In this article, we investigate marginal models for analyzing incomplete longitudinal count data with dropouts. Specifically, we explore commonly used generalized estimating equations and weighted generalized estimating equations for fitting log-linear models to count data in the presence of monotone missing responses. A series of simulations were carried out to examine the finite-sample properties of the estimators in the presence of both correctly specified and misspecified dropout mechanisms. An application is provided using actual longitudinal survey data from the Health and Retirement Study (HRS) (HRS, 2019).