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SUMMARY

Complex coherent systems are the engines driving forward our technological world. A
coherent system is composed of components, which could be modules or sub-systems, that
interact with each other according to some structure function. For purposes of maintenance
and safety considerations, it is of critical importance to gain knowledge of the distribution
of the system lifetime, with this distribution being a function of the distributions of the
components lifetimes. Since the monitoring of a system ceases upon system failure, at
system failure some components will be failed, while others, depending on the structure
function, will still be functioning with their lifetimes right-censored by the system lifetime.
This paper deals with the estimation of the system lifetime distribution. The inferential
framework is nonparametric Bayesian, with partition-based Dirichlet processes (PBDP)
assigned as priors on the components lifetime distributions. PBDP are more general than
the usual Dirichlet process (DP) priors and are particularly suited as priors in settings with
censored data. The resulting estimator of the system life distribution, which is a function of
the nonparametric Bayes estimators of the components lifetime distributions, is compared
in terms of bias and variance with a product-limit type estimator proposed by Doss, et.
al. (Ann. Statist., 1989), which can be obtained as a limit of the proposed estimator.
These comparisons, which are facilitated through computer simulations, demonstrate that
the proposed estimator possesses some robustness. The proposed estimator is illustrated
using a synthetic data for a parallel system with five components.
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1 Introduction

Systems abound in nature and in our technological society. Systems are those that are composed
of inter-connected components or subsystems to form a unified unit. Computers and computer net-
works, telephones and telephone infrastructures, cars, roads and highways, homes, trains, airplanes,
hospitals, medical equipments, human body, tanks, missiles, military command infrastructures, etc.
are examples of systems in engineering, public health, biomedical, and military settings. They could
also arise in the economic, political, and sociological sciences, such as a “binary” or 2-state system,
the US system of government, US Congress, the US financial and banking infrastructure, the United
Nations, economic and military treaties, etc. Coherent systems are those where every component or
subsystem is relevant and the improvement of a component or a subsystem could not make the sys-
tem worse. The reliability of a system over a fixed period of time is the probability that the system
functions over this time period. The reliability of a system is a function of the reliabilities of each of
its components or subsystems. Naturally we desire systems with high reliability since human lives
and the welfare of our society are usually at stake and fully dependent on the proper functioning of
the multitude of systems governing our day-to-day living. Thus, as a consequence, it is of prime
importance that the reliability of systems could be properly assessed before their actual deployment.
This paper is for the purpose of proposing methods for performing statistical inference regarding the
reliability of coherent systems which could be useful in the processes of improving the systems.

We briefly review relevant and related published works and then provide a more formal math-
ematical background by introducing some notation and definitions regarding coherent systems.
Moeschberger and David (1971) considered estimation of system lifetime distribution, F , under
independent and identically distributed (IID) assumptions on the components and in a competing
risks framework. Estimation of F under rank set sampling for k-out-of-K systems was considered
by Kvam and Samaniego (1994) and Stokes and Sager (1988). Estimation of load sharing prop-
erties in a dynamic reliability system was tackled in Kvam and Peña (2005). Joint estimation of
components and system reliabilities was addressed in Doss et al. (1989). In addition, inferential
problems to assess the risk and reliability of systems has, among others, been considered by Barlow
and Hunter (1960), Barlow and Marshall (1967), Barlow and Proschan (1969, 1986), Barlow (1984,
1985, 1986), Boyles et al. (1985), El-Neweihi et al. (1978), Esary and Proschan (1963), Esary et al.
(1971, 1970), Hollander and Proschan (1984), Hollander and Peña (1995, 1996a,b, 2004), Lang-
berg et al. (1981), Meilijson (1981), Peña and Hollander (2004), Navarro and Rychlik (2007), Polpo
and Pereira (2009), Polpo et al. (2013), Walker and Muliere (1997), and Susarla and Van Ryzin
(1976). Most of these works employed a frequentist parametric or nonparametric statistical infer-
ence framework for the system reliability. This frequentist framework is perfectly acceptable when
the postulated parametric assumptions are valid, but it could perform poorly under misspecified
models.

In contrast to classical nonparametric framework, the nonparametric Bayesian framework pro-
posed in this paper enables us to incorporate prior knowledge thereby leading to more robust estima-
tion procedures of system reliability. Polpo and Pereira (2009) considered Bayesian estimation of
reliability in parallel systems and Polpo et al. (2013) considered Bayesian estimation of reliabilities
in a class of coherent systems. In their work, Polpo et al. (2013) assumed that failure times of all the
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systems are known and the components that produced the failure. However, system lifetime could
also be right-censored in an experimental setting due to finite monitoring period or system with-
drawn from the observation, for example, due to accident. In our work we assumed that systems
lifetimes as well as component lifetimes could possibly be right-censored data and not limited to
complete observations as considered by Polpo et al. (2013). In our nonparametric Bayesian frame-
work, we assign a partition-based Dirichlet measure (PBDM) prior as introduced in Sethuraman and
Hollander (2009) on F , or on the component reliability functions. The resulting posterior measures,
given the observable data from the coherent systems, are also partition-based Dirichlet measures.
The resulting estimator based on a quadratic loss function of the system reliability function F is in
closed form being a linear combination of the prior estimate of F and the corresponding nonpara-
metric PL-type estimator of F .

We now briefly outline the contents of this paper. Section 2 presents some notation and defini-
tions pertaining to coherent systems and the observable data from coherent systems. In Section 3
we provide background information and results about the PBDM prior and develop the estimators
of the system reliability function based on the system data. In Section 4 we obtain the nonpara-
metric Bayes estimators of the components reliability functions and also an estimator of the system
reliability function based on component data. We also explore the relationship between our pro-
posed estimator and the corresponding PL-type estimator. Section 5 includes simulation studies and
provides comparisons between the proposed estimators and the PL-type estimators in terms of bias
and RMSE function, which we note are frequentist framework criteria for assessing the goodness
of estimators. Section 6 provides an illustration of the proposed estimators using a synthetic data
set and Section 7 provides some concluding remarks, while Section A is an appendix wherein we
gather detail proof of the Theorem 3.

2 Mathematical Preliminaries

We provide our notation and recall some definitions relevant to coherent systems; see Barlow and
Proschan (1981) for a comprehensive discussion of coherent systems. A reliability system is com-
posed of a finite number of components, with each component possibly being a subsystem itself
or a two-state binary system. For a reliability system with K components, denote the state vec-
tor of components by x = (x1, x2, . . . , xK), with xj ∈ {0, 1} and such that xj = 1(0) means
that component j is functioning (failed). The structure function of a reliability system is defined
by φ : {0, 1}K → {0, 1} such that φ(x) = 1(0) indicates that the system is in a functioning
(failed) state. A reliability system is said to be coherent if the structure function φ(x) satisfies
the two conditions: (i) it is nondecreasing in each argument, i.e., a change of state of one and
only one component from a failed state to a working state should not cause the system to change
from a working state to a failed state; (ii) each component is relevant in the sense that, for each
j ∈ {1, 2, . . . ,K}, there exists an x ∈ {0, 1}K such that 0 = φ(x, 0j) < φ(x, 1j) = 1, where
(x, 0j) = (x1, . . . , xj−1, 0, xj+1, . . . , xK) and (x, 1j) = (x1, . . . , xj−1, 1, xj+1, . . . , xK). Hereon,
coherent reliability systems will be referred to as systems for brevity.

A series system and a parallel system are two examples of coherent reliability systems with
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respective structure functions

φser(x) = min{x1, x2, . . . , xK} =

K∏
j=1

xj

φpar(x) = max{x1, x2, . . . , xK} = 1−
K∏
j=1

(1− xj).

The coherent structure function of a k-out-of-K system is

φk:K(x) = I


K∑
j=1

xj ≥ k


with I(A) = 1(0) depending on whether event A does (does not) hold. Clearly, a series system
(K-out-of-K system) and a parallel system (1-out-of-K) are the two extreme cases of k-out-of-
K systems, and in fact of all K-component systems. Another coherent system is a 3-component
series-parallel system with block diagram shown in Figure 1 and whose structure function is

φsp(x1, x2, x3) = min{x1,max{x2, x3}} = x1 ∧ (x2 ∨ x3).

This series-parallel system functions so long as component 1 and at least one of components 2 or 3
are functioning.

Figure 1: Three Component Series-Parallel System

Let Xk be the random variable indicating whether component k is in a functioning (Xk = 1)
or a failed (Xk = 0) state. Let pk = Pr{Xk = 1} be the probability that component k functions,
called the reliability of component k. Assume that X = (X1, X2, . . . , XK) are independent ran-
dom variables, and let p = (p1, p2, . . . , pK) be the vector of components reliabilities. Under the
assumption of independent components, the reliability function of a system with structure function
φ is given by

hφ(p) = E{φ(X)} = Pr{φ(X) = 1}.



Nonparametric Bayes Estimation of the Reliability Function . . . 187

Thus, the reliability function of a series system is hser(p) =
∏K
j=1 pj , while that of a parallel system

is hpar(p) = 1 −
∏K
j=1(1 − pj). On the other hand, the reliability function of the series-parallel

system in Figure 1 is hsp(p1, p2, p3) = p1[1 − (1 − p2)(1 − p3)]. The reliability function for the
more general k-out-of-K system is

hk:K(p) =
∑

{(x1,x2,...,xK)∈{0,1}K ;
∑K
j=1 xj≥k}

 K∏
j=1

p
xj
j (1− pj)1−xj

 .
These reliability functions represent the probabilities that the systems are functioning as a function
of component reliabilities.

Let T = (T1, T2, . . . , TK) be the vector of component lifetimes and S be the system lifetime.
For a given time t, the state vector of components is denoted by X(t) = (I(T1 > t), I(T2 >

t), . . . , I(TK > t)), hence the state of the system at time t is given by φ(X(t)). As a result {S >

t} = {φ(X(t)) = 1}. Therefore, the system lifetime survivor function, also referred to as the
system’s reliability function, is given by

F̄φ(t) = Pr{S > t} = Pr{φ(X(t)) = 1} = E{φ(X(t))}.

Denote the components lifetime survivor functions by

F̄j(t) = E{I{Tj > t}} = Pr{Tj > t}, j = 1, 2, . . . ,K.

Under the assumption that the components lifetimes are independent, the system reliability function
is given by

F̄φ(t) = hφ(F̄1(t), F̄2(t), . . . , F̄K(t)). (2.1)

Suppose we monitor n identical systems with structure function φ, with the ith system observed
over the time period [0, τi]. The end-of-monitoring time τi could represent administrative time or
some other termination time not related to the ith system’s components lifetimes. Let S1, S2, . . . , Sn
denote the n systems lifetimes and τ1, τ2, . . . , τn denote the end of monitoring times. In observing
these n systems, not all the Si’s will be completely observed since some of them will be right-
censored by their τi’s. The random variables for the n systems will therefore be

(V, δ) = ((V1, δ1), (V2, δ2), . . . , (Vn, δn)), (2.2)

where Vi = min{Si, τi} and δi = I{Si ≤ τi}.
A nonparametric estimator of the system reliability function based on right-censored system

lifetimes (V, δ) is the Kaplan and Meier (1958) estimator, also known as the product-limit estimator
(PLE), given by

R̂PLE(t) =
∏
s≤t

[
1− ∆N(s)

Y (s)

]
, (2.3)

with the convention that 0/0 = 0,
∏

means product-integral, and the processes N = {N(s) : s ∈
<} and Y = {Y (s) : s ∈ <} are defined via

N(s) =

n∑
i=1

I{Vi ≤ s; δi = 1} and Y (s) =

n∑
i=1

I{Vi ≥ s}. (2.4)
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Doss et al. (1989) developed a PL-type estimator of the system reliability function when com-
ponent failure times are available by exploiting the relationship given in (2.1) between system re-
liability and components reliabilities. The idea implemented in Doss et al. (1989) is to use the jth
component’s right-censored data to estimate F̄j , j = 1, 2, . . . ,K, and then to plug-in these esti-
mates in (2.1). In Doss et al. (1989)’s approach, each system is monitored until it failed so that they
observed all the system failure times. However, as mentioned above, the ith system lifetime could
be right-censored by τi, while its component lifetimes could be right-censored by τi or the system
lifetime Si. We assume that the end of monitoring times are either fixed or random.

Let Tij denote the lifetime of component j for the i-th system. Define Zij = min{Tij , S∗ij , τi}
and δij = I(Tij ≤ min{S∗ij , τi}). The right-censoring variable for Tij involves S∗ij , where S∗ij is the
lifetime of the system obtained by jth component deleted from the original system. Note that S∗ij is
independent of Tij . To give an example, consider the 3-component series-parallel system in Figure 1.
The right-censoring variable for T1 involves S∗1 = max{T2, T3}, which is independent of T1, while
the right-censoring variables for T2 and T3 involve S∗2 = min{T1, T3} and S∗3 = min{T1, T2},
respectively.

Let F denote the system lifetime distribution. We assign a prior on F which is a partition-based
Dirichlet measure (PBDM) (Sethuraman and Hollander (2009)). This type of nonparametric prior
measure will be reviewed in Section 3. The posterior measure of F , given the right-censored system
lifetimes, is also a PBDM. Under an integrated squared-error loss function, the Bayes estimator of F
is the mean of the posterior PBDM. In a similar fashion, by assigning independent PBDM prior on
each of the components lifetime distribution functions, we obtain Bayes estimators of the reliability
functions of each of the components, given the right-censored components data. A system relia-
bility estimator, based on the components data, is then obtained by plugging-in these components
reliability functions estimators in (2.1).

3 Classes of Prior Probability Measures

In the first part of this section we briefly review the general class of partition-based probability mea-
sures (PBPM) which was introduced in Sethuraman and Hollander (2009) in the context of making
Bayesian statistical inference in repair models. We are using the class of PBDM prior because it
is an elegant class of nonparametric conjugate prior for the incomplete observations such as left-
truncated, interval-censored, and right-censored data. In particular, these PBDM priors provides
clear-cut (analytical) posterior calculation and we will provide a closed-form Bayes estimator as
well as a procedure to sample from the posterior measure. These PBPMs will serve as prior proba-
bility measures on the relevant reliability functions of interest. The posterior probability measures,
given the observed data, will also belong to this class of PBPMs. The PBPMs could be employed in
a variety of settings with right-censored, interval-censored, and truncated data. For details regarding
PBPMs we refer the reader to Sethuraman and Hollander (2009)’s paper. Let (X ,A ) be a measur-
able space and let P be the class of all probability measures (pms) on (X ,A ). Let H be the class
of all pms on (P,S ), where S = σ({P : P (A) ≤ r,A ∈ A , 0 ≤ r ≤ 1}).
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Definition 3.1. [Dirichlet Process (DP) (Ferguson (1973); Sethuraman (1994))]: Let α(·) be a non-
null finite measure on (X ,A ). A random pm P on (P,S ) is said to be a Dirichlet process with
parameter α(·) if, for any measurable partition B = {B1, B2, . . . , Bm} of X , the distribution of
P (B) ≡ (P (B1), P (B2), . . . , P (Bm)) is the Dirichlet distribution D(·;α(B1), α(B2), . . . , α(Bm)).
The pm in H governing such a P will be denoted by Dα.

Definition 3.2. [Partition-Based Probability Measure (PBPM) (Sethuraman and Hollander (2009))]:
Let B = (B1, B2, . . . , Bm) be a measurable partition of X ; h : (<m,Bm) → (<+,B+) taking
the value zero outside of the m-dimensional simplex

Rm =
{
y : yl ≥ 0, l = 1, . . . ,m;

m∑
l=1

yl = 1
}

and with
∫
Rm

h(y1, . . . , ym)dy1 · · · dym < ∞. Let Gl, l = 1, 2, . . . ,m, be in H with Gl having
support that is a subset of {P ∈ P : P (Bl) = 1}, and let G be the product measure G1 × G2 ×
· · · × Gm. A random pm P ∈ P is said to have a PBPM with parameters (B, h,G ), denoted by
H ≡ H(B, h,G ) ∈H , if the following conditions are satisfied under H .

(a) P (B) ≡ (P (B1), P (B2), . . . , P (Bm)) and the restricted random pms PBl , l = 1, 2, . . . ,m,
are independent, where for any P ∈P , its restriction on a non-empty B ∈ A is given by

PB(A) =
P (A ∩B)

P (B)
I{P (B) > 0}+ I{b ∈ A}I{P (B) = 0}

with b an arbitrary element of B;

(b) P (B) = (P (B1), P (B2), . . . , P (Bm)) has pdf ch(y) where c is a normalizing constant and
y ∈ Rm;

(c) for each l = 1, 2, . . . ,m, PBl ∼ Gl,

and, for each A ∈ A , P (A) =
∑m
l=1 PBl(A)P (Bl).

Definition 3.3. [Partition-Based Dirichlet Measure (PBDM)]: Let α(·) be a finite non-null measure
on (X ,A ). For any non-empty set B ∈ A with α(B) > 0, let αB(A) = α(A ∩ B) for all
A ∈ A . Let B = (B1, . . . , Bm) be a measurable partition of X with α(Bl) > 0, l = 1, . . . ,m.
If G = DαB1

× . . . × DαBm
, then H(B, h,G ) ≡ D(B, h, α) is called a Partition-Based Dirichlet

Measure (PBDM).

An intermediate result in Sethuraman and Hollander (2009) also showed that the Dirichlet
process Dα coincides withD(B, h, α) for any partition B = (B1, . . . , Bm) where, with αl =

α(Bl), l = 1, 2, . . . ,m, h is of the form

h(y) =

[
Γ(
∑m
l=1 αl)∏m

l=1 Γ(αl)

m∏
l=1

yl
αl−1

]
I{y ∈ Rm}. (3.1)
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The PBPM will be used as the prior measure over the space of probability measures. Given
the observed data, from the Bayesian inference perspective, it is of major importance to determine
the posterior measure. Theorem 1 provides the initial result for this purpose. The proof of this
result immediately follows from Theorem 3 in Sethuraman and Hollander (2009) hence will not be
presented.

Theorem 1. Let P ∈ P have a PBPM prior probability measure H(B, h,G ). Given P , let T be
an observation from P , so that T | P ∼ P . Let B = (B1, . . . , Bm) be a measurable partition
of X and R ≡ R(T ) ∈ {1, 2, . . . ,m} be such that T ∈ BR. Then, the posterior probability
measure of P , given T = t and with R = r, is the PBPM H(B, h∗,G ∗), where h∗(y) ∝ h(y)yr
and G ∗ = ×s 6=rGs × Gtr, where Gts is the posterior distribution of PBs , given Ts = t, where
Ts|P ∼ PBs and PBs ∼ Gs. In particular, if H(B, h,G ) = D(B, h, α), then the posterior is
D(B, h∗, α∗) with α∗ = α+ δt.

The preceding result pertains to the situation where a complete observation has been observed.
The next result, Theorem 2, pertains to the posterior measure in light of a censored or incomplete
observation. This follows from Theorem 1 in Grego et al. (2013) hence its proof will not also be
presented.

Theorem 2. Let P ∈P have a PBPM prior probability measure H(B, h,G ) and let T | P ∼ P .
Let E ⊂ {1, 2, . . . ,m} such that T ∈ A = ∪j∈EBj . Then, the posterior probability measure of P ,
given T ∈ A, is the PBPM H(B, h∗,G ), where h∗(y) ∝ h(y)yA with yA =

∑
j∈E yj .

Theorem 2 is obtained when A is a union of sets in the partition B. When A is not necessarily
a union of sets in the partition B, we can form a larger partition

B∗∗ = {(B ∩A) ∪ (B ∩Ac)},

which ensures that A is a union of sets in the enlarged partition B∗∗. We could then start by having
a PBPM H(B∗∗, h∗∗,G ∗∗) that is appropriate for this enlarged partition.

Next, we consider the posterior distribution of P , whose prior distribution is a PBPM, when a
right-censored data is available. Let T1, T2, . . . , Tn be a random sample from P so that

(T1, T2, . . . , Tn) | P iid∼ P.

We are only able to observe the right-censored data {(Vi, δi), i = 1, 2, . . . , n} where δi = 1(0)

means that Ti = (>)Vi. For such a right-censored data, define the subset of indices

I0 = {i ∈ {1, 2, . . . , n} : δi = 0} and I1 = {i ∈ {1, 2, . . . , n} : δi = 1}.

We shall consider a partition of X = < given by B = {Bs : s = 1, 2, . . . ,m} such that for each
i ∈ I0 there exists an Ei ⊂ {1, 2, . . . ,m} satisfying

(Vi,∞) =
⋃
s∈Ei

Bs.

For each i ∈ I1, we let ri ∈ {1, 2, . . . ,m} such that Vi ∈ Bri . With these notation, we are now in
position to describe the posterior distribution of P , which is stated for general PBPMs.
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Theorem 3. Let (T1, T2, . . . , Tn)|P iid∼ P and let P have the PBPM prior distribution H(B, h,G )

where G = ×ms=1Gs. Then, the posterior distribution ofP given the right-censored sample {(vi, δi) :

i = 1, 2, . . . , n}, and when the right-censoring mechanism is noninformative about P , is the PBPM
H(B, h∗,G ∗), where

h∗(y) ∝ h(y)

[ ∏
i∈I1

yri

][ ∏
i∈I0

( ∑
j∈Ei

yj

)]

G ∗ = ×ms=1G
(vi: i∈I1,ri=s)
s ,

with G(t1,...,tk)
s the posterior distribution of PBs when its prior is Gs and given the observed data

T1 = t1, . . . , Tk = tk, where (T1, . . . , Tk)|P iid∼ PBs , with the convention that G∅s = Gs. In par-
ticular, if H(B, h,G ) = D(B, h, α), then the posterior distribution of P given the right-censored
data is D(B, h∗, α∗) with α∗ = α+

∑
i∈I1

δvi .

Proof. Repeated application of Theorem 1 for complete observations and repeated application
of Theorem 2 for right-censored observations yield the stated result. However, a detail proof is
given in the appendix when PBPM is partition-based Dirichlet measure (PBDM) [H(B, h,G ) =

D(B, h, α)].

4 System Reliability Function Estimators

4.1 Based Only on System Data

In this subsection we discuss inference concerning the system reliability function based only on
the possibly right-censored system data. We assume that n systems lifetimes, S1, S2, . . . , Sn are
IID from an unknown distribution function F , or equivalently, an unknown probability measure
P , so that F (t) = P{(−∞, t]} for each t ∈ <. Recall the random variables from n systems are
((V1, δ1), (V2, δ2), . . . , (Vn, δn)), where Vi = min(Si, τi) and δi = I(Si ≤ τi) for i = 1, 2, . . . , n.
Furthermore, the noninformativeness of the right-censoring mechanism can be achieved by assum-
ing that the distribution of the τi’s does not depend on F or P .

The main goal is to develop a nonparametric Bayes estimator of F or P based on the right-
censored system data when a PBDM prior is assigned on P . The prior measure on P is the PBDM
D(B, h, α). Theorem 3 provides the posterior distribution of P given the right-censored systems
data. For an estimate F̂ of F , its quality will be measured via the integrated squared-error loss
function

L(F, F̂ ) =

∫ ∞
0

[F̂ (t)− F (t)]2dt.

With respect to this loss function, the Bayes estimator of F , which minimizes the Bayes risk, is
given by the posterior mean of F given the right-censored data., that is,

F̂B(t) = E {F (t)|{(Vi, δi), i = 1, 2, . . . , n}} .
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We shall denote by P̂B(·) the probability measure induced by F̂B(·), which will be the Bayes esti-
mator of the probability measure P (·). In order to obtain closed-form expressions and to relate to
the product-limit estimator, we shall obtain this Bayes estimator under the PBPM prior D(B, h, α)

with h being of specific form

h(y) ∝

[
m∏
l=1

yαl−1

]
I{y ∈ Rm}, (4.1)

with αl = α(Bl), l = 1, 2, . . . ,m. In addition, the partition B = (B1, B2, . . . , Bm) of < will be
such that each Bl is an interval and such that Bl < Bl+1 for each l = 1, 2, . . . ,m − 1. We also
introduce the following notations. For l = 1, 2, . . . ,m and A ⊂ <,

Nl(A) =
∑
i∈I1

I{Vi ∈ Bl ∩A} and Nl = Nl(Bl);

Jl =
∑
i∈I0

I{Vi ∈ Bl};
N≥l(A) =

∑m
j=lNj(A); N≥l = N≥l(Bl); and J≥l =

∑m
j=l Jj .

Theorem 4. The Bayes estimator of P under integrated squared-error loss function when the prior
of P is a D(B, h, α) with h of form in (4.1) and when given the right-censored systems data is

P̂ (A) =

m∑
k=1

WkP̂k(A)

where, for k = 1, 2, . . . ,m,

Wk =

{[
αk +Nk

α≥k +N≥k + J≥k+1

]I{k≤m−1}
}{

k−1∏
l=1

[
α≥l+1 +N≥l+1 + J≥l+1

α≥l +N≥l + J≥l+1

]}
;

and

P̂k(A) =
α(Bk ∩A) +Nk(A)

α(Bk) +Nk
.

For clarity, we point out that the first term in braces of the expression forWm is equal to 1. Thus,
observe that the Bayes estimator of P is a mixture of the Bayes estimators, under Dirichlet priors,
of the restricted probability measures at each of the members of the partition. The mixing weights
are dependent on the prior α and the information from the right-censored systems data on each of
the partition members.

Prior to proving this result, we point out two special cases of this estimator. The first case is
when there are no right-censored observations, then we recover the usual Bayes estimator; while the
second case is when α(<) → 0 and there are right-censored values. In this latter case we do not
immediately obtain the product-limit estimator, but if we further refine the partition to include the
singleton sets determined by the observed failure times, then we do recover the PLE as a special
case.
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Corollary 1. If there are no right-censored observations, then

P̂ (A) =

∑m
k=1[αk(A) +Nk(A)

α(<) + n
=
α(A) +N(A)

α(<) + n
,

where N(A) =
∑n
i=1 I{Vi ∈ A} =

∑n
i=1 I{Ti ∈ A}. As such, when α(<)→ 0, P̂ (A) converges

to the empirical measure of A: N(A)/n.

Corollary 2. Let V(1) < V(2) < . . . < V(K) denote the distinct observed failure times, and let R(k)

be such that V(k) ∈ BR(k)
. Then, when α(<)→ 0, we obtain

P̂ ({V(k)})→


[

NR(k)
({V(k)})

N≥R(k)
+J≥R(k)+1

] [∏R(k)−1

l=1

(
1− Nl

N≥l+J≥l+1

)]
if R(k) < m[

Nm({V(k)})
Nm

] [∏m−1
l=1

(
1− Nl

N≥l+J≥l+1

)]
if R(k) = m

.

This limit estimator is not yet the PLE. However, if we include in the partition the singleton
sets {V(k)}, k = 1, 2, . . . ,K, and we let D(k) be the number of failures at V(k) and Y(k) be the
number-at-risk at V(k), then as α(<)→ 0, we obtain

P̂ ({V(k)})→


[
D(k)

Y(k)

] [∏k−1
l=1

(
1− D(l)

Y(l)

)]
if k < K[∏K−1

l=1

(
1− D(l)

Y(l)

)]
if k = K

,

which coincides with a version of the PLE. Observe that the number of failures and the number-at-
risk at V(k) are, for k = 1, 2, . . . ,K,

D(k) =

n∑
i=1

I{Vi = V(k), δi = 1};

Y(k) = N≥R(k)
+ Y≥R(k)+1 = NR(k)

+

m∑
l=R(k)+1

(Nl + Jl),

and the estimator P̂ has atoms only at the V(k)’s.

We now establish Theorem 4. We shall do this in steps.

Lemma 4.1. For everym = 2, 3, . . ., and α = (α1, . . . , αm) ∈ <m+ and β = (β1, . . . , βm) ∈ <m+,0,
with Rm = {y = (y1, . . . , ym) ∈ (0, 1)m : ym = 1−

∑m−1
i=1 yi},

Cm(α, β) ≡
∫
Rm

m∏
l=1

yαl−1
l

m−1∑
j=l

yj+1

βl
 dy =

m−1∏
l=1

B(αl, α≥l+1 + β≥l+1), (4.2)

where B(α, β) = Γ(α)Γ(β)/Γ(α+ β) is the beta function.

Proof. This result can be straightforwardly established using mathematical induction over m start-
ing with m = 2, hence we leave the details of the proof to the reader.
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Lemma 4.2. Let Y = (Y1, Y2, . . . , Ym) have probability density function

h(y) ∝
m∏
l=1

yαl−1
l

m−1∑
j=l

yj+1

βl
 I{y ∈ Rm}.

Then, with the notation (α, ak) = (α1, . . . , αk−1, αk + ak, αk+1, . . . , αm), for k = 1, 2, . . . ,m,

E[Yk] = C((α,1k),β)
C(α,β) =

[
αk

α≥k+β≥k+1

]I{k<m}∏k−1
l=1

[
α≥l+1+β≥l+1

α≥l+β≥l+1

]
.

Proof . Straight-forward simplifications using properties of the beta and gamma functions, hence
we do not present details of the proof.

Proof of Theorem 4: Given the DATA = {(Vi, δi), i = 1, 2, . . . , n}, the right-censored systems
data, the posterior distribution of P is D(B, h∗, α∗) where α∗(B) = α(B) +

∑
i∈I1

I{vi ∈ B}
and

h∗(y) ∝ h(y)

[ ∏
i∈I1

yri

]∏
i∈I0

∑
j∈Ei

yj


where, for i ∈ I0, (Vi,∞) = ∪j∈EiBj . Let Jl, l = 1, 2, . . . ,m be such that

Jl =
∑
i∈I0

I{(vi,∞) = ∪mj=lBj}.

Then, using the form of h given in (4.1), we have that

h∗(y) ∝
m∏
l=1

yαl+Nl−1
l

 m∑
j=l

yj

Jl
 I{y ∈ Rm}. (4.3)

Consequently, by properties of PBPM, the Bayes estimator of P (A) is given by

P̂ (A) = E{P (A)|DATA} =

m∑
l=1

E{P (Bl)|DATA}E{PBl(A)|DATA}.

Since PBl |DATA ∼ D(α∗(Bl ∩ ·)), it follows from properties of the Dirichlet process that

E{PBl(A)|DATA} =
α∗(Bl ∩A)

α∗(Bl)

=
α(Bl ∩A) +

∑
i∈I1

I{Vi ∈ Bl ∩A}
α(Bl) +

∑
i∈I1

I{Vi ∈ Bl}
=
αl(A) +Nl(A)

αl +Nl
.
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On the other hand, the density function of (P (B1), P (B2), . . . , P (Bm)), given DATA, is h∗(y).
Consequently,

E{P (Bk)|DATA} = Eh
∗
[Yk]

=

∫
Rm

ykh
∗(y)dy∫

Rm
h∗(y)dy

=
C((α+ N, 1k),J)

C(α+ N,J)

=

[
αk +Nk

α≥k +N≥k + J≥k+1

]I{k<m} k−1∏
l=1

[
α≥l+1 +N≥l+1 + J≥l+1

α≥l +N≥l + J≥l+1

]
,

with the last equality obtained by using Lemma 4.2. Combining these results lead to the expression
for P̂ (A), completes the proof of Theorem 4.

4.2 Pointwise Credible Intervals

To construct pointwise credible intervals for F̄ (t) = 1− F (t) = P ((t,∞)), we take samples from
the posterior measure given in (4.3). That is, the density function associated with the posterior
measure is given by

h∗(y) ∝
m∏
l=1

yαl+Nl−1
l

 m∑
j=l

yj

Jl
 I{y ∈ Rm},

which is also proportional to the so-called generalized Dirichlet distribution (see Connor and Mosi-
mann (1969)). To sample from the posterior measure, we consider a well-known transformations

Xl = Yl + Yl+1 + . . .+ Ym, l = 1, 2, . . . ,m.

Define,

Wl =
Xl+1

Xl
, l = 1, 2, . . . ,m− 1.

Simplification yields that

Y1 = 1−W1, Y2 = W1(1−W2), . . . , Ym−1 = (1−Wm−1)

m−2∏
j=1

Wj , Ym =

m−1∏
j=1

Wj . (4.4)

Straight-forward derivations show thatW1,W2, . . . ,Wm−1 have independent beta distributions with

W1 ∼ Beta(A1, α
∗
1),W2 ∼ Beta(A2, α

∗
2), . . . ,Wm−1 ∼ Beta(Am−1, α

∗
m−1),

whereAr =
∑m
l=r[αl+Nl+Jl] and α∗r = αr+Nr, for r = 1, 2, . . . ,m. One may now take samples

of W1,W2, . . . ,Wm, and then obtain Y1, Y2, . . . , Ym using (4.4). Then, for any t ∈ Bl ⊆ B, an
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approximate posterior mean, hence an approximate nonparametric Bayes estimator, is given by

F̂NPB(t) = P̂ ((0, t]) =

l−1∑
j=1

E(Yj) + E(Yl)

[
α(Bl ∩ (0, t]) +Nl(Bl ∩ (0, t))

α(Bl) +Nl

]

could be obtained and point-wise credible intervals of FNPB(t) (or F̄NPB(t) = 1 − FNPB(t))
could be constructed from the posterior samples.

4.3 Joint Estimation of System and Components Reliabilities

We now consider the joint estimation of component and system reliabilities when n identical systems
each with K components are in the study. Denote the lifetime of component j in the i-th system
by {Tij} and let (0, τi] be the monitoring period for the i-th system. Assume that, for each j =

1, . . . ,K, {Tij , i = 1, 2 . . . , n} are IID with distribution Fj , and {Tij}s and {τi}s are independent,
Tij and Til are also independent for j 6= l. Recall that the random observables for the j-th component
are

{(Zij , δij), i = 1, 2, . . . , n}, j = 1, 2, . . . ,K.

We assign independent PBDM prior on Pj , j = 1, 2, . . . ,K, and obtain nonparametric Bayes es-
timators of Pj , j = 1, 2, . . . ,K, given the random observable {(Zij , δij), i = 1, 2, . . . , n} for the
j-th component. For such right-censored components data we define the following subset of indices

I0j = {i ∈ {1, 2, . . . , n} : δij = 0} and I1j = {i ∈ {1, 2, . . . , n} : δij = 1}.

Without loss of generality we consider a partition of X = < given by B = {Bs : s = 1, 2, . . . ,m}
such that for each component j and for each i ∈ I0j there exists an Eij ⊂ {1, 2, . . . ,m} satisfying

(Zij ,∞) =
⋃
s∈Eij

Bs.

Define, Pj(Bl) = Ylj . Assume that the random probability measure Pj has PBDM prior measure,
D(B, hj , αj), where αj = (α1j , α2j , . . . , αmj) with αlj = αj(Bl), l = 1, 2, . . . ,m, and hj ≡
h(yj) is given by

h(yj) ∝

[
m∏
l=1

y
αlj−1
lj

]
I{yj ∈ Rm}, (4.5)

We also introduce the following notations. For l = 1, 2, . . . ,m and A ⊂ <,

Nlj(A) =
∑
i∈I1j

I{Zij ∈ Bl ∩A} and Nlj = Nlj(Bl);

Jlj =
∑
i∈I0j

I{Zij ∈ Bl};

N
(j)
≥l (A) =

∑m
r=lNrj(A); N

(j)
≥l = N

(j)
≥l (Bl); and J

(j)
≥l =

∑m
r=l Jrj .

Applying Theorem 4, we can then obtain a closed form estimator of Pj , j = 1, 2, . . . ,K, which is
stated as Corollary 3.
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Corollary 3. The Bayes estimator of Pj under integrated squared-error loss function when the prior
of Pj is a D(B, hj , αj) with hj of form in (4.5) and when given the right-censored components
data is

P̂j(A) =

m∑
r=1

WrjP̂rj(A), j = 1, 2, . . . ,K,

where, for r = 1, 2, . . . ,m,

Wrj =


[

αrj +Nrj

α
(j)
≥r +N

(j)
≥r + J

(j)
≥r+1

]I{r≤m−1}

{
r−1∏
l=1

[
α

(j)
≥l+1 +N

(j)
≥l+1 + J

(j)
≥l+1

α
(j)
≥l +N

(j)
≥l + J

(j)
≥l+1

]}
;

and

P̂rj(A) =
αj(Br ∩A) +N

(j)
r (A)

αj(Br) +N
(j)
r

.

As pointed out earlier the first term in braces of the expression for Wmj , j = 1, 2, . . . ,K, is
equal to 1. Therefore a closed form estimate of the j-th components reliability function is given bŷ̄F j(t) = 1 − F̂j(t) = P̂j((t,∞)), j = 1, 2, . . . ,K. As a consequence an estimate of the system
reliability function can be expressed in terms of the components reliability function using (2.1) and
is given by ̂̄Fφ(t) = hφ( ˆ̄F1(t), ˆ̄F2(t), . . . , ˆ̄FK(t)). (4.6)

Denote the corresponding Doss et al. (1989) PL-type estimator of system reliability function by

R̂φ(t) = hφ(R̂1,PLE(t), R̂2,PLE(t), . . . , R̂K,PLE(t)), (4.7)

where R̂j,PLE(t), j = 1, 2, . . . ,K, are the PL-type estimators of the component reliability functions
as defined in (2.3). That Doss et al. (1989) estimator (4.7) is a limiting case of our estimator (4.6)
when the prior measures satisfy αj(<+)→ 0 for j = 1, 2, . . . ,K, is formally stated in Corollary 4,
which follows from Corollary 2.

Corollary 4. Under the conditions of Corollary 3, when, for each j = 1, . . . ,K,we haveαj(R+)→
0, then ̂̄Fφ(t)→ R̂φ(t).

5 Simulation Studies
Simulation studies are carried out to examine the biases and root-mean-squared errors (RMSEs)
of the nonparametric Bayes estimator of system reliability function based on system lifetime data,
denoted by ̂̄FNPB(t) (labeled BayesSys), and components lifetimes data, denoted by ̂̄Fφ(t) (la-
beled BayesPhi), as well as corresponding nonparametric (PL-type) estimators denoted by R̂PLE(t)

(labeled PLESys) and R̂φ(t) (labeled PLEPhi). We consider the three component series-parallel
system (Figure 1) with component lifetimes, Tij ∼ Exp(θj), j = 1, 2, 3; θ = (1, 2, 1.5), and mon-
itoring time τi ∼ Exp(1). Simulated biases and RMSEs are obtained at the 5th, 10th , . . . , 95th
percentile of the true data generating distribution based on 1000 replications for n=30, and compare
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Figure 2: Simulated biases and RMSEs of the estimators ̂̄FNPB(t) (labeled BayesSys), ̂̄Fφ(t) (labeled
BayesPhi), R̂PLE(t) (labeled PLESys), and R̂φ(t) (labeled PLEPhi). Simulation parameters are n = 30,
lifetimes (3-component series-parallel system) from Exponential distribution with rate θ = (1, 2, 1.5), and
with 1,000 replications.

those with the corresponding nonparametric estimators. To compute ̂̄Fφ(t) we assign independent
PBDM prior measures with parameters αj(t,∞) = βj exp(−θjt), where θ1 = 1, θ2 = 2, θ3 = 1.5

and βj = 10, j = 1, 2, 3, on the components distribution functions Fj , j = 1, 2, 3, respectively.
That is, each PBDM prior measure has parameter that is βj multiplied by an exponential survivor
function with parameter θj . The βjs may be viewed as the degrees of precision of the PBDM prior
measures. Note that in this case the prior mean functions, ᾱj coincide with the components true re-
liability functions F̄j , j = 1, 2, 3. To compute ̂̄FNPB(t) we also assign similar prior measure with
θ = 1 and β = 1. In this case the prior mean function does not coincide with the true distribution
of system reliability. Even for the simple case, when components distributions are all exponentials,
the system lifetime distribution is not an exponential distribution in this series-parallel system.

Figure 2 demonstrates that both ̂̄FNPB(t) and ̂̄Fφ(t) possess larger biases but smaller RMSEs
than the nonparametric estimators R̂PLE and R̂φ, respectively. By examining Figure 2, it is evident
that ̂̄Fφ has smaller biases and RMSEs than ̂̄FNPB(t), while R̂PLE exhibits slightly larger biases
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Figure 3: Simulated biases and RMSEs of the estimators ̂̄FNPB(t) (labeled BayesSys), ̂̄Fφ(t) (labeled
BayesPhi), R̂PLE(t) (labeled PLESys), and R̂φ(t) (labeled PLEPhi). Simulation parameters are n = 30,
θ = (1, 1, 1) and γ = (2, 1.5, 1.2) (Weibull(θ, γ)) with 1000 replications. Mis-specified PBDM prior mea-
sures with α(u,∞) = β exp(−θu), where θ = (1, 1, 1) and β = (1, 1, 1), (10, 10, 10), (20, 20, 20).

and RMSEs than R̂φ. Among all four estimators, ̂̄Fφ(t) possesses the smallest RMSEs. There-
fore the proposed estimator of the system reliability function, ̂̄Fφ, based on the components lifetimes
data, has the best performance. However, in practice it is unlikely that the mean of the PBDM prior
measure will coincide with the true distribution function. So we carried out another simulation
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studies where the mean of the PBDM prior measures are misspecified. We also investigated the
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Figure 4: Asymptotic relative efficiency: true prior mean (top left), misspecified prior mean with β =1 (top
right), β =10 (bottom left), and β = 20 (bottom right).

biases and RMSEs in the case of misspecified prior measures, that is, when ᾱj differ from the com-
ponents true lifetimes generating distributions F̄j , j = 1, 2, 3. In particular, for each component,
IID lifetimes are generated from the Weibull distribution with a scale parameter θj and a shape pa-
rameter γj with θ = (1, 1, 1), γ = (2, 1.5, 1.2) and random monitoring τi ∼ Exp(1). However,
we assign the parameter of the PBDM prior measure to be αj(t,∞) = βj exp[−θjt] instead of
αj(t,∞) = βj exp[−(θjt)

γj ] with θ = (1, 1, 1), and β = (1, 1, 1), so that ᾱj is proportional to an
exponential survivor function and thus the prior mean function differs from the true data generating
distribution for each of the components. Aside from the choice of β = 1, we also run the simulations
for the cases β ∈ {(10, 10, 10), (20, 20, 20)} to examine the effects of precision parameter β when
the PBDM priors are misspecified.

From Figure 3, it is evident that for a smaller value of precision parameter, namely β = (1, 1, 1),̂̄Fφ(t) has smaller RMSE than R̂φ(t) even in the case of misspecified prior measures. As the preci-
sion of the prior measure β increases, ̂̄Fφ(t) possesses higher biases but smaller RMSE’s than R̂φ(t)

except for smaller values of t. Figure 3 therefore indicates that the nonparametric Bayes estimator̂̄Fφ(t) is robust in the sense that they do not suffer significantly due to a misspecification of the
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prior measures. When prior measures are misspecified, a larger magnitude of the precision param-
eter β produces larger biases and RMSE’s for the Bayes estimators ̂̄Fφ and ̂̄FNPB . The negative
impact of prior misspecification can be partly restrained by choosing smaller values of the precision
parameters.

Relative efficiencies of different type of estimators of system reliability function are obtained.
Relative efficiency of F̄NPB(t) and F̄φ(t) is defined by V ar(F̄NPB(t))

V ar(F̄φ(t))
. Similarly relative efficiency

of Rφ(t) and F̄φ(t) is defined by V ar(Rφ(t))

V ar(F̄φ(t))
. However, Figure 4 is based on RMSEs since Bayes

estimators are biased. From Figure 4 (top left and right), it is evident that Bayes estimator F̄φ(t) is
more efficient than the nonparametric estimator Rφ(t) both in the case of correctly specified prior
measures and misspecified prior measures with smaller values of precision parameters.

6 Illustrative Example

We illustrate the proposed estimators with a randomly generated (synthetic) data set and compare
it with nonparametric (PL-type) estimators. We consider thirty (n = 30) five-component parallel
systems for the data generation purpose. Assume that Tij ∼Weibull(θj , γj), with

θ = (0.55, 0.23, 0.11, 0.30, 0.32) and γ = (1.08, 0.80, 1.79, 0.82, 1.57),

and with the monitoring times being τi ∼ Exponential(0.1). To obtain nonparametric Bayes estima-
tor of system readability via components reliabilities we assumed PBDM priors where αj(t,∞) =

βj exp[−(θjt)
γj ] with θ = (1, 1, 1, 1, 1), γ = (1, 1, 1, 1, 1) and β = (1,1,1,1,1) (Figure 5, right),

that is, prior measures are misspecified. One can choose any other values of the parameters θ and γ
with the associated value of the precision parameter β based on prior knowledge. In the absence of
knowledge of the suitable PBDM prior measures, we may empirically estimate their parameters us-
ing the observed data. Equating the marginal reliability function of T , Pr(T > t) = exp{−(tθ)γ}
with the 75th and 50th percentiles of the reliability functions Rj,PLE(t), j = 1, 2, . . . , 6, we ob-
tain θ̂ = (0.59, 0.19, 0.10, 0.71, 0.40) and γ̂ = (0.82, 0.80, 1.60, 1.25, 2.16). Again, following
equation (12) of Rahman et al. (2014), we estimate β by β̂ =

∑M
i=1Di/log(M) ≈ (8, 7, 6, 8, 7),

where
∑M
i=1Di is the number of distinct uncensored observations for each component. The em-

pirically estimated PBDM prior measure of system reliability function based on system data has
α(s,∞) = β exp{−(sθ)γ}, with β̂ = 6, θ̂ = 1.76, and γ̂ = 0.08. The resulting reliability function
estimate with the empirically estimated prior measures with parameters θ̂, γ̂ and β̂ is presented in
Figure 5 (left panel). Figure 5 demonstrates that nonparametric Bayes estimates of system reliability
function, in particular ˆ̄Fφ(t), performs better than other estimators being closer to the true reliability
function. The right panel in Figure 5 indicates that the Bayes estimators are robust in the sense that
the effect of prior misspecification is not severe when the precision parameters βj are small.
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Figure 5: Reliability function of ̂̄FNPB(t) (labeled NPBSys), ̂̄Fφ(t) (labeled NPBPhi), R̂PLE(t) (la-
beled PLESys), and R̂φ(t) (labeled PLEPhi) and the true distribution (labeled True). Priors are α(t,∞) =
β exp{−(tθ)γ} with θ = (0.59, 0.19, 0.10, 0.71, 0.40, 0.08), γ = (0.82, 0.80, 1.60, 1.25, 2.16, 1.76), β =
(8, 7, 6, 8, 7) (left side graph), θ = (1, 1, 1, 1, 1), γ = (1, 1, 1, 1, 1), β = (1, 1, 1, 1, 1) (right side graph).

7 Concluding Remarks

The estimator ̂̄Fφ(t) we obtained serves as the Bayesian counterpart of the Doss et al. (1989) es-
timator R̂φ(t). We demonstrated that the Doss et al. (1989) estimator is a limiting case of our
proposed estimator ̂̄Fφ(t). The Bayes estimators of the system reliability function are smoother
in some sense than the corresponding nonparametric estimators. Simulation studies showed that̂̄Fφ(t) yielded smaller RMSEs than R̂φ(t). Simulation studies further demonstrated that, in terms of
RMSEs, (see Figure 2 and Figure 3) ̂̄Fφ(t) and R̂φ(t) perform better than F̄NPB(t) and R̂PLE(t),
respectively. Nonparametric Bayes estimators are also more robust in the sense that the effect of
prior misspecification is not severe when the precision parameters are small.

The class of PBDM prior measures is an elegant nonparametric prior which provides clear-cut
posterior calculation even in the presence of incomplete observations. Under this PBDM priors,
given the observations, which could be left-truncated, interval-censored, and right-censored, the
posterior measure is also a PBDM. We derived closed-form Bayes estimators as well as developed
a procedure to sample from the posterior measure. Moreover, PBDM priors could conveniently
handle left-truncated, interval-censored, and right-censored data. However, we did not consider
here the interesting and perhaps more realistic case where the component data are left truncated or
interval-censored. In a forthcoming manuscript we will consider estimating the system reliability
function under these more complicated data structures.
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A Proofs

Proof of Theorem 3: To see an explicit posterior measure we assume H(B, h,G ) = D(B, h, α),
partition-based Dirichlet measure. Recall that right-censored sample {(vi, δi) : i = 1, 2, . . . , n},
where δi = 1(0) means uncensored (right-censored) observation. That is vi = Ti when δi = 1

(uncensored observation) and vi > Ti when δi = 0 (right-censored). Without loss of generality let
T1, T2 . . . , Tn−m+1, T

∗
(1), T

∗
(2), . . . , T

∗
(m−1) be a sample from P with T1, T2, . . . , Tn−m+1 being the

uncensored observations and T ∗(1), T
∗
(2), . . . , T

∗
(m−1) being the m − 1 right-censored observations
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(ordered from smallest to largest). Consider T ∗(1), T
∗
(2), . . . , T

∗
(m−1) be the partition boundaries such

that
B = (B1, B2, . . . , Bm)

is a measurable partition of (0,∞), where Bl = (T ∗(l−1), T
∗
(l)], l = 1, 2, 3, . . . ,m − 1, and Bm =

(T ∗(m−1), T
∗
(m)) with T ∗(0) = 0 and T ∗(m) = ∞. We consider D(B, h, α) with h being of specific

form (Dirichlet density function)

h(y) ∝

[
m∏
l=1

yαl−1

]
I{y ∈ Rm},

with α = (α1, α2, . . . , αm), αl = α(Bl), l = 1, 2, . . . ,m.

By repeated application of Theorem 1 we obtain posterior distribution of P given all complete
(uncensored) observations (T1, T2 . . . , Tn−m+1) which is also a PBDM D(B, h†, α∗), where

h†(y) ∝ h(y)

[
m∏
l=1

yl
∑n−m+1
i=1 I(Ti∈Bl)

]
∝

[
m∏
l=1

yαl−1

][
m∏
l=1

yl
∑n−m+1
i=1 I(Ti∈Bl)

]
∝

[
m∏
l=1

yl
α∗
l−1

]
,

and α∗ = (α∗1, α
∗
2, . . . , α

∗
m) with α∗l = αl +

∑n−m+1
i=1 I(Ti ∈ Bl).

Now suppose that Tn−m+2 is right-censored at T ∗(1) (that is Tn−m+2 > T ∗(1) ) then it follows
from the Theorem 2 that posterior distribution (P | T ∗(1)) is PBDM, D(B, h‡, α∗), where

h‡(y) ∝ h†(y)(y2 + y3 + . . .+ ym) ∝

[
m∏
l=1

yl
α∗
l−1

] m∑
j=2

yj

 ,
and α∗l = αl +

∑n−m+1
i=1 I(Ti ∈ Bl).

By repeated application of Theorem 2 for right-censored observations we get posterior distribu-
tion of P given T ∗(1), T

∗
(2), . . . , T

∗
(m)) is PBDM, D(B, h∗, α∗), where

h∗(y) ∝ h†(y)

m∏
l=1

 m∑
j=l+1

yj

 ∝ [ m∏
l=1

yl
α∗
l−1

]
m∏
l=1

 m∑
j=l+1

yj

 ,
and α∗l = αl +

∑n−m+1
i=1 I(Ti ∈ Bl).

Thus the posterior measure, P | (T1, T2 . . . , Tn−m, T
∗
(1), T

∗
(2), . . . , T

∗
(m)) is the PBDM, D(B, h∗, α∗),

where

h∗(y) ∝ h(y)

[
m∏
l=1

yl
∑n−m+1
i=1 I(Ti∈Bl)

]
m∏
l=1

 m∑
j=l+1

yj

 ∝ [ m∏
l=1

yl
α∗
l−1

]
m∏
l=1

 m∑
j=l+1

yj

 ,
and α∗l = αl +

∑n−m+1
i=1 I(Ti ∈ Bl).
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