{"id":498,"date":"2017-09-24T06:01:29","date_gmt":"2017-09-24T06:01:29","guid":{"rendered":"http:\/\/jsr.isrt.ac.bd\/?post_type=article&p=498"},"modified":"2017-09-24T06:01:35","modified_gmt":"2017-09-24T06:01:35","slug":"extended-confluent-hypergeomatric-series-distribution-properties","status":"publish","type":"article","link":"http:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/","title":{"rendered":"Extended confluent hypergeomatric series distribution and some of its properties"},"content":{"rendered":"

Here we introduce a new family of distributions namely the extended con uent
\nhypergeometric series (ECHS) distribution as a generalization of con uent
\nhypergeometric series distributions, Crow and Bardwell family of distributions,
\ndisplaced Poisson distributions and generalized Hermite distributions. Some important
\naspects of the ECHS distributions such as probability mass function,
\nmean, variance and recursion formulae for probabilities, moments and factorial
\nmoments are obtained.<\/p>\n

Fulltext<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Here we introduce a new family of distributions namely the extended con uent hypergeometric series (ECHS) distribution as a generalization of con uent hypergeometric series distributions, Crow and Bardwell family of distributions, displaced Poisson distributions and generalized Hermite distributions. Some important aspects of the ECHS distributions such as probability mass function, mean, variance and recursion […]<\/p>\n","protected":false},"author":2,"featured_media":0,"menu_order":0,"comment_status":"closed","ping_status":"open","template":"","format":"standard","meta":{"_mi_skip_tracking":false,"_exactmetrics_sitenote_active":false,"_exactmetrics_sitenote_note":"","_exactmetrics_sitenote_category":0,"footnotes":""},"issuem_issue":[15],"issuem_issue_categories":[],"issuem_issue_tags":[],"yoast_head":"\nExtended confluent hypergeomatric series distribution and some of its properties - JSR<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Extended confluent hypergeomatric series distribution and some of its properties - JSR\" \/>\n<meta property=\"og:description\" content=\"Here we introduce a new family of distributions namely the extended con uent hypergeometric series (ECHS) distribution as a generalization of con uent hypergeometric series distributions, Crow and Bardwell family of distributions, displaced Poisson distributions and generalized Hermite distributions. Some important aspects of the ECHS distributions such as probability mass function, mean, variance and recursion […]\" \/>\n<meta property=\"og:url\" content=\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/\" \/>\n<meta property=\"og:site_name\" content=\"JSR\" \/>\n<meta property=\"article:modified_time\" content=\"2017-09-24T06:01:35+00:00\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"WebPage\",\"@id\":\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/\",\"url\":\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/\",\"name\":\"Extended confluent hypergeomatric series distribution and some of its properties - JSR\",\"isPartOf\":{\"@id\":\"https:\/\/jsr.isrt.ac.bd\/#website\"},\"datePublished\":\"2017-09-24T06:01:29+00:00\",\"dateModified\":\"2017-09-24T06:01:35+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/jsr.isrt.ac.bd\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Articles\",\"item\":\"https:\/\/jsr.isrt.ac.bd\/article\/\"},{\"@type\":\"ListItem\",\"position\":3,\"name\":\"Extended confluent hypergeomatric series distribution and some of its properties\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/jsr.isrt.ac.bd\/#website\",\"url\":\"https:\/\/jsr.isrt.ac.bd\/\",\"name\":\"JSR\",\"description\":\"Journal of Statistical Research\",\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/jsr.isrt.ac.bd\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Extended confluent hypergeomatric series distribution and some of its properties - JSR","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/","og_locale":"en_US","og_type":"article","og_title":"Extended confluent hypergeomatric series distribution and some of its properties - JSR","og_description":"Here we introduce a new family of distributions namely the extended con uent hypergeometric series (ECHS) distribution as a generalization of con uent hypergeometric series distributions, Crow and Bardwell family of distributions, displaced Poisson distributions and generalized Hermite distributions. Some important aspects of the ECHS distributions such as probability mass function, mean, variance and recursion […]","og_url":"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/","og_site_name":"JSR","article_modified_time":"2017-09-24T06:01:35+00:00","twitter_card":"summary_large_image","schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"WebPage","@id":"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/","url":"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/","name":"Extended confluent hypergeomatric series distribution and some of its properties - JSR","isPartOf":{"@id":"https:\/\/jsr.isrt.ac.bd\/#website"},"datePublished":"2017-09-24T06:01:29+00:00","dateModified":"2017-09-24T06:01:35+00:00","breadcrumb":{"@id":"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/jsr.isrt.ac.bd\/article\/extended-confluent-hypergeomatric-series-distribution-properties\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/jsr.isrt.ac.bd\/"},{"@type":"ListItem","position":2,"name":"Articles","item":"https:\/\/jsr.isrt.ac.bd\/article\/"},{"@type":"ListItem","position":3,"name":"Extended confluent hypergeomatric series distribution and some of its properties"}]},{"@type":"WebSite","@id":"https:\/\/jsr.isrt.ac.bd\/#website","url":"https:\/\/jsr.isrt.ac.bd\/","name":"JSR","description":"Journal of Statistical Research","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/jsr.isrt.ac.bd\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"}]}},"jetpack_sharing_enabled":true,"_links":{"self":[{"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/article\/498"}],"collection":[{"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/article"}],"about":[{"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/types\/article"}],"author":[{"embeddable":true,"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/comments?post=498"}],"version-history":[{"count":0,"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/article\/498\/revisions"}],"wp:attachment":[{"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/media?parent=498"}],"wp:term":[{"taxonomy":"issuem_issue","embeddable":true,"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/issuem_issue?post=498"},{"taxonomy":"issuem_issue_categories","embeddable":true,"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/issuem_issue_categories?post=498"},{"taxonomy":"issuem_issue_tags","embeddable":true,"href":"http:\/\/jsr.isrt.ac.bd\/wp-json\/wp\/v2\/issuem_issue_tags?post=498"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}