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SUMMARY

In many surveys and clinical trials, we obtain measurements on covariates or biomark-
ers that are left-censored due to the limit of detection. In such cases, it is necessary to
correct for the left-censoring when studying covariate effects in regression models. The
expectation-maximization (EM) algorithm is widely used for the likelihood inference in
generalized linear models with censored covariates. The EM method, however, requires
intensive computation involving high-dimensional integration with respect to the covari-
ates when the dimension of the censored covariates is large. To reduce such computational
difficulties, we propose and explore a Monte Carlo EM method based on the Metropolis
algorithm. The finite-sample properties of the proposed estimators are studied using Monte
Carlo simulations. An application is also provided using actual data obtained from a health
and nutrition examination survey.
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1 Introduction
In clinical trials and health examination surveys, we often encounter covariates or biomarkers that
are left-censored. The left-censoring may occur due to low concentrations of biomarkers for which
measuring devices are unable to detect or observe the true values. In other words, we encounter
left-censored covariates when their actual values are below some predetermined level, often referred
to as the limit of detection (LOD). In such cases, instead of actual measurements, the limit of de-
tection is typically reported as observed values of covariates. For a valid statistical inference, it is
often necessary to perform an analysis by correcting for the left-censored covariates. To address
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the left-censoring in regression models, methods were developed and studied by authors in many
different fields, such as biology (Bernhardt et al., 2015), ecology (Thompson and Nelson, 2003),
environmental studies (Helsel, 2006), and medicine (Buckley and James, 1979; Sattar et al., 2015).

A straightforward approach to tackle the problem of the limit of detection is to replace the
left-censored values by (1/2)LOD or (1/

√
2)LOD (Nie et al., 2010) or by weighted average of the

uncensored observations (Buckley and James, 1979). This simple and naive method has certain
weaknesses, as it generally provides biased estimates (Nie et al., 2010; Lee et al., 2018). Also,
substituting the left-censored values with (1/2)LOD or (1/

√
2)LOD gives biased estimators with

small standard errors (Thompson and Nelson, 2003). There are other techniques available to treat
the limit of detection, which include the iterative least squares technique (Schmee and Hahn, 1979),
EM algorithm (Aitkin, 1981), regression analysis with random censoring (Ireson and Rao, 1985),
M-estimation with censored covariates (Ritov, 1990), multiple imputation with censored covariates
(Wei and Tanner, 1991), and polynomial regression with missing covariates (Akritas, 1996). For
further details on regression analyses with censored covariates, we refer readers to Lubin et al.
(2004), Helsel (2006), Herring (2010), LaFleur et al. (2011), Barescut et al. (2011), May et al.
(2011), Sattar et al. (2012), Sattar et al. (2015), Bernhardt et al. (2015), Holstein et al. (2015), and
Lee et al. (2018).

To deal with left-censored cocariates, as an efficient tool, the EM method is widely used (May
et al., 2011; Sattar et al., 2012, 2015; Bernhardt et al., 2015; Holstein et al., 2015; Lee et al., 2018).
The EM method involves calculation of the conditional expectations of the log-likelihood, score
function, and Fisher information with respect to the left-censored covarites given the observed data.
When the dimension of the censored covariates is large, it may be impractical to calculate the con-
ditional expectations numerically, as they require intensive computation involving high-dimensional
integration with respect to the censored covariates. To reduce the computational burden, in this paper
we propose a Monte Carlo EM method based on the Metropolis algorithm. The finite-sample prop-
erties of the Monte Carlo estimates are assessed based on a simulation study. As an application of
the proposed method, we consider analyzing a real data set obtained from the National Health and
Nutrition Examination Survey (NHANES), which is designed to assess the health and nutritional
status of individuals through interviews and physical examinations.

The paper is organized as follows. Section 2 introduces the model and notation, and describes
the proposed approximate EM method for the maximum likelihood estimation in generalized linear
models under left-censored covariates. Section 3 presents an illustrative example to describe the
computational issues of the proposed method. Section 4 investigates finite-sample properties of the
proposed estimators based on a simulation study. Section 5 presents an application using actual
health and nutrition examination survey data. Section 6 concludes the paper with some discussion.
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2 Model and Notation

2.1 Generalized linear model

Suppose y = (y1, . . . , yn)
′ represents a vector of n independent responses, where the ith response

yi follows a distribution in the exponential family

fyi|zi(yi|zi,β, ϕ) = exp

[
yiηi − b(ηi)

a(ϕ)
+ c(yi, ϕ)

]
, (2.1)

for some functions a, b, and c. The response variable yi is assumed to be related to the vector of
covariates zi through the canonical parameter ηi = z′iβ, where zi may contain 1 to incorporate
an intercept term. For the exponential family (2.1), the log-likelihood function of the regression
coefficients β and dispersion parameter ϕ may be obtained as

l(β, ϕ|y,Z) =
n∑

i=1

[
yiηi − b(ηi)

a(ϕ)
+ c(yi, ϕ)

]
, (2.2)

where Z is the design matrix with its ith row being equal to z′i.
For simplicity, we assume ϕ = 1, as this is the case for both binary and Poisson regression

models. The maximum likelihood estimator of β may be obtained by numerically maximizing the
log-likelihood function (2.2) with respect to β or, equivalently, by solving the estimating equation

n∑
i=1

[
yi − µi(β, zi)

]
zi = 0 (2.3)

with respect to β, where µi(β, zi) is the ith mean response, µi(β, zi) = E(yi|zi,β) = ∂b(ηi)/(∂ηi).
Equation (2.3) may be solved numerically using a suitable method, such as the iteratively reweighted
least squares (IRWLS) method.

2.2 Left-censored covariates

When covariates are left-censored, it is important to estimate the regression parameters by correcting
for the censored covariates. Consider a vector of covariates zi that may be partitioned as zi =

(xi,x
∗
i ), where xi represents a set of p continuous covariates that are subject to the limit of detection.

Suppose vi = (vi1, . . . , vip)
′ denotes a vector of p binary variables indicating the censoring statuses

of p covariates xi = (xi1, . . . , xip)
′, where vij is 1 if the jth covariate xij is observed (i.e., xij ≥ lj),

and 0 if xij is left-censored (i.e., xij < lj), with the detection limit lj being considered known.
Note that the binary indicators vi = (vi1, . . . , vip)

′ of censored covariates (or biomarkers) may
be correlated by nature, as a small value of one covariate may result in a small value of another
and hence both covariates could be subject to the limit of detection or left-censoring. To find the
joint distribution of vi = (vi1, . . . , vip)

′, we assume a multivariate Bahadur model (Bahadur, 1961),
which is defined by the marginal probabilities θij = P (vij = 1) = P (xij ≥ lj) of the binary
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indicators and their pairwise and higher order associations. For example, in the case of a three-
dimensional covariate vector xi = (xi1, xi2, xi3)

′, the multivariate Bahadur model for the indicator
variables vi = (vi1, vi2, vi3)

′ is given by

fvi(vi|θ) =
[ 3∏
j=1

θ
vij
ij (1− θij)

1−vij

](
1 + γ12ri1ri2 + γ13ri1ri3 + γ23ri2ri3 + γ123ri1ri2ri3

)
,

where rij = (vij − θij)/
√
θij(1− θij), γjk = corr(vij , vik) = E(rijrik), for j, k = 1, 2, 3, and

γ123 = E(ri1ri2ri3).

Suppose xo
i represents the observed values and xl

i the left-censored values of xi, so that a per-
mutation of these values can be written as xi = (xo

i ,x
l
i). Assume that xi has the multivariate normal

density fxi(xi|µx,Σx). Given the observed data {(yi,xo
i ,x

∗,vi), i = 1, . . . , n}, the likelihood of
α = (β,µx,Σx,θ) may be obtained as

L(α) =

n∏
i=1

∫
xl
i

fyi|zi
(
yi|zi,β

)
fxi

(
xi|µx,Σx

)
fvi

(
vi|θ

)
dxl

i, (2.4)

where the limits of integration for the jth left-censored covariate xl
ij in xl

i is (−∞, lj). The estima-
tors of α may be obtained by maximizing the observed data likelihood function (2.4) with respect
to α using a numerical method. Equivalently, we can find the estimators by solving the likelihood
score equations S(α) = 0 with respect to α, where the score function S(α) may be obtained as

S(α) =

n∑
i=1

(∂/∂α) log

∫
xl
i

fyi|zi
(
yi|zi,β

)
fxi

(
xi|µx,Σx

)
fvi

(
vi|θ

)
dxl

i

=

n∑
i=1

∫
xl
i

B(α, zi) fxl
i|obsi

(
xl
i|obsi,α

)
dxl

i, (2.5)

with B(α, zi) being the score function B(α, zi) = (∂/∂α)l(α, zi) for the complete data log-
likelihood

l(α, zi) = log fyi|zi
(
yi|zi,β

)
+ log fxi

(
xi|µx,Σx

)
+ log fvi

(
vi|θ

)
. (2.6)

The density function fxl
i|obsi

(
xl
i|obsi,α

)
in Equation (2.5) denotes the conditional distribution of

xl
i given the observed data obsi = (yi,x

o
i ,x

∗,vi) for the ith individual. This density function does
not have a closed form, in general, and should be calculated numerically. When the dimension
of xl

i is large, it is difficult to obtain the exact maximum likelihood estimates, as the estimation
involves high-dimensional integration with respect to the left-censored covariates xl

i. To reduce
computational difficulties involving the high-dimensional integration, we propose an approximate
maximum likelihood estimation using the Monte Carlo EM method as described in the next section.
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2.3 Monte Carlo EM method

Recall the complete data log-likelihood (2.6). Given initial estimates α(m), the E-step of the EM
method calculates

Qi

(
α
∣∣α(m)) = E

[{
log fyi|zi

(
yi|zi,β

)
+ log fxi

(
xi|µx,Σx

)
+ log fvi

(
vi|θ

)} ∣∣∣ obsi,α(m)

]
, (2.7)

where the expectation E is with respect to the conditional distribution of the left-censored covariates
xl
i given the observed data obsi. In particular, if the value of a single covariate xi1 for the ith

individual is below the detection limit l1 and hence left-censored, then the E-step of the EM method
calculates the integral

Qi

(
α
∣∣α(m)

)
=

∫
xi1

[
log fyi|zi

(
yi|zi,β

)
+ log fxi

(
xi|µx,Σx

)
+ log fvi

(
vi|θ

)]
× fxi1|obsi

(
xi1|obsi,α(m)

)
I
(
−∞ < xi1 < l1

)
dxi1.

To approximate the conditional expectations in (2.7), we draw random samples from the trun-
cated distribution fxl

i|obsi

(
xl
i|obsi,α(m)

)
I
(
−∞ < xl

i < l
)

using the Metropolis algorithm, where
we use the notation

(
−∞ < xl

i < l
)

to indicate that each element of xl
i assumes values within its

corresponding censoring interval, i.e.,(
−∞ < xl

i < l
)
≡

⋂
xij∈xl

i

(
−∞ < xij < lj

)
.

The Metropolis step begins with a candidate distribution hxl
i
(xl

i) from which potential new
draws are made. Then an acceptance function is specified in order to determine the probability of ac-
cepting a new value as opposed to retaining the previous one. Let xl

i be the covariate vector of previ-
ous values drawn from the truncated conditional distribution fxl

i|obsi

(
xl
i|obsi,α(m)

)
I
(
−∞ < xl

i <

l
)
. Consider a new value x̃l

ij for its jth element as x̃l
i =

(
xl
i1, . . . , x

l
i,j−1, x̃

l
ij , x

l
i,j+1, . . . , x

l
ipi

)
drawn from the candidate distribution hxl

i
(xl

i). Then with probability

aj
(
xl
i, x̃

l
i

)
= min

{
1,

fxl
i|obsi

(
x̃l
i|obsi,α(m)) I

(
−∞ < x̃l

i < l
)
hxl

i

(
xl
i

)
fxl

i|obsi

(
xl
i|obsi,α(m)

)
I
(
−∞ < xl

i < l
)
hxl

i

(
x̃l
i

)} , (2.8)

we accept the candidate value x̃l
ij ; otherwise, we reject and retain the previous value xl

ij . We repeat
the above process to update each element of the covariate vector xl

i. Note that if the candidate
distribution is chosen as hxl

i

(
xl
i

)
= fxl

i|xo
i

(
xl
i|xo

i ,µx,Σx

)
I
(
−∞ < xl

i < l
)
, then the second term

within the braces in (2.8) reduces to

fxl
i|obsi

(
x̃l
i|obsi,α(m)

)
fxl

i|xo
i

(
xl
i|xo

i ,µx,Σx

)
fxl

i|obsi

(
xl
i|obsi,α(m)

)
fxl

i|xo
i

(
x̃l
i|xo

i ,µx,Σx

)
=

fyi|zi
(
yi|x̃l

i,x
o
i ,x

∗
i ,β

)
fxi

(
x̃l
i,x

o
i |µx,Σx

)
fxl

i|xo
i

(
xl
i|xo

i ,µx,Σx

)
fyi|zi

(
yi|xl

i,x
o
i ,x

∗
i ,β

)
fxi

(
xl
i,x

o
i |µx,Σx

)
fxl

i|xo
i

(
x̃l
i|xo

i ,µx,Σx

)
=

fyi|zi
(
yi|x̃l

i,x
o
i ,x

∗
i ,β

)
fyi|zi

(
yi|xl

i,x
o
i ,x

∗
i ,β

) . (2.9)
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In this case, the acceptance function aj
(
xl
i, x̃

l
i

)
involves only the specification of the conditional

distribution of yi|zi. The Metropolis step is then incorporated into the EM method to obtain Monte
Carlo approximations to the conditional expectations. Suppose

(
u
(1)
i ,u

(2)
i , . . . ,u

(Si)
i

)
is a random

sample drawn from the truncated distribution fxl
i|obsi

(
xl
i|obsi,α(m)

)
I
(
−∞ < xl

i < l
)
. Then the

E-step in (2.7) may be approximated as

Qi

(
α
∣∣α(m)

)
≈ Ê

[{
log fyi|zi

(
yi|zi,β

)
+ log fxi

(
xi|µx,Σx

)
+ log fvi

(
vi|θ

)} ∣∣∣ obsi,α(m)

]
=

1

Si

Si∑
s=1

[
log fyi|zi

(
yi|z(s)i ,β

)
+ log fxi

(
x
(s)
i |µx,Σx

)
+ log fvi

(
vi|θ

)]
, (2.10)

where z
(s)
i =

(
x
(s)
i ,x∗

i

)
with x

(s)
i =

(
u
(s)
i ,xo

i

)
. The M-step of the EM method maximizes the

objective function

Q
(
α
∣∣α(m)

)
=

n∑
i=1

Qi

(
α
∣∣α(m)

)
, (2.11)

with respect to α. The complete EM algorithm for estimating the regression parameters β and
nuisance parameters τ = (µx,Σx,θ) may be described as follows:

1. Choose initial values α(0) = (β(0), τ (0)). Set m = 0.

2. Calculate (with expectations E being replaced by Ê based on Monte Carlo samples):

(a) β(m+1) that maximises
∑n

i=1 Ê
[
log fyi|zi(yi|zi,β) | obsi,α(m)

]
.

(b) τ (m+1) that maximises
∑n

i=1 Ê
[{

log fxi
(xi|µx,Σx) + log fvi(vi|θ)

}
| obsi,α(m)

]
.

(c) Set m = m+ 1.

3. If convergence is achieved, declare α(m+1) =
(
β(m+1), τ (m+1)

)
to be the Monte Carlo EM

(MCEM) estimates α̂ = (β̂, τ̂ ).

2.4 Approximate variance of MCEM estimtors

The variance of the proposed MCEM estimators α̂ may be approximated by the observed Fisher
information. Following Louis (1982), the observed Fisher information matrix may be obtained as

I(α) =−
n∑

i=1

E
[
Ḃ(α, zi)

∣∣ obsi,α
]
−

n∑
i=1

E
[
B(α, zi)B

′(α, zi)
∣∣ obsi,α

]
+

n∑
i=1

E
[
B(α, zi)

∣∣ obsi,α
]
E
[
B′(α, zi)

∣∣ obsi,α
]
, (2.12)
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where B(α, zi) is the complete data score function, B(α, zi) = (∂/∂α)l(α, zi), and Ḃ(α, zi) =
∂B(α, zi)/∂α

′. A Monte Carlo approximation to the above Fisher information is obtained as

I∗(α) =−
n∑

i=1

1

Si

Si∑
s=1

[
Ḃ
(
α, z

(s)
i

)]
−

n∑
i=1

1

Si

Si∑
s=1

[
B
(
α, z

(s)
i

)
B′(α, z

(s)
i

)]

+

n∑
i=1

[
1

Si

Si∑
s=1

B
(
α, z

(s)
i

)][ n∑
i=1

1

Si

Si∑
s=1

B′(α, z
(s)
i

)]
, (2.13)

where z
(s)
i = (x

(s)
i ,x∗

i ) = (u
(s)
i ,xo

i ,x
∗
i ) with u

(s)
i (s = 1, . . . , Si) being drawn from the truncated

conditional distribution fxl
i|obsi

(
xl
i|obsi, α̂

)
I(−∞ < xl

i < l). An approximate estimate of the
asymptotic variance of α̂ is then obtained as V (α) = I∗(α̂)−1, where I∗(α̂) is the Monte Carlo
Fisher information I∗(α) evaluated at α̂.

3 Illustrative Example

Consider a simple binary logistic model with two left-censored covariates x1 and x2 in the form

yi|(xi1, xi2) ∼ Ind. Bernoulli(pi), i = 1, . . . , n,

logit(pi) = z′iβ = β0 + β1xi1 + β2xi2,

xi = (xi1, xi2)
′ ∼ Ind. N(µx,Σx), (3.1)

where zi = (1, xi1, xi2)
′, µx = (µx1

, µx2
)′ and Σx is a 2 × 2 covariance matrix with the diagonal

elements (σ2
x1
, σ2

x2
) and off-diagonal element σx1x2

. Assume that the censoring indicators ri =
(ri1, ri2)

′ follow a multivariate Bahadur model in the form

fvi(vi|τ ) =

[
2∏

j=1

θ
vij
ij (1− θij)

1−vij

][
1 + ρ

(vi1 − θi1)(vi2 − θi2)√
θi1(1− θi1)θi2(1− θi2)

]
, (3.2)

where θij = P (vij = 1) = P (xij ≥ lj) = 1 − Φ
(
(lj − µxj )/σxj

)
for j = 1, 2 with Φ being

the standard normal distribution function, and ρ = corr(vi1, vi2). We can estimate the regression
parameters β = (β0, β1, β2)

′ and nuisance parameters τ =
(
µx1 , µx2 , σ

2
x1
, σ2

x2
, σx1x2 , ρ

)′
using

the MCEM algorithm described in Section 2.3. In particular, Step 2(a) of the EM algorithm leads to
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the iterative equations for β:

β(m+1) =Ê

[
n∑

i=1

wi(β, zi)ziz
′
i

∣∣∣ obsi,β(m), τ (m)

]−1

× Ê

[
n∑

i=1

wi(β, zi)di(β, zi)zi

∣∣∣ obsi,β(m), τ (m)

]

=

[
n∑

i=1

1

Si

Si∑
s=1

wi

(
β(m), z

(s)
i

)
z
(s)
i z

′(s)
i

]−1

×

[
n∑

i=1

1

Si

Si∑
s=1

wi

(
β(m), z

(s)
i

)
di
(
β(m), z

(s)
i

)
z
(s)
i

]
, (3.3)

for m = 0, 1, 2, . . ., where z
(s)
i = (1,x

′(s)
i )′, with the random observations x(s)

i (s = 1, . . . , Si) be-
ing drawn from the truncated conditional distribution fxl

i|obsi

(
xl
i|obsi,β(m), τ (m)

)
I(−∞ < xl

i <

l). Also, wi(β, zi) is a weight function given by

wi(β, zi) = var(yi) = pi(1− pi) =
exp(z′iβ)

(1 + exp
(
z′iβ)

)2 , (3.4)

and di(β, zi) is a “pseudo-observation” given by

di(β, zi) = z′iβ +
(yi − pi)

pi(1− pi)
. (3.5)

In Step 2(b) of the MCEM algorithm, the nuisance parameters τ = (µx1 , µx2 , σ
2
x1
, σ2

x2
, σx1x2 , ρ)

′

are estimated by numerically maximizing the approximate expectation

n∑
i=1

Ê

[{
log fxi

(xi|µx,Σx) + log fvi(vi)
} ∣∣∣ obsi,β(m), τ (m)

]

=

n∑
i=1

1

Si

Si∑
s=1

log fxi

(
x
(s)
i |µx,Σx

)
+

n∑
i=1

log fvi(vi|τ ). (3.6)

For good approximations to the above conditional expectations, the number of Monte Carlo samples
drawn by the Metropolis algorithm should be reasonably large. In the next section, we carry out a
simulation study based on a set of Si = 1000 Monte Carlo samples at each iteration.

Remark: Note that in the case of a continuous response yi, we can use a linear model in the form
E(yi|xi) = x′

iβ. In this setting, the iterative equation (3.3) for estimating the regression parameters
β takes a simplified form where the pseudo observation di(β, zi) becomes the original response
di(β, zi) = yi and the weight function becomes wi(β, zi) = 1. As before, the nuisance parameters
τ are estimated by numerically maximizing Equation (3.6).
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4 Simulation Study
To assess the performance of the proposed Monte Carlo EM (MCEM) method, we ran a series of
simulations using the binary logistic regression model (3.1). The data were generated using two
combinations of regression coefficients, (β0, β1, β2) = (−2, 0.5, 1) and (−2, 1, 0.5), and a fixed
set of nuisance parameters, (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5). The covariates x1 and x2

were subject to the limit of detection, where we considered two combinations, 30% and 50% LODs,
of left-censored values for both covariates.

Also, the data were generated using two combinations of sample sizes, n = 100 and 200.
Each simulation run was based on 500 replicates of data sets. The parameters were estimated using
the proposed MCEM method described earlier. The number of Monte Carlo samples used in the
MCEM method was fixed at Si = 1000. Figure 1 exhibits the convergence of the MCEM estimates
(β̂0, β̂1, β̂2) of regression coefficients obtained from a representative sample of size n = 200. The
plots indicate that when the number of Monte Carlo samples as used in the MCEM method is reason-
ably large, i.e., Si ≥ 2000, the stochastic estimates can approximate the exact maximum likelihood
estimates with a good degree of accuracy.
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Figure 1: Convergence of estimates (β̂0, β̂1, β̂2) obtained by the iterative Monte Carlo EM algo-
rithm. Estimates are shown for a representative sample of size n = 200 drawn from the binary
logistic model (3.1) with regression parameters (β0, β1, β2) = (−2, 1, 0.5) and nuisance parameters
(µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5). Covariates (x1, x2) are subject to detection limits
with 50% left-censored values.

As we consider two covariates x1 and x2 in the logistic regression model (3.1), it is not so dif-
ficult to obtain the exact maximum likelihood estimates by numerically maximizing the observed
data likelihood function. So here we assess how the proposed MCEM estimates compare to their
exact counterparts. Boxplots of the exact and approximate (MCEM) estimates of (β0, β1, β2) con-
structed based on 500 replicates of data sets are shown in Figures 2 and 3 for two combinations of
sample sizes, n = 100 and n = 200, respectively, for true parameters (β0, β1, β2) = (−2, 0.5, 1)
and (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5). Figures 4 and 5 repeat the plots for the regression
coefficients (β0, β1, β2) = (−2, 1, 0.5). It is clear from the boxplots that the Monte Carlo estimates
are very similar to their exact counterparts, as expected. For both methods, the estimates are roughly
unbiased and symmetric about their corresponding true parameter values.

Tables 1 and 2 supplement the boxplots in Figures 2–5 by showing the empirical biases and root
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Figure 2: Boxplots of exact and approximate (MCEM) estimates of (β0, β1, β2) constructed based
on 500 replicates of data sets each with sample size n = 100. Regression parameters fixed at
(β0, β1, β2) = (−2, 0.5, 1); nuisance parameters at (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5).
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Figure 3: Boxplots of exact and approximate (MCEM) estimates of (β0, β1, β2) constructed based
on 500 replicates of data sets each with sample size n = 200. Regression parameters fixed at
(β0, β1, β2) = (−2, 0.5, 1); nuisance parameters at (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5).

of mean squared errors of the exact and stochastic MCEM estimates of the regression coefficients.
Although both methods provide roughly unbiased estimates, the MCEM method generally provides
more variability in the estimates. For example, when estimating β1 with sample size n = 200,
with 50% LOD, and (β0, β1, β2) = (−2, 0.5, 1), Table 1 shows that the MCEM method provides
a root mean squared error of 0.3478, whereas the exact method provides a slightly smaller root
mean squared error of 0.3188. Similarly, when estimating β1 with sample size n = 200, with 50%
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Figure 4: Boxplots of exact and approximate (MCEM) estimates of (β0, β1, β2) constructed based
on 500 replicates of data sets each with sample size n = 100. Regression parameters fixed at
(β0, β1, β2) = (−2, 1, 0.5); nuisance parameters at (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5).
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Figure 5: Boxplots of exact and approximate (MCEM) estimates of (β0, β1, β2) constructed based
on 500 replicates of data sets each with sample size n = 200. Regression parameters fixed at
(β0, β1, β2) = (−2, 1, 0.5); nuisance parameters at (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5).

LOD, and (β0, β1, β2) = (−2, 1, 0.5), Table 2 shows that the MCEM method provides a root mean
squared error of 0.3451, whereas the exact method provides a similar root mean squared error of
0.3412. The difference between estimates obtained under the two methods appeared to be small
when the proportion of left-censored values in covariates is small.
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Table 1: Biases and root of mean squared errors (RMSEs) of (β̂0, β̂1, β̂2) constructed based on exact
and Monte Carlo EM methods using sample sizes n = 100 and n = 200. Each simulation run was
based on 500 replicates of data sets. Regression parameters fixed at (β0, β1, β2) = (−2, 0.5, 1);
nuisance parameters at (µx1 , µx2 , σ

2
x1
, σ2

x2
, σx1x2) = (0, 2, 1, 2, 0.5).

n = 100 n = 200

MCEM Exact MCEM Exact

LOD% Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

30

β̂0 –0.1976 0.8860 –0.1647 0.8827 –0.0866 0.7816 –0.0772 0.7800

β̂1 0.0678 0.5507 0.0239 0.4931 0.0490 0.4795 0.0341 0.4616

β̂2 0.0704 0.3923 0.0723 0.3917 0.0412 0.3621 0.0413 0.3619

50

β̂0 –0.0856 0.5918 –0.0531 0.5881 –0.0901 0.5714 –0.0802 0.5704

β̂1 0.0515 0.3478 0.0136 0.3213 0.0247 0.3318 0.0087 0.3188

β̂2 0.0256 0.2647 0.0248 0.2644 0.0379 0.2587 0.0376 0.2585

Table 2: Biases and root of mean squared errors (RMSEs) of (β̂0, β̂1, β̂2) constructed based on exact
and Monte Carlo EM methods using sample sizes n = 100 and n = 200. Each simulation run was
based on 500 replicates of data sets. Regression parameters fixed at (β0, β1, β2) = (−2, 1, 0.5);
nuisance parameters at (µx1

, µx2
, σ2

x1
, σ2

x2
, σx1x2

) = (0, 2, 1, 2, 0.5).

n = 100 n = 200

MCEM Exact MCEM Exact

LOD% Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

30

β̂0 –0.1789 0.9458 –0.1640 0.9393 –0.1665 0.8831 –0.1111 0.8805

β̂1 0.1123 0.5726 0.0938 0.5334 0.1209 0.5013 0.0609 0.4925

β̂2 0.0487 0.3481 0.0482 0.3472 0.0364 0.3398 0.0364 0.3393

50

β̂0 –0.0773 0.5935 –0.0625 0.5866 –0.1069 0.5792 –0.0510 0.5768

β̂1 0.0388 0.3728 0.0206 0.3452 0.0938 0.3451 0.0344 0.3412

β̂2 0.0231 0.2182 0.0228 0.2182 0.0083 0.2171 0.0086 0.2169
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5 Application
In this section, we consider analyzing some actual health survey data from the National Health
and Nutrition Examination Survey (NHANES) using the proposed MCEM method. The NHANES
study is designed to assess the health and nutritional status of adults and children in the United
States through interviews and physical examinations. It is a major program of the National Center
for Health Statistics (NCHS) under the Centers for Disease Control and Prevention (CDC).

The NHANES study collects data from participating respondents on demographic, socioeco-
nomic, dietary, and health-related variables through interviews. Also, physical examinations are
performed to obtain measurements on medical, dental, and physiological characteristics, as well as
laboratory tests. Here we investigate the cardiovascular (CV) fitness level of respondents aged 12–
49 years. In this CV fitness study, the screening of the participants is done prior to a treadmill test,
where individuals are excluded from the study depending upon their health conditions. We investi-
gate the relationship between the cardiovascular fitness and other health conditions as well as risk
factors, and thereby assess persons at risk due to poor physical fitness.

Our study is based on the NHANES data collected during the period 2003–2004. The data con-
tained observations from 1230 individuals. The response variable of interest is the CV fitness with
three levels categorized based on gender-age specific cut-points of maximal oxygen consumption
(VO2max), which is determined by measuring the heart rates response to known levels of submax-
imal work. In our study, the response variable y represents the CV fitness, which is dichotomized
into 0 for “low” CV fitness level and 1 for “moderate” to “high” CV fitness level. The goal is to
identify factors that affect the cardiovascular fitness of the individuals under study.

For our analysis, we use a set of dichotomized covariates, which include age (0 for age ≤ 35
years, and 1, otherwise), physical activity readiness code parc (0 for participating regularly in recre-
ation or work requiring little or no physical activity, and 1 for modest or heavy physical activity),
and ratio of family income to poverty pir (0 for ratio < 5, and 1, otherwise). We also consider two
continuous biomarkers, cot (serum cotinine level, ng/mL) and crp (C-reactive protein level, mg/dL).
These biomarkers showed large variability in the measurements, as well as left-censored values due
to the limit of detection. The detection limits for cot and crp were 0.011 and 0.01, respectively. To
reduce the variability, we took the logarithm of the measurements on the two biomarkers, denoted by
lcot = log(cot) and lcrp = log(crp). To adjust for the left-censoring, we considered analyzing the
data using the proposed Monte Carlo EM (MCEM) method. The number of Monte Carlo samples
used in the MCEM method was fixed at Si = 2000.

We use a logistic regression model to describe the mean response E(y) as a function of the
covariates, given by

logit{E(y)} = β0 + β1age + β2parc + β3pir + β4lcot + β5lcrp. (5.1)

Both exact ML and MCEM estimates of the regression coefficients are presented in Table 3. The
MCEM estimates appear to be generally close to their exact counterparts, as expected. From Table
3, it appears that the CV fitness is strongly associated with the two biomarkers, serum cotinine
(cot) and C-reactive protein (crp), and all demographic variables considered. For example, older
individuals (age > 35), individuals with increased physical activity (parc = 1), or with higher ratio
of family income to poverty (pir ≥ 5) have a higher CV fitness level. Also, individuals with a higher
log-serum cotinine level (lcot) tend to have a higher CV fitness level. On the other hand, individuals
with a higher log-C-reactive protein level (lcrp) tend to have a lower CV fitness level. In particular,
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given other variables fixed, for individuals participating regularly in recreation or work requiring
modest or heavy physical activity (parc = 1), the odds of having a “moderate” to “high” CV fitness
level increases by 1.39 (= exp(0.3283)), as compared to individuals requiring little or no physical
activity (parc = 0). Also, given other variables fixed, for every unit increase in log-C-reactive
protein level (lcrp), the odds of having a “moderate” to “high” CV fitness level decreases by 0.89
(= exp(−0.1137)), as obtained by the exact method.

Figure 6 displays the direction of the Monte Carlo EM algorithm, which shows that a conver-
gence in estimation is achieved at the 30th iteration, where the initial values are shown at iteration
zero. When comparing the estimation times by the two methods, the proposed MCEM method ap-
peared to be faster than the exact maximum likelihood method for estimating the model parameters.
Roughly, with two covariates as considered here, the MCEM method required 25% less time for the
estimation, as compared to the exact likelihood method. For high-dimensional covariates, however,
the gain in computation time from the MCEM method would be much higher.

It is important to note that under correctly specified models, the exact maximum likelihood es-
timators are, in fact, the most efficient. The purpose of this paper is to address the computational
issues of the likelihood estimation involving multidimensional integration. Specifically, we discuss
a Monte Carlo approach to approximating the maximum likelihood estimators by generating random
draws from the conditional distribution of the ‘missing’ data given the observed data. As expected,
the estimated standard errors of the proposed MCEM estimators are slightly higher than those ob-
tained from the exact likelihood estimators. The accuracy of the standard errors of the MCEM
estimators can be improved by increasing the number of bootstrap samples used by the Monte Carlo
method.
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Figure 6: Convergence of estimates of regression coefficients for CV fitness data from NHANES
study based on Monte Carlo EM method.
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Table 3: Analysis of cardiovascular fitness data from NHANES study based on both exact and
Monte Carlo EM (MCEM) methods.

Exact method MCEM method

95% Interval 95% Interval

Coef Estimate SE Low Up Estimate SE Low Up

β0 0.2783 0.0826 0.1164 0.4401 0.2321 0.1317 –0.0260 0.4902

age 1.0906 0.1334 0.8291 1.3521 1.0893 0.1671 0.7617 1.4168

parc 0.3283 0.0855 0.1607 0.4958 0.3245 0.1318 0.0661 0.5828

pir 0.7796 0.1260 0.5326 1.0265 0.7754 0.1893 0.4043 1.1464

lcot 0.0633 0.0126 0.0386 0.0879 0.0756 0.0203 0.0358 0.1153

lcrp –0.1137 0.0535 –0.2185 –0.0088 –0.1383 0.0601 –0.2560 –0.0205

6 Discussion
The purpose of this paper was to provide a suitable method for analyzing generalized linear models
when covariates are left-censored due to the limit of detection. We have developed and explored
a Monte Carlo EM (MCEM) method to approximate the maximum likelihood estimates of the re-
gression parameters, as well as other nuisance parameters. The proposed MCEM method provides
approximate estimates that are generally close to their exact counterparts. It is also worth noting that
the proposed stochastic Monte Carlo estimates reach the neighborhood of their exact counterparts
very quickly, but they continue to show random variation. In fact, the number of Monte Carlo sam-
ples required to have the stochastic estimates converge with three- or four-decimal accuracy would
be very large, as pointed out by McCulloch (1997).

In this paper, we have focused on developing the Monte Carlo approach in the context of gener-
alized linear models, which include the commonly used binary and Poisson regression models. The
proposed method may be extended to generalized linear mixed models for analyzing clustered or
longitudinal data, where repeated outcomes from a given cluster or longitudinal outcomes from a
given individual may be correlated by nature. Mixed models are commonly used to describe correla-
tion structures among repeated outcomes. A full likelihood analysis of the generalized linear mixed
model usually requires intensive calculations involving high-dimensional integrals. We intend to in-
vestigate the proposed method further for analyzing generalized linear mixed models for correlated
outcomes with left-censored covariates in a future study.
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