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SUMMARY

Inverse probability of treatment weighting can account for confounding under a number of
assumptions, including that of no unmeasured confounding. A recent simulation study pro-
posed a bootstrap bias correction, apparently demonstrating good performance in removing
bias due to unmeasured confounding. We revisited the simulations, finding no evidence of
bias reduction.
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1 Kundhi and Voia (2018) Methodology
When investigating the causal effect of a binary treatment z on an outcome y in counterfactual
theory, two potential outcomes are assumed: y1i if the patient i is treated and y0i if not. The average
treatment effect (ATE) is defined by E(y1i ) − E(y0i ). However, observing both potential outcomes
for the same patient is not possible, only yi is observed. Methods based on the propensity score
introduced by Rosenbaum and Rubin (1983) and defined as π(xi) = p(zi = 1|xi), the probability
of being assigned to the treatment group zi = 1 (versus zi = 0), given baseline covariates xi,
have been developed to make causal inference from observational data. One of these methods is
the inverse probability of treatment weighting (IPTW) which uses the inverse of the propensity
score as a weight to create a pseudo-population where there is no association between confounders
and treatment. Under the positivity assumption 0 < p(zi = 1|xi) < 1, the stable unit treatment
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value assumption which means that the two potential outcomes y0i and y1i of one patient i cannot
be influenced by the treatment of another patient and the strong ignorable treatment assignment
assumption, y0, y1 ⊥ z|x, IPTW provides an unbiased estimator of the ATE (Rosenbaum and Rubin,
1983; Austin, 2011). In Kundhi and Voia (2018), the IPTW estimator for the ATE is

θ̂ =
1

N

N∑
i=1

{
yizi
π̂(xi)

− yi(1− zi)

1− π̂(xi)

}
,

where i = 1, . . . , N denotes the patient and π̂ an estimation of the propensity score obtained from a
consistent estimator. The bootstrap bias is

Bias∗ =
1

B

B∑
b=1

θ̂∗b − θ̂,

where θ̂∗b is the estimate of the ATE from the b-th nonparametric bootstrap sample. Kundhi and Voia
(2018) proposed the corrected estimate:

θ̃C = θ̂ −Bias∗ = 2θ̂ − 1

B

B∑
b=1

θ̂∗b .

An iterated version for further reducing bias is also proposed. There is no theoretical justification
for a reduction in unmeasured confounding bias resulting from these corrections.

2 Simulations
We followed the simulations of Kundhi and Voia (2018) as closely as possible. The total number of
patients was N . The xi,j were assumed to be normally distributed independent centered covariates
with V ar[xi,j ] = 0.4, 0.4, 1.5 for j = 1, 2, 3 respectively. The treatment model used in Kundhi
and Voia (2018) was not explicitly provided. Therefore we have run a Scenario A where treatment
assignment was deterministic based on sample sizes and a Scenario B that included confounding.
For this latter case a treatment model was included where zi is a Bernouilli random variable whose
parameter π(xi) is generated as logit(π(xi)) = −0.4054651 + 0.8xi,1 + 0.6xi,2 + 0.9xi,3. The
intercept was chosen to give a ratio of treated:untreated of 0.4 in order to match the original sample
sizes (Nt, Nc) = (30, 50); (60, 80); (100, 150); (200, 300); (500, 750); (1000; 1500) where Nt and
Nc are respectively the number of treated patients and the number of controls. The relationship
between outcome and treatment is given by yi = θzi + xi,1 + xi,2 + xi,3 + ui where θ is the
treatment effect, taking values θ = 0.5, 1, 2, and ui is the residual standard normal variance. Three
misspecification cases were considered by the authors of the discussed paper: (1) omitted variable:
xi,3 was dropped from the propensity score model; (2) endogeneity: corr(xi,1, ui) = ρ with ρ =

0.25, 0.5, 0.9; (3) lack of overlap: V ar[xi,1] = St = 0.8, 1.2 for the treated and V ar[xi,1] = Sc =

0.5 for the controls. 1, 000 datasets have been generated. For each of these datasets, the bootstrap
bias correction was computed using 999 bootstrap samples.
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All misspecification cases were considered in Scenario A. However, misspecification 3 was not
considered in Scenario B because it is incompatible with specifying a treatment model. Relative
biases for Scenario A are presented in Figure 1 and for Scenario B in Figure 2. Unlike Kundhi
and Voia (2018) who found substantial bias which decreased with the bootstrap correction, we do
not find any bias except for Scenario B with misspecification 1, i.e. when there is unmeasured
confounding, in which case the bootstrap correction does not reduce bias. If these relative biases
look equals for each value of θ in Figure 2, this is a misleading impression created by the figures all
being drawn on a common y-axis.
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Figure 1: Relative biases according to the sample sizes (Nt, Nc) for Scenario A. Results are pre-
sented for both the bootstrap and the IPTW estimators and according to the true treatment effect θ,
the missspecification case (1, 2 or 3) and for misspecification 2 according to the values of ρ and for
misspecification 3 according to the values of St.
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Figure 2: Relative biases according to the sample sizes (Nt, Nc) for Scenario B. Results are pre-
sented for both the bootstrap and the IPTW estimators and according to the true treatment effect θ,
the missspecification case (1 or 2) and for misspecification 2 according to the values of ρ.

3 Conclusion

Suggesting that being able to remove bias due to unmeasured confounding with no additional infor-
mation using only the bootstrap appears, indeed, too good to be true.
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