (1 + λ− 2λG(x)) , −∞ < x <∞, (2.2)

where G(·) and g(·) denote the pdf and cdf, of the baseline family respectively.
Now we define probability density function of transmuted Esscher transformed Laplace (TETL)

distribution.

Definition 2.1. A random variable X is said to have transmuted Esscher transformed Laplace dis-
tribution with parameters (θ,λ), denoted by X ∼ TETL(θ, λ) if its probability density function is
given by

f(x; θ, λ) =


1−θ2

2 ex(1+θ)
(
1 + λ

(
1− (1− θ)ex(1+θ)

))
, x < 0,

1−θ2
2 e−x(1−θ)

(
1− λ

(
1− (1 + θ)e−x(1−θ)

))
, x ≥ 0,

(2.3)
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From the pdf given in 2.3 we can see that for λ = 0 we get the Esscher transformed Laplace
(ETL) distribution, θ = 0 we get transmuted Laplace and λ = θ = 0 we get the Laplace distribution.
Probability plots of the TETL(θ, λ) for −1 ≤ λ < 0 and 0 ≤ λ ≤ 1 are presented in Figure 1.

Figure 1: Densities of transmuted Esscher transformed Laplace distribution for various values of the
parameters θ, and −1 ≤ λ < 0 (left panel) and0 ≤ λ ≤ 1 (right panel)

From Figures 1, we can see that the distribution is positively skewed, negatively skewed, sym-
metric and bimodal. When θ = λ = 0, the distribution is symmetric. Also, it is very clear from the
figure that TETL distribution has heavier tails than Gaussian distribution. The cumulative distribu-
tion function (cdf) of the TETL distribution is given by,

F (x; θ, λ) =


1−θ
2 ex(1+θ)

[
1 + λ

(
1− (1−θ)

2 ex(1+θ)
)]
, x < 0,[

1− 1+θ
2 e−x(1−θ)

] [
1 + λ

2 (1 + θ)e−x(1−θ)
]
, x ≥ 0,

(2.4)

where θ ∈ (−1, 1) and |λ| ≤ 1.
The survival function (sf) of the TETL distribution is given by

S(x; θ, λ) =

1− 1−θ
2 ex(1+θ)

[
1 + λ

(
1− (1−θ)

2 ex(1+θ)
)]
, x < 0,

1−
[
1− 1+θ

2 e−x(1−θ)
] [

1 + λ
2 (1 + θ)e−x(1−θ)

]
, x ≥ 0,

(2.5)

The plots of the cumulative distribution function (cdf) of the TETL distribution are given below in
Figure 2.

The hazard function (hf) of the TETL distribution is given by

h(x; θ, λ) =


1−θ2

2 × ex(1+θ)(1+λ(1−(1−θ)ex(1+θ)))
1− 1−θ

2 ex(1+θ)[1+λ−λ (1−θ)
2 ex(1+θ)]

, x < 0,

1−θ2
2 × e−x(1−θ)(1−λ(1−(1+θ)e−x(1−θ)))

1−[1− 1+θ
2 e−x(1−θ)][1+λ

2 (1+θ)e−x(1−θ)]
, x ≥ 0,

(2.6)
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Figure 2: cdf (left panel) and hazard function (right panel) of transmuted Esscher transformed
Laplace distribution for various values of the parameters θ and λ

Graph of the hazard function (hf) of TETL(θ, λ) for various values of θ and λwere given in Figure 2.
From the plot of hazard function (Figure 2) we can observe that failure rate of the TETL is initially
increasing and then decreasing over the real line. But the failure rate of Laplace distribution (green
dotted line in Figure 2) is increasing in the interval (−∞, 0) and remains constant in the interval
(0,∞) .

The reversed hazard function (rhf) of the TETL distribution, r(x) = f(x)/F (x) is given by

r(x; θ, λ) =


1−θ2

2 × ex(1+θ)(1+λ(1−(1−θ)ex(1+θ)))
1−θ
2 ex(1+θ)[1+λ(1− (1−θ)

2 ex(1+θ))]
, x < 0,

1−θ2
2 × e−x(1−θ)(1−λ(1−(1+θ)e−x(1−θ)))

[1− 1+θ
2 e−x(1−θ)][1+λ

2 (1+θ)e−x(1−θ)]
, x ≥ 0.

(2.7)

Graph of the reversed hazard function (rhf) of TETL(θ, λ) for various values of θ and λ were given
in Figure 3. From the Figure 3 we can observe that the reverse failure rate of the TETL exhibits
both increasing and decreasing behavior over the real line. The reverse failure rate of Laplace
distribution (green dotted line in Figure 3) is decreasing in the positive support and remains constant
in the negative support of the random variable.

The odds function (of) of the TETL distribution O(x) = F (x)
1−F (x) , is given by

O(x; θ, λ) =


1−θ
2 ex(1+θ)[1+λ(1− (1−θ)

2 ex(1+θ))]
1− 1−θ

2 ex(1+θ)[1+λ(1− (1−θ)
2 ex(1+θ))]

, x < 0,

[1− 1+θ
2 e−x(1−θ)][1+λ

2 (1+θ)e−x(1−θ)]
1−[1− 1+θ

2 e−x(1−θ)][1+λ
2 (1+θ)e−x(1−θ)]

, x ≥ 0.

(2.8)

Graph of the odds function (of) of the TETL(θ, λ) for various values of θ and λ are given in Figure
3.



172 Bindu

Figure 3: Reverse hazard function (left panel) and odds function (right panel) of transmuted Esscher
transformed Laplace distribution for various values of parameters θ and λ

2.1 Moments

For r > 0, the rth raw moment of TETL is given by

µ́r = E(Xr)

=
(1− θ2)Γ(r + 1)

2

[
(−1)r(1 + λ− λ(1− θ)/2(r+1))

(1 + θ)r+1
+

1− λ+ λ(1 + θ)/2(r+1)

(1− θ)r+1

]
, (2.9)

θ ∈ (−1, 1). For r = 1 we get the mean. The mean of the TETL(θ, λ) is given by

Mean = E(X) =
8θ − 3λ− λθ2

4(1− θ2)
.

The moment generating function (m.g.f) of the TETL for θ ∈ (−1, 1) and t ∈ (−4, 4) is given by

MX(t) =
1− θ2

2

[
1 + λ

(t+ 1 + θ)
− λ(1− θ)

(t+ 2 + 2θ)
+

1− λ
(1− θ − t)

+
λ(1 + θ)

(2− 2θ − t)

]
. (2.10)

3 Four Parameter Transmuted Esscher transformed Laplace dis-
tribution

In this section we define four parameter transmuted Esscher transformed Laplace distribution. The
pdf of the four parameter TETL distribution with parameters (θ,µ,σ,λ) are respectively given below.
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f(x; θ, µ, σ, λ) =


1−θ2
2σ e

x−µ
σ (1+θ)

(
1 + λ

(
1− (1− θ)e

x−µ
σ (1+θ)

))
, x < µ,

1−θ2
2σ e

µ−x
σ (1−θ)

(
1− λ

(
1− (1 + θ)e

µ−x
σ (1−θ)

))
, x ≥ µ,

(3.1)

and the cdf of the four parameter TETL distribution with parameters (θ, µ, σ, λ) are respectively
given below in Equation 3.2.

F (x; θ, µ, σ, λ) =


1−θ
2 e

x−µ
σ (1+θ)

(
1 + λ− λ (1−θ)

2 e
x−µ
σ (1+θ)

)
, x < µ,[

1− 1+θ
2 e

µ−x
σ (1−θ)

] (
1 + λ

2 (1 + θ)e
µ−x
σ (1−θ)

)
, x ≥ µ,

(3.2)

where θ ∈ (−1, 1), µ ∈ R, σ > 0 and |λ| ≤ 1.
Graphs of pdf of TETL(θ, µ, σ, λ) for θ = − 0.5, 0.5, µ = − 2, 0, 2, σ = 0.5 1.5 and

λ = − 1, 1 is given in Figure 4.

Figure 4: Densities of transmuted Esscher transformed Laplace distribution for various values of
parameters θ, µ, σ, λ.

3.1 Quantile Function

The qth quantile function of the TETL distribution is given by

ξq =


µ+ σ

1+θ ln

( [
1+λ−

√
(1+λ)2−4λq

]
λ(1−θ)

)
, q ∈

(
0, 1−θ4 [2 + λ(1 + θ)]

]
,

µ− σ
1−θ ln

( [
λ−1+

√
(1+λ)2−4λq

]
λ(1+θ)

)
, q ∈

(
1−θ
4 [2 + λ(1 + θ)], 1

]
.

(3.3)
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The median of TETL is obtained by putting q = 1/2 and is given by

Median = ξ 1
2

=


µ+ σ

1+θ ln

(
[1+λ−

√
1+λ2]

λ(1−θ)

)
, θ, λ ∈ (−1, 0) ,

µ− σ
1−θ ln

(
[λ−1+

√
1+λ2]

λ(1+θ)

)
, θ, λ ∈ (0, 1) .

(3.4)

The cdf and qf can be useful for goodness-of-fit and simulation purposes. For q = 1−θ
4 [2 +

λ(1 + θ)], the qth quantile is given by ξq = µ. Hence, for given κ the location parameter is given by
µ̂ = ξ[ 1−θ

4 [2+λ(1+θ)]].
The skewness and kurtosis can be defined based on the quantile function. The Galton’s skewness

(Galton, 1883) and the Moors kurtosis (Moors, 1988) coefficients are, respectively

S =
ξ[6/8] − 2ξ[4/8] + ξ[2/8]

ξ[6/8] − ξ[2/8]
and K =

ξ[7/8] − ξ[5/8] + ξ[3/8] − ξ[1/8]
ξ[6/8] − ξ[2/8]

.

The distribution is symmetric, right (or left) skewed for S = 0, S > 0 (or S < 0), respectively. As
the value of kurtosis increases, the tail heaviness of the distribution increases.

4 Estimation
In this section we study the problem of estimating four unknown parameters, Θ = (θ, µ, σ, λ)′, of
the TETL distribution. To estimate the parameter µ we use the quantile estimation. The method
of maximum likelihood estimation can be employed to estimate Θ. To estimate Θ using maximum
likelihood estimation where the likelihood function is maximized to estimate the unknown param-
eters. We describe this method briefly as follows. Let X = (X1, . . . , Xn)′ be independent and
identically distributed samples from an TETL distribution with parameters Θ andX(1), . . . , X(n) be
the ordered sample observations. Assume X(r) < µ < X(r+1), for r = 1, 2, . . . , n.

The log-likelihood function of the data X takes the form

L(Θ) = −n log 2− n log σ + n log(1− θ2) +
∑
I1

xi − µ
σ

(1 + θ)

−
∑
I2

xi − µ
σ

(1− θ) +
∑
I1

log(Gi) +
∑
I2

log(Hi), (4.1)

were

Gi = 1 + λ
(

1− (1− θ)e
xi−µ
σ (1+θ)

)
,

Hi = 1− λ
(

1− (1 + θ)e
µ−xi
σ (1−θ)

)
,∑

Ii
denotes the summation over the set Ii such that

I1 = {j : X(j) < µ, for j = 1, 2, . . . , n} and

I2 = {j : X(j) > µ, for j = 1, 2, . . . , n},
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respectively.
MLEs of θ, σ and λ for given µ = µ̂ are obtained by solving the score equations iteratively.

In this paper MLEs of (θ, µ, σ, λ) were obtained by maximizing the log likelihood using the optim
function of the R statistical software, applying the Broyden - Fletcher - Goldfarb - Shanno (BFGS)
algorithm (Nash, 1990) in R (R-Core-Team, 2015). Estimates of the standard errors were obtained
by inverting the numerically differentiated information matrix at the maximum likelihood point.

5 Simulation Study
In this section we perform the simulation studies for various choices of parameters to evaluate the
performance of the estimation procedure. We generated 1000 samples, each of size n = 50, 100, 250

from the TETL distribution for θ = −0.5, 0.5, µ = 0.05, σ = (0.5, 1) and λ = (−0.5, 0, 0.5) and
then applied the algorithm to obtain the MLEs of the parameters. To generate TETL(θ, µ, σ, λ) the
following algorithm was used:

• Input number of replications N = 1000.

• Give various values for sample size n and for parameters .

• Generate random samples from uniform U ∼ U(0, 1).

• Generate random samples from TETL using quantile function given in Equation 3.3.

• Compute MLEs of the parameters θ, µ, σ, and λ by applying the BFGS algorithm in R.

• Repeat the steps 3 to 5, N times.

• Compute the estimate of the MLE’s, Standard Error (SE) and sample standard deviations over
the replications, of the parameters.

The results from 1000 replications are presented in Table 1. It is clear from Table 1 that
the estimation algorithm works satisfactorily for various choices of parameters and the asymptotic
standard errors of the maximum likelihood estimators agree well with the sample standard deviations
over the replications.

We also checked our algorithm for various choices of initial values of parameters and sample
size n. For arbitrary initial values, the number of iterations needed for the iterative methods to con-
verge were larger compared to that required when the parameters were initialized by their moment
estimates. We also simulated data for varying parameters, especially towards boundary regions.
When σ is very small, comparatively larger number of iterations were needed to achieve reasonable
convergence.
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6 Application

In this section we illustrate the application of TETL to microarray gene expression dataset. We
downloaded the cDNA dual dye microarray data sets with Experiment id-51401 from the Stanford
Microarray Database. Each array chip contains approximately 42000 human cDNA elements, rep-
resenting over 30000 unique genes. The dataset was normalized using (Lowess) locally weighted
linear regression method (Cleveland and Delvin, 1988). This method is capable of removing in-
tensity dependence in log2(Ri/Gi) values and it has been successfully applied to microarray data
(Yang et al., 2002), where Ri is the red dye intensity and Gi is the green dye intensity for the ith

gene. Figure 5 present the box plots of intensities before and after Lowess normalization. The de-
scriptive statistics for microarray dataset with 41472 observations is given below in Table 2 and from
the Table 2 we can see that the microarray dataset with Experiment id-51401 is positively skewed
and highly peaked.

Here we fitted Gaussian, ETL and TETL distributions to log-transformed normalized intensities
log2(Ri/Gi) from the microarray dataset mentioned above. We obtained maximum likelihood es-
timates and their asymptotic standard errors for the parameters of TETL(θ, µ, σ, λ), ETL(θ, µ, σ)

and Gaussian N(µ, σ2) distributions (see Table 3 and Figure 6).

(a) (b)

Figure 5: Box plots of intensities from microarray Experiment Id 51401 (a) Before normalization,
(b) After loess normalization.
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Table 2: Descriptive statistics for microarray dataset)

Min Max Mean Median SD Skewness Kurtosis

-5.809 6.773 0.006 0.032 0.798 0.490 10.639

Figure 6: Fitted transmuted Esscher transformed Laplace (TETL)(red dotted line), Esscher trans-
formed Laplace (ETL)(blue dashed) and Gaussian (green line) distributions (evaluated at MLEs) for
the microarray data from Experiment id-51401.

We used Akaike’s Information Criterion (AIC) (Akaike (1973); Burnham and Anderson (1998))
and Bayesian Information Criterion (BIC) (Schwarz, 1978) to assess the appropriateness of TETL
over the ETL and Gaussian distributions. The AIC and BIC are given by

AIC = −2 logL+ 2K and BIC = −2 logL+K log(n),

where logL = logLf (θ̂|x1, . . . , xn) is the log-likelihood of the data x1, . . . , xn under the proba-
bility distribution f , K is the number of parameters being estimated, θ̂ is the maximum likelihood
estimate of the parameters of f and n is the sample size. In most cases AIC and BIC are of similar
nature and give consistent results for model selection.

A smaller value of AIC or BIC indicates a better fit. Table 3 shows the AIC and BIC for the
TETL(θ, µ, σ, λ), ETL(θ, µ, σ) and N(µ, σ2) distributions for the microarray dataset examined.
The TETL(θ, µ, σ, λ) distribution had a lower AIC and BIC for the microarray gene expression
dataset. A smaller value of AIC and BIC indicates a better fit, and hence, TETL fit the data better
than ETL or Gaussian distributions.
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Table 3: Microarray data analysis - maximum likelihood estimates and their asymptotical stan-
dard deviations, Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC)
for TETL, ETL and Gaussian distributions.

θ̂ µ̂ σ̂ λ̂ AIC BIC

TETL 0.064 (0.018) 0.009 (0.003) 0.399 (0.003) 0.261 (0.021) 87511 87546

ETL 0.055(0.025) 0.011 (0.003) 0.405 (0.004) - 88509 88533

Gaussian - 0.006 (0.001) 0.797 (0.004) - 98990 99007

7 Conclusion

Sebastian and Dais (2012) introduced Esscher transformed Laplace distribution and modeled ex-
change rate data using Esscher transformed Laplace distribution. Bindu and Dais (2017) introduced
first Order Moving Average Model with Esscher Transformed Laplace Innovations. A general-
ization of Esscher transformed Laplace distribution through the quadratic rank transmutation map
introduced in this paper is useful in analyzing datasets that are asymmetric, leptokurtic, unimodal, bi-
modal and deviate considerably from the classical symmetric distributions such as normal, Laplace,
etc.

Devika et al. (2016) used Esscher transformed Laplace distribution in modeling microarray data
as an alternative to normal and Laplace distribution. In this work, we have proposed a new statistical
model for the distribution of differential gene expression, which is a heavy tailed generalization of
Laplace distribution. We found that TETL fit the microarray data better than ETL or Gaussian
distributions. TETL is asymmetric, peaked and heavy-tailed; hence it is a proper distribution to
accommodate outliers in the data. The probability distribution presented in this paper will be very
useful in estimation and detection problems involving gene expression data. This distribution may
be useful for financial modelling, since this distribution capture skewness, heavier tails and kurtosis
present in the financial datasets.
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